
Software Architecture and Task Plan Co-Adaptation
for Mobile Service Robots

Javier Cámara
University of York

javier.camaramoreno@york.ac.uk

Bradley Schmerl
Carnegie Mellon University

schmerl@cs.cmu.edu

David Garlan
Carnegie Mellon University

garlan@cs.cmu.edu

ABSTRACT
Self-adaptive systems increasingly need to reason about and adapt
both structural and behavioral system aspects, such as in mobile
service robots, which must reason about missions that they need
to achieve and the architecture of the software executing them.
Deciding how to best adapt these systems to run time changes is
challenging because it entails considering mutual dependencies
between the software architecture that the system is running and
the outcome of plans for completing tasks, while also considering
multiple trade-offs and uncertainties. Considering all these aspects
in planning for adaptation often yields large solution spaces which
cannot be adequately explored at run time. We address this chal-
lenge by proposing a planning approach able to consider the impact
of mutual dependencies between software architecture and task
planning on the satisfaction of mission goals. The approach is able
to reason quantitatively about the outcome of adaptation decisions
handling both the reconfiguration of the system’s architecture and
adaptation of task plans under uncertainty and in a rich trade-off
space. Our results show: (i) feasibility of run-time decision-making
for self-adaptation in an otherwise intractable solution space by
dividing-and-conquering adaptation into architecture reconfigura-
tion and task planning sub-problems, and (ii) improved quality of
adaptation decisions with respect to decision making that does not
consider dependencies between architecture and task planning.

CCS CONCEPTS
• Software and its engineering → Formal software verifica-
tion; Software safety; Software design tradeoffs; Software design
techniques; • Computer systems organization→ Robotics;

KEYWORDS
self-adaptation, assurances, architecture, mobile robotics

ACM Reference Format:
Javier Cámara, Bradley Schmerl, and David Garlan. 2020. Software Architec-
ture and Task Plan Co-Adaptation for Mobile Service Robots. In IEEE/ACM
15th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’20), October 7–8, 2020, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3387939.3391591

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7962-5/20/05. . . $15.00
https://doi.org/10.1145/3387939.3391591

1 INTRODUCTION
Increasingly, self-adaptive systems need to consider adapting both
structural and behavioral aspects of the system to achieve their
goals. An important class of such systems is mobile service robots,
which typically perform tasks such as fetching mail and escorting
a visitor to an office [50]. To do this, a robot must carry out ac-
tions such as navigating between locations and interacting with
humans. These systems operate in environments where obstacles
might dynamically appear, light conditions may change, batteries
might require recharging, and sensors may fail. Hence, these sys-
tems must adapt both their structure and behavior at run time to
respond to changes in their operating environment, as well as to
system changes that might include software and hardware faults.
For example, a robot tasked with navigating to a specific location
within a building might experience failure in the camera it is using
to navigate. At that point, the system should (i) change the architec-
ture (structure) to a new legal configuration that does not require
the camera to navigate, and possibly (ii) replan the way in which
the task (behavior) is going to be completed, since there might be
more than one way of reaching the target location (e.g., through
alternative paths), and the current one might be sub-optimal for the
new architecture configuration in which the camera is not available.

However, obtaining the best combination of software architec-
ture configuration and task plan specification is not straightforward
due to the mutual dependencies between them. In general, the out-
come of executing the same task specification (e.g., reaching the
target location through a specific path) in different software config-
urations will differ depending on factors like energy efficiency of
the configuration or safety aspects related to the accuracy of the
sensors and navigation algorithms used. Conversely, adapting the
task specification (e.g., the robot needs to find a new path because
an obstacle is blocking the way) might require reconfiguration be-
cause the current architecture configuration may not be suitable
for the new path, e.g., which might include dark corridors in which
camera-based navigation is not an option anymore.

Accounting for such dependencies in decision making for adap-
tation poses a challenge because the size of the combined solution
spaces for the architecture reconfiguration and task re-planning
can easily become too large to be adequately explored at run time.

To deal with that problem, the MORPH reference architecture [6]
suggests separating as much as possible structural reconfiguration
and behavior synthesis problems. This is achieved by including a
goal model manager component in its goal management layer that
is in charge of decomposing requirements into achievable recon-
figuration and behavior problems, which are assigned to different
solvers. Then, the strategy management layer includes a negotia-
tion process that is assumed to guarantee consistency among re-
configuration and behavior strategies when they are selected for

https://doi.org/10.1145/3387939.3391591
https://doi.org/10.1145/3387939.3391591

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Cámara, Schmerl, and Garlan

l3l5

l4

l2

l15m

PBUMP
5m5m

3m3m

Figure 1: Simple mobile robotics scenario.

execution. However, our research has shown that such negotiation
is not straightforward nor always feasible when there is a need to
account not only for functionality, but also to optimize multiple
extra-functional concerns (e.g., safety, timeliness, energy efficiency)
and their trade-offs. This is because the quantitative guarantees
associated with reconfiguration and behavior strategies depend
heavily on different pieces of information from multiple hetero-
geneous models (e.g., energy consumption, software architecture,
physical space, safety). These pieces of information are inter-related
and change at run time, potentially invalidating any quantitative
guarantees associated with pre-computed strategies. This calls for
a solution able to co-adapt structure and behavior in a scalable way,
as opposed to reconciling a posteriori pre-computed reconfigura-
tion and behavioral strategies that might not provide quantitative
guarantees.

In this paper we contribute an approach based on quantitative
synthesis and verification that separates planning into architecture
reconfiguration and task planning problems, dividing and conquering
the solution space while still considering their mutual dependencies.
This effectively co-adapts task plan specifications and architecture
to optimize adaptation decisions. The approach is instantiated using
Alloy [25] and the probabilistic model checker PRISM [29], which
are used in tandem to reason quantitatively about the outcome
of adaptation decisions. This allows run-time adaptation of the
architecture and task plans, under uncertainty, and in a rich trade-
off space. With respect to our previous work using quantitative
verification for self-adaptation [10, 11, 36], that only dealt with
structural adaptation, this approach dynamically constructs strate-
gies that also control the functional behaviour of the system layer
components, elaborating explicitly the distinction and coordination
between configuration and behavior control.

Our results show that our approach: (i) enables automated run-
time decision-making for self-adaptation in what was a priori an
intractable solution space by dividing-and-conquering adaptation
into sub-problems and (ii) improves the quality of adaptation deci-
sions with respect to decision-making that reasons about structural
adaptation only.

2 MOTIVATING SCENARIO
Mobile indoor service robots operate in environments where obsta-
cles might dynamically appear, light conditions may change, and
batteries may require recharging. They are also limited in what they
can sense, creating uncertainty in their location, chances of collid-
ing against obstacles, and the resources that they may have left to
complete a plan. In spite of this uncertainty, they must attempt to
ensure safe operation, effective use of resources like battery, and
timeliness of completing a task.

We illustrate our approach using a simple scenario (Figure 1), in
which the mission of the robot is navigating to a target location
(l5) from an initial location (l1) in the shortest possible time, with a
limited battery, and without bumping into obstacles or walls. To
achieve this goal, the robot can perform physical actions (e.g., move
between locations) and change its configuration (e.g., change a
sensor, its localization algorithm, or its speed setting).

While accomplishing the mission, the main concerns are: (i) time-
liness — the robot should get to the target in the shortest possible
time, (ii) safety— the robot should arrive at the target location with-
out bumping into obstacles, and (iii) efficiency — the robot should
minimize the energy used to get to the target location.

The problem that we want to solve is synthesizing specifica-
tions for the architecture and behavior of the robot to successfully
complete the mission, attending to the criteria described above, de-
spite situations that include component or sensor failure, obstacles
blocking corridors, and unexpectedly low battery level.

To inform decision-making, we have four models that capture
different aspects of the domain.
Architecture. Captures the modes in which the robot can operate,
determined by the software components that can be employed
at run-time (e.g., associated with sensor input processing, low-
level navigation algorithms), their connections, and configuration
parameters (e.g., speed, localization accuracy). This model includes:
• The current software configuration, including components, con-
nections, and parameter settings. Configurations in this architecture
contain three component categories (Figure 2):
1) Sensing. Manages physical sensors that capture information from
the environment. (a) Kinect: Provides an image where each pixel
also includes depth information that can be used to estimate dis-
tances to walls and obstacles. (b) Lidar : This sensor provides range
information in a 2D plane covering 180°. (c) Back Camera: The robot
has a rear facing camera that can be used by software to position
the robot using visual information.

Provides light in dark corridors
Terrible efficiency

Only helps with cameras

Provides 2D image of behind

Excellent efficiency
Not good in the dark

OK obstacle detection

Provides 2D planar depth field
Reasonable efficiency
Not good at obstacle detection

Provides 3D depth field/2D image
Excellent efficiency
Needs transform component to

convert depth image to lidar info

Headlamp: useful
in dark corridors

Back camera: images

behind the robot

Planar Lidar: depth

scans in a plane

Kinect Sensor: depth

and camera images

Category Name Energy cost Accuracy Requires

Sensing lidar Medium Bad -
kinect Excellent Good laserscanNodelet
camera Excellent Medium markerRecognizer

headlamp (when dark)
Localization amcl Excellent Excellent -

mrpt Medium Good -
aruco Bad Good -

Auxiliary laserscanNodelet N/A N/A -
markerRecognizer N/A N/A -
headlamp Really bad N/A -

Figure 2: Mobile robotics architecture configuration space.

Software Architecture and Task Plan Co-Adaptation
for Mobile Service Robots SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea

2) Localization. Produces information about the position of the ro-
bot based on information captured by a sensor, or processed by
another component. (a)AMCL: Implements a general-purpose local-
ization scheme that fuses depth sensor information and odometry
to estimate the pose of a robot on a known map [15]. (b)MRPT : Im-
plements an alternative localization algorithm [4]. (c) ArUco: Takes
an image from a camera and identifies the relative position of the
camera to visual markers that are placed in the environment [41],
using that knowledge to determine the position of the robot. This
algorithm relies on a well lit environment to see the markers.
3) Auxiliary. Perform auxiliary functions and impact qualities like
energy efficiency, localization accuracy and obstacle detection (which
affects safety) in different ways. (a) Headlamp. The robot has an
LED lamp to make visual information available in dark locations.
(b) Laserscan Nodelet. Transforms data from Kinect to Lidar format,
so that it can be consumed by standard localization components
(i.e., AMCL and MRPT).
• The repertoire of behavior primitives that the robot can exe-
cute to change its configuration. We assume a pair of primitives
to enable/disable every component in the architecture (e.g., en-
able_kinect, disable_lidar). For a configuration parameter (like
speed setting), there is a primitive that sets the new value of the
parameter (e.g., set_speed(value)).
• A formal model of the architectural style that prescribes which
configurations are valid, encoding for instance, that some compo-
nents require additional auxiliary components to interoperate with
the rest of the system (c.f. table in Figure 2).

The architecture is represented in Acme [17], and was derived
from an architecture discovery for ROS similar to [44].
Physical Environment. Describes the space that the robot is nav-
igating. This model is captured as a graph, where nodes correspond
to physical locations, and arcs correspond to trajectories between
them. Arcs are tagged with attributes distance (5m and 3m for
horizontal and vertical arcs in Figure 1, respectively) and risk (a
probability value in [0,1] that captures the likelihood that the robot
will bump into an obstacle when moving between the endpoints of
the arc). In this simplified scenario, we assume that all arcs have a
risk probability of 0, except for arc (l2, l3), which has a bump risk
probability PBUMP which varies, depending on the robot’s con-
figuration (e.g., a configuration with higher speed or less accurate
obstacle detection will have a higher probability). This is modeled
as an annotated graph.
Power. This model is queried to determine: (i) available resources
(i.e., remaining battery energy), and (ii) cost of operations in a given
configuration (e.g., how much energy it takes to move to a loca-
tion with a given speed and set of sensors/components enabled).
This is a linear regression model that was was derived from experi-
mentation on a Turtlebot [43], combined with documented power
specifications of sensors, e.g. for the Lidar [2].
Task. Describes the task to accomplish, and its progress. In this
scenario, we assume that the progress of the mission captures the
location of the robot, its remaining battery level, the history of
actions executed, and the remainder of actions to be executed. It
also includes the repertoire of behavior primitives that the robot
can execute to carry out an action in the physical environment.
For simplicity, we assume that in this scenario the robot can carry
out two types of action: (i) move between two locations in the

map, and (ii) change its configuration, i.e., execute a sequence of
reconfiguration primitives to enable/disable software components
and/or set new values of its speed setting. This is modeled as a
graph of robot actions represented using Instruction Graphs [35].

Analyzing system properties requires combining pieces of in-
formation from different models, which do not provide insight if
considered individually. For example, the topology of the physical
environment, operations, or the power model are not useful on
their own, but they can be combined e.g., to estimate metrics like
time to complete the robot’s mission, or the overall probability of
bumping into an obstacle along the way. Moreover, even in this
simplified scenario, the size of the combined reconfiguration and
task plan solution spaces is in the order of magnitude of 106 states
and will grow exponentially with additional components and map
waypoints. This makes moderate problem instances intractable for
online monolithic planning approaches.

Hence, despite the apparent simplicity of this scenario, its char-
acteristics make evident the need for approaches to: (i) integrate
information from heterogeneous models and different levels of ab-
straction to generate and provide assurances about system behav-
iors, (ii) reason in a multi-dimensional space of concerns, (iii) cap-
ture and factor in uncertainties that affect the system, and (iv) scale
when dealing with potentially intractable solution spaces.

3 APPROACH
Our approach for reasoning about self-adaptation is intendedmainly
for run-time use in the planning activity of MAPE-K, which is con-
cerned with determining how to best adapt the system at run time.

Considering the characteristics of the scenario and the challenges
described in Section 2, a suitable approach to our problem should
be: (i) reusable in a new context with low reengineering overhead,
(ii) able to reason about multiple system aspects, trade-offs, and
under uncertainty, (iii) able to scale, and (iv) able to provide formal
guarantees about the solutions generated.

To satisfy those requirements, we propose an approach that
hinges on a carefully orchestrated use of disparate formal methods
like structural model synthesis and probabilistic model checking.
Concretely, the rationale for our approach entails: (i) separating
reconfiguration from mission planning, and (ii) carrying out recon-
figuration planning before task planning to avoid exploring a larger
state space in which candidate task plans are carried out in config-
urations that are later found to be infeasible. Figure 3 illustrates
our approach, which divides the planning into two major stages:
Architecture reconfiguration planning, which determines the legal
software architectures of the robot given the current available and
failed components (Step 1) and generates an adaptation strategy
to adapt the robot to this new architecture (Step 2), and Task plan-
ning which replans the mission (Step 3) and determines the best
architecture/mission combination through quantitative planning
in PRISM. The result of this is a combined plan that adapts the
software architecture of the robot and the robot mission to satisfy
the quality trade-offs that are required (Step 4). The circled numbers
and references to tables and listings in Figure 3 are elaborated on
later.
(A) Model-View Projection (Section 3.1): (i) each problem domain

model is projected into a view that abstracts its important features
in an intermediate language (this projection is model type-specific

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Cámara, Schmerl, and Garlan

Legal pathsLegal pathsLegal paths

3. Generate legal plans
to complete mission.

Robot location
Target location

Task

Space topology
Physcal Env.

Architecture Reconfiguration Planning Pipeline Task Planning Pipeline

Task attribute quantifiers
Task

Legal paths
Preferences

Reconfiguration plans

Architecture

Robot operations

Distances
Safety Attributes

Physical Env.

PRISM
Spec

PRISM
Spec

PRISM
Spec

Task plan

4. Quantitative analysis of each mission
to find best software adaption.
Pick the best.

Listing 2Alloy
Spec

Legal configs

Architecture style

Available components

Architecture

Configuration Synthesis
Model Generator

1. Generate possible
legal architectures.

Table 1

1

PRISM
Spec

2. Generate adaptation
plans to adapt robot
software architecture.

Reconfiguration primitives

Architecture
Legal configs

Reconfiguration primitive
energy consumption

Resource::Power

Robot operations
energy consumption

Resource::Power
Task attribute quantifiers

Task

Reconfiguration plans

Listing 1

3

2

Architecture Config.
Synthesizer using Alloy

Architecture Reconfig.
Model Generator

Architecture Reconfig
Planner using PRISM

Path Preprocessor

Battery level4

5

7Current architecture6

8
9 10

11

Task Planning
Model Generator

Task Planner
using PRISM

Figure 3: Approach overview.

– for each type of model a model-view projector component must
be written), and (ii) the relevant information is composed into
Alloy and PRISM models used by the architecture reconfiguration
planning and task planning pipelines (see Figure 3), by filling out
templates as described in Section 3.2.
(B) Adaptation planning (Section 3.2), which entails planning

model generation and plan synthesis both for architecture recon-
figurations and tasks, and is divided into two planning pipelines:

(a)Architecture reconfiguration planning pipeline (Section 3.2.1).
Architecture reconfiguration plan synthesis involves: (i) the config-
uration synthesis model generator produces an Alloy specifi-
cation that encodes the constraints of the architectural style, along
with the currently available set of components (both extracted
from the architecture model through its corresponding model-view
projector), (ii) using such an Alloy specification, the architecture
configuration synthesizer generates a set of legal configurations,
(iii) the architecture reconfigurationmodel generator encodes
the set of legal configurations produced in the previous step as
predicates into a PRISM specification that incorporates information
from the other views, (iii) the architecture reconfiguration planner
generates a set of reconfiguration plans via MDP policy synthesis
from PRISM specifications produced in the previous step, in which
the choices of what reconfiguration primitives must be executed to
reach the target configuration is underspecified as nondeterminism.
Plan synthesis is carried out by PRISM, guided by task attribute
quantifiers, which are probabilistic temporal logic PCTL specifi-
cations that encode optimization of metrics like time or energy
consumed, which are factored in as costs of the reconfiguration
plans.

(b) Task planning pipeline (Section 3.2.2). Obtaining a task plan
entails: (i) using the task planning model generator to produce
a PRISM specification for task planning that integrates the actions
that the robot can carry out in the physical world, along with multi-
ple pieces of information from the different views, as well as the set
of legal reconfiguration plans obtained from (a) – each reconfigura-
tion plan is symbolically encoded as an alternative reconfiguration
action in the task PRISM specification– and, (ii) the task planner

generates a task plan via MDP policy synthesis that resolves the
nondeterministic choices in which the selection of robot and recon-
figuration actions is underspecified. In such a way, task planning
is carried out in a context-sensitive manner with respect to the
set of possible configurations in which the task can be executed,
which might yield different outcomes in terms of timeliness, energy
efficiency, and safety.

3.1 Model-View Projection
System models are complex engineering artifacts written in a for-
mal or semi-formal language, each capturing a different facet of the
problem domain (e.g., energy or time). Directly integrating mod-
els into composite analyzable behaviors is a difficult task. To ease
this process, we first provide abstractions of the models, which,
following prior research, we term views [23]. A view contains a
description of sets, relations, functions, and predicates that a model
provides for behavioral reasoning. For instance, a configuration
view for a mobile robot can provide a set of available system config-
uration options (such as speed and sensors to use), domains of their
values, and constraints on which options can be used together (e.g.,
a robot can use visual navigation only if its visual sensors are on).

We construct views and manage the relations between them. For
example, an architecture configuration view exposes a set confs,
and a power view exposes a function pow(bp, c) that returns the
power needed to carry out behavioral primitive bp (e.g., move
between locations l1 and l2) in configuration c ∈ confs. Thus, the
power view can be related to the configuration view.

We engineer views to expose model information relevant to
behavioral reasoning and synthesis in the task domain.

3.2 Adaptation Planning
Our approach to adaptation planning is based on probabilistic model
checking [28] which enables quantitative analysis and policy syn-
thesis in systems that exhibit probabilistic behavior. These poli-
cies can be synthesized from MDP models that capture system
behavior using standard temporal logics and model checkers like
PCTL/PRISM and are guaranteed to achieve optimal expected prob-
abilities and quantitative rewards [30].

Software Architecture and Task Plan Co-Adaptation
for Mobile Service Robots SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea

In the remainder of this section, we first show how we combine
MDP policy synthesis via model checking with formal description
and reasoning about architectural styles for reconfiguration synthe-
sis (Section 3.2.1). We then illustrate task planning (Section 3.2.2).

3.2.1 Architecture Reconfiguration Planning. Architecture recon-
figuration planning is based on combining architectural synthesis
techniques built on a formalization of architectural styles with plan
synthesis that uses MDP policy synthesis via model checking. Ar-
chitectural styles [46] characterize the design space of families of
software systems as patterns of structural organization, defining a
vocabulary of component/connector types and constraints that help
designers constrain exploration to a set of legal system structures.

Definition 3.1 (Architectural Style). Formally, we characterize an
architectural style as a tuple (Σ, CS), where:
• Σ = (CompT ,ConnT ,Π,Λ) is an architectural signature, such that:
- CompT and ConnT are sets of component/connector types.
- Π : (CompT ∪ ConnT) → 2D is a function that assigns sets of
symbols typed by datatypes in a fixed setD to architectural types
κ ∈ CompT ∪ConnT . Π(κ) represents the properties associated
with type κ. To refer to a property p ∈ Π(κ), we simply write κ .p.
To denote its datatype, we write dtype(κ .p).

- Λ : CompT ∪ConnT → 2P ∪ 2R is a function that assigns a set
of symbols typed by a fixed set P to components and a set of
symbols in a fixed set R to connectors. Λ(κ) represents the ports
of a component (conversely, the roles if κ is a connector), which
define logical points of interaction with κ’s environment.

• CS is a set of structural constraints expressed in a constraint
language based on first-order predicate logic similar to Acme [17]
or OCL [51] constraints (cf. Table 1).

For the remainder of this section, we assume a fixed universe
AΣ of architectural elements, i.e., a finite set of components and
connectors for Σ typed byConnT ∪CompT . For a given architectural
element c ∈ AΣ, we denote its type as type(c). Moreover, we denote
the set of components inAΣ asAΣComp (AΣConn for connectors).

Formal characterization of architectural styles in Alloy [25] have
proved to be a valuable tool for exploring rich solution spaces
by synthesizing system configurations that satisfy the constraints
imposed by an architectural style [3, 9, 13, 27, 32]. A configuration
can be characterized as a a graph that captures the topology of a
feasible structure of the system in the style.

Definition 3.2 (Configuration). A configuration in a style A =

(Σ, CS) is a graph G = (N, E) satisfying the constraints imposed
by CS , where: N is a set of nodes, s.t. N ⊆ AΣ, and E is a set of
pairs typed by P × R representing attachments between ports and
roles. We denote the set of legal configurations in A by AG.

Example 3.3. We can characterize the space of configurations in
our scenario by the signature CompT = {lidarT, kinectT,cameraT,
. . . }, ConnT = {laserScanTopicT, . . . }, Π = { (lidarT, {Status,
Consumption,. . .}),. . .}. Connectors correspond to topics to which
the components publish and subscribe.1 Component properties in Π
include Status ∈ {Enabled,Disabled,Offline}, and Consumption,
which captures a component’s contribution to energy consumption.
1This architecture is based on the pub-sub middleware ROS [40].

With these elements, we can specify a set of structural constraints
that the style imposes on valid configurations (c.f. Table 12).

To generatemodels for architecture reconfiguration planning, we
need to be able to encode architecture configurations as predicates
in our model. To do so, we define an encoding function predG that
takes a configuration and returns a predicate:

predG(G) =
∧
n∈N,

n .Status=Enabled

predN(N) ∧
∧
n∈N,

n .Status,Enabled

¬predN(N)

(1)
Function predN takes a node in a configuration graph, and returns
a predicate that encodes the presence of that component/connector
in the graph. We leave implicit bindings between components and
connectors, which are not required because we assume no rewiring
primitives as possible reconfiguration actions (just enabling/dis-
abling components). This encoding can be naturally extended to
include in the conjunction additional terms encoding bindings.

We define a component status vector as the set of all possible
component status values in the configuration space, i.e., CompS ≡

{Enabled,Disabled,Offline} |AΣComp | .

Definition 3.4 (Reconfiguration Planning Model). A parametric
MDP model for reconfiguration is a tuple (S, sI ,A,∆, r ,GP), s.t.:
• S ⊆ CompS is the space of possible component status.
• sI : CompS is a vector of initialization parameters for component
status, which determines the starting reconfiguration point.

• A ≡ {Enable,Disable}×AΣComp is a set of actions to enable/dis-
able components. We note the action (Enable, c) as Enable_c.

• ∆ : S × A → S is a transition relation that differs from the
standard MDP description, leaving out probabilistic extensions
for unreliable reconfiguration primitives out of scope.

• r : A → R+ maps reconfiguration actions to rewards (costs).
• GP ≡

⋃
д∈AG

predG(д) encode legal configurations in AG.

In practical terms, we build the MDP model as a set of modules
in PRISM with the structure illustrated in Listing 1. In the listing,
global variable turn (line 2) imposes a strict total order on which
components can be reconfigured, eliminating unneeded interleav-
ings and reducing remarkably the state space.

The model includes a set of |AΣComp | modules (referred to in
the listing as N). Every component’s behavior is encoded as a mod-
ule with the corresponding enable and disable actions. There is no
explicit action for the Offline status, since this indicates that the
component is unavailable (e.g, due to failure), and reconfiguration
actions over it are out of the system’s control. The parts highlighted
in blue in the listing are those incorporated from the domain model
views: 1 3 sets the current status of a component, obtained from
the monitoring infrastructure and exposed through the architec-
ture view, and a set of formulas 2 encode the alternative legal
configurations (GP, obtained from function predG – Expression 1).

Finally, reconfiguration cost is encoded as a reward structure
over reconfiguration actions (lines 16-20). For each action, we assign
a cost 3 that can encode different attributes like time employed in
carrying out the reconfiguration action, or energy spent.
2For clarity, representation of port-role attachments is left implicit in our formalization.
3Numbered elements in listings 1 and 2 correspond to those identified in Figure 3.

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Cámara, Schmerl, and Garlan

Table 1: Architectural element definitions and constraints of the pub-sub robotics software architecture (excerpt).
Type Constraint Description
General abstract sig componentT {pub: set topicT, sub: set topicT} Component definition.
definitions abstract sig topicT {pub: set componentT, sub: set componentT} Connector definition.
General pred publishesTo[c:componentT, t:topicT] t in c.pub A component publishes to a topic.
constraints pred onlyPublishesTo[c:componentT, t:topicT] { publishesTo[c,t] and all t’:topicT-t | not publishesTo[c,t’] } A component only publishes to a specific topic.
ROS abstract sig sensingT, localizationT extends component {} Component type definitions.
definitions lone sig lidarT, kinectT, cameraT extends sensingT {} Sensing component type definitions.

lone sig laserScanTopicT, sensorMsgsImageTopicT, markerPoseTopicT extends topicT{} Topic type definitions.
ROS pred {all c:kinectT | onlyPublishesTo[c,sensorMsgsImageTopicT] Kinect only publishes to image sensor message topic.
constraints pred {some kinectT <=> some laserscanNodeletT} Kinect requires laser scan translator component.

Synthesis of Reconfiguration Plans. Using a MDP model like
the one described above, in which initialization of component status
constants is done according to the monitored status of the compo-
nents at run-time, we can carry out policy synthesis to determine
the best legal reconfiguration plans. To illustrate the process, con-
sider the PCTL property (2) that captures the reachability of a legal
configuration (e.g., conf_M encoded in Listing 1, line 14).

R{reconf_cost}min=?︸ ︷︷ ︸
Reward quantifier

[F conf_M]︸ ︷︷ ︸
Path formula

(2)

This property contains two parts: (i) a reward/cost quantifier, which
indicates that the policy synthesis should resolve the nondeter-
minism in the model in such a way that it minimizes the accrued
reward reconf_cost (Listing 1, line 16), and (ii) a path formula, which
indicates that the paths in the model over which the reward has to
be optimized are those that lead to states where the reachability
predicate (i.e., arriving at legal architecture configuration conf_M)
is satisfied. Model checking a property like the one described for ev-
ery legal configuration with a probabilistic model checker can yield
a set of policies. Translating from policies to sequential reconfigu-
ration plans is straightforward, since the policies are deterministic.
We define function дenerateR , which yields the set of reconfigura-
tion plans for a given parametric MDP reconfiguration model MR

and an initial configuration state i:⋃
д∈AG

seqσ (σ (MR, i,R{reconf_cost}min=?[F predG(д)]).p) (3)

Where σ (MR, i,ϕ) designates the model checking function that
synthesizes a policy for a modelMR from an initial state i , and a
PCTL property ϕ (we denote by σ (MR, i,ϕ).p the policy generated,
1 mdp
2 global turn:[0..N] init 0;
3 const DISABLED=0; const ENABLED=1; const OFFLINE=2;
4 ...
5 const compN_INIT; 1 // Available components, obtained from architecture view
6 module compN // One per component
7 compN_done : bool init false;
8 compN_status:[0..2] init compN_INIT;
9 [compN_enable] (turn=N−1) & (compN_done=false) & (compN_status=DISABLED) −>

(compN_status'=ENABLED) & (compN_done'=true);
10 [compN_disable] (turn=N−1) & (compN_done=false) & (compN_status=ENABLED) −>

(compN_status'=DISABLED) & (compN_done'=true);
11 [] (turn=N−1) −> (turn'=N);
12 endmodule
13 ...
14 formula conf_M = (comp0_status=DISABLED | comp0_status=OFFLINE) & ... &

(compN_status=ENABLED); 2 // One per legal configuration, generated by
15 // the architecture configuration synthesizer
16 rewards "reconf_cost"
17 ...
18 [compN_enable] true : cost_compN_enable; 3 // Reconf. primitive energy cost,
19 [compN_disable] true : cost_compN_disable ; // obtained from resource (power) view
20 endrewards

Listing 1: Architecture reconfiguration model structure.

whereas σ (MR, i,ϕ).q is the quantitative result, i.e., the quantified
cost for the policy generated in the Expression 2). Function seqσ is
a simple function that turns a deterministic policy into a sequential
plan. We also assume a simple function label_plan that assigns a
symbolic label to a sequential plan. We note the set of symbolic
labels for a set of reconfiguration plans X as labels(X).

3.2.2 Task Planning. In addition to the architectural model of the
system, we assume a set of additional views that expose relevant
information for task planning. These pieces of information can be
combined into building blocks for rich planning model construction.

We begin by introducing the view that describes the physical
environment in which the task takes place.

Definition 3.5 (Physical Environment View). A physical environ-
ment view VPE ⊆ LOC × TRA can be characterized as a simple
directed graph, where LOC is a set of nodes representing loca-
tions, and TRA ⊆ LOC × LOC is a set of edges that represent
valid trajectories between locations. We also equip the view with
ΠLOC : LOC → 2D and ΠTRA : TRA → 2D , which are functions
that assign sets of symbols typed by datatypes in a fixed set D to
nodes and trajectories in the map, capturing relevant attributes, e.g.
length of a trajectory, plane coordinates or id of a location.

In addition to the set of reconfiguration primitives A, there is a
set of actionsO that can be carried out in the physical world by the
robot. Executing both types of action consumes resources which
can be encoded in a resource view. We illustrate this section with a
single resource view that corresponds to energy.

Definition 3.6 (Resource View). A resource viewVR : R+ ×AG×

(O ∪ A) → R+ is characterized as a function that quantifies the
amount of resources consumed by an action carried out during an
arbitrary amount of time and in a given architectural configuration.

Execution of actions to accomplish a task also requires keeping
track of the current progress of the task, as well as what has been
done and remains to be done to satisfy system goals.

Definition 3.7 (Task View). In a task view VT = (S, sI ,O,H , P,д):
S is the state space of the task, si ∈ S is the current state of the task,
O is the set of robot operations, H ∈ O∗ is the history of executed
actions, P ∈ O∗ are the pending actions, and д is an abstract speci-
fication of the task’s goal. Although we give a general definition,
in our scenario we assume that a state is a pair inVPE .LOC × R+

of localization in the map and battery energy.

Now that we have defined the views, we introduce a definition
of the task planning model.

Definition 3.8 (Task Planning Model). A model for task planning
is an MDP (S, sI ,A,∆, r) where: S ⊆ AG ×VT .S is the state space,

Software Architecture and Task Plan Co-Adaptation
for Mobile Service Robots SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea

1 module robot
2 b:[0..MAX_BATTERY] init INITIAL_BATTERY; 4 // Task view
3 l:[0..MAX_LOCATIONS] init INITIAL_LOCATION; 5 // Task view
4 c:[1..M] init init INITIAL_CONFIGURATION; 6 // Architecture view
5 rd: bool init false; collided: bool init false;
6 ... // One command per legal target configuration
7 [t_set_conf_M] (c!=conf_M) & (b>MIN_BATTERY+deplete_battery_reconfM 11

) & (!rd) & (!stop) −> (c'=conf_M) & (rd'=true) & (b'=b−deplete_battery_reconfM);
8 ... // One command per combination of legal config/arc among adjacent map locations
9 [lx_to_ly] (l=lx) & (!stop) & (c=conf_M) −>p_col_conf_M_lx_to_ly 8

: (l'=ly) & (b'=b_upd_lx_ly 7) & (collided'=true) + 1−(p_col_conf_M_lx_to_ly):
(l'=ly) & (b'=b_upd_lx_ly) & (collided'=false);

10 endmodule
11 formula b_upd_lx_ly= c=conf_1? max(0,b-e_lx_ly_conf_1) : ... (c=conf_M?

max(0,b-e_lx_ly_conf_M) : 0); 7 // One per arc between adjacent map locations
12 ...
13 const INITIAL_LOCATION;
14 const TARGET_LOCATION; 9 // Task view
15 formula goal = l=TARGET_LOCATION;
16 formula stop = goal | b<MIN_BATTERY;
17 rewards "time"
18 [lx_to_ly] true :c=conf_1 ? t_lx_ly_conf_1 10 : ... c=conf_M ? t_lx_ly_conf_M :

MAX_BATTERY; // One per arc between adjacent map locations;
19 ...
20 [t_set_conf_1] true :c=conf_2 ? t_set_conf_2_conf_1 11

: ... c=conf_M ? t_set_conf_M_conf_1 : 0; ... // One per legal target configuration
21 endrewards
22 rewards "energy"
23 stop : b;
24 endrewards

Listing 2: Task planning model structure.

sI ∈ S is a pair of architectural configuration c and the initial task
state, A ≡ O ∪ labels(дenerateR (MR, sI .c)) is the set of actions
that include operations of the robot in the physical world, as well
as symbolic actions that correspond to architecture reconfiguration
plans from the initial configuration sI .c , ∆ : S × A → D(S) is a
(partial) probabilistic transition function, and r : S × S → R+ is a
reward structure that maps transitions to rewards.

We build the MDP in a PRISM encoding of the robot behavior
using the pattern illustrated in Listing 2, in which the robotmodule
includes variables: b for capturing the battery energy level (initial-
ized with the value exposed from the task view 4), l for robot
location (with an initial value 5 from the task view), c for the
robot’s architecture configuration (initialized with information 6
from the architecture view), rd to keep track of whether reconfig-
uration has been carried out, and collided which captures if the
robot has collided against some obstacle (lines 2-5). Based on these
variables, we also define formulas that capture: (a) goal satisfaction
(9 , line 15) encoding that the robot location is the target location,
and (b) stop condition (line 16), which holds when the robot satisfies
the goal or does not have energy to operate. The module’s behavior
is defined by two groups of guarded commands:
• Reconfiguration actions (line 7). There is one reconfiguration
action command for every legal reconfiguration. Action labels in
the reconfiguration commands (e.g., [t_set_conf_M]) are obtained
via labels(дenerateR (MR, sI .c)) (cf. Definition 3.8).
− Each reconfiguration command is guarded tomake sure that:(a) the
target configuration is not already active, (b) there is sufficient en-
ergy in the battery to reconfigure (deplete_battery_reconf_X 11
, lines 7-8, are the energy costs of reconfiguration plans, computed
using Expression 2), (c) reconfiguration has not been carried out,
and (d) the stop condition does not hold.
− Each command updates: (a) the configuration to the target one,
(b) the reconfiguration tracking variable, and (c) the battery level
to reflect the energy consumed during reconfiguration.
• Task actions (line 9). These commands encode the actions of the
robot in the physical world. In this case, these actions correspond

to movements between locations in the physical environment. For
every trajectory between locations lx and ly in the physical environ-
ment viewVPE .TRA (c.f. Definition 3.5), there is a set of commands
(one per configuration) that encodes the movement of the robot
between those locations. Every command:
− Checks in its guard that: (a) the current location is lx, (b) the stop
condition has not been reached, and (3) the current configuration
is the one to which the command corresponds.
− Includes two updates with probabilities p_col_conf_A_lx_to_ly
8 and its complementary outcome, which encode the likelihood
of colliding while going through the trajectory in configuration
A. This probability is one of the attributes with which we tag our
physical environment view (c.f. ΠTRA, Definition 3.5). Each of these
update: (a) the location variable, (b) the depletion of the battery,
and (c) the collision status. For battery updating, the model defines
a set of formulas (7 , line 11) where different battery depletions
are encoded per-configuration. These values (e_lx_ly_conf_X) are
obtained by querying the resource (i.e. energy) viewVR with the
specific action and configuration that the command corresponds to
(c.f., Definition 3.6).

Our task planning model also incorporates a reward structure
that enables quantifying metrics associated with planning concerns
like timeliness and energy efficiency. Lines 17-24 illustrate reward
structures used to capture timeliness and energy efficiency. For
timeliness, line 18 shows how the structure encodes time reward
for an action that moves the robot from location lx to ly, accruing
different amounts of time t_lx_ly_conf_X 10 , depending on the
configuration that the robot is in. These times are computed by
combining the distance attribute of the trajectories in the physical
environment view (VPE .TRA) with the speed setting of the robot’s
configuration. Line 20 shows how time is accrued for reconfigura-
tions. t_set_conf_A_conf_B 11 is the time it takes to reconfigure,
obtained from the evaluation of the reconfiguration cost analogous
to the one encoded in Expression 2, in which cost is expressed
in terms of time. For energy efficiency, Line 23 encodes a simple
reward that corresponds to the level of battery b when the robot
reaches the stop condition.
Generating Task Plans. Generating a task plan entails:

(A) Synthesis of candidate solution plans. For generating task
candidate plans, we instantiate a set of alternative probabilistic
models Mf o (cf. Definition 3.8), in which the set of robot opera-
tions is fixed to a specific path between its current and the target
location. These paths are computed using Dijkstra’s algorithm and
ranked by ascending distance. We set a threshold nf o that fixes
the number of paths to extract from the top of the ranking. We
perform this step for efficiency reasons, because synthesizing paths
as part of MDP policy synthesis is rather costly. Hence, the only
decision left underspecified for model checking is selecting the
best reconfiguration for a specific candidate solution model. This
results in nf o runs of the model checker instead of one, but the
computational cost is reduced orders of magnitude, compared to
considering the full solution space in a single model checking run.

(B) Quantifying the value of metrics for the different concerns
of every candidate solution entails model checking the candidate
solution models inMf o against the PCTL properties in Table 2:

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Cámara, Schmerl, and Garlan

Table 2: PCTL properties for mission planning.
Name PCTL Formula Description

ϕt R{time}min=?[F goal] Time to target location.
ϕe R{energy}max=?[F goal] Remaining energy at target location.
ϕs Pmax=?[F (goal ∧ ¬collided)] Non-collision probability.

(a) The process starts by generating the optimal policy for the
priority concern for every candidate solution σ i∗ ≜ σ (mi

f o, cs,Φ).p,
where Φ ∈ {ϕt ,ϕe ,ϕs } is the PCTL formula for the prioritized
concern,mi

f o ∈ Mf o, i ∈ {1 . . .nf o }, and cs ∈ AG × VT .S (c.f.,
Definition 3.8) is the current state combining configuration and
task state from which the solution is being computed.

(b) Once the optimal policy for the priority σ i∗ has been gen-
erated for each candidate, we quantify how good this candidate
solution is by computing an attribute value vector:

⟨σσ i∗ (m
i
f o, cs,ϕt).q,σσ i∗ (m

i
f o, cs,ϕe).q,σσ i∗ (m

i
f o, cs,ϕs).q⟩

Where σσ i∗ (. . .) denotes that model checking is constrained to a
version of the model in which the policy is fixed to σ i∗ . We designate
the set of attribute vectors forMf o as Vf o .

(C) Candidate solution generation, for which we maximize
a utility function over attribute vectors (in the expression below,
function σ↑ returns the optimal policy σ i∗ from which an attribute
value vector was generated):

p↑ ≜ σ↑(arg max
v ∈Vf o

u(v))

4 EVALUATION
In this section, we evaluate our approach along two dimensions:
(i) Run-time tractability – can our planning approach work at run
time to adapt a robot using off-the-shelf robotic software and adapt
to errors and changes in the environment to complete missions? and
(ii) Quality improvement – does the approach generate plans with
higher utility than the standard self-adaptive practice of considering
only the structural aspects of the system?

We use a scenario similar to the one in Section 2, but with a
more realistic robot environment with 58 intersections (used as
waypoints for planning). Some corridors contain small obstacles
that are out of the range of one of the robot sensors (Lidar), meaning
that in some configurations the robot has a high chance of colliding
with them. The obstacles are static, but unknown to the planner.
Similarly, some corridors are known to be dark, which means that
they will be non-navigable if the robot is using light-sensitive sen-
sors. To enable visual localization, ArUco markers are spaced every
2m on the walls. Figure 4 shows the map used, with the known
dark corridors and preplaced obstacles, as well as an example of
ArUco markers in the lower right.

The robot has three speed settings: (i) safe (0.24m/s) meaning that
collisionswithwalls or obstacles do not cause damage to them or the
robot, but the probability of mission success is diminished because
they may block the robot, (ii) normal (0.35m/s) the starting speed
of the robot for all experiments, and (iii) high (0.68m/s). This setup
allowed us to explore an interesting range of adaptations where
multiple adaptations of architecture and missions could be found to
complete the mission. To instigate adaptation, perturbations of the
robot or environment include turning off lights in the environment,
causing sensor failure, or killing the localization node (simulated
software crash) while the robot is conducting a mission.

Unsafe areas

Dark Areas

Figure 4: Map used for evaluation and ArUco markers.

The goal of the planner is to find plans that will optimally com-
plete a mission by finding a combination of software architecture,
path through the environment, and speed, to reach a goal. The path
is a series of waypoints – the underlying robot navigation software
controls how to get from one waypoint to another. In our scenario,
the planner can be used to optimize three different utility functions:
(a) favor timeliness will favor plans that reach the goal quickly; (b)
favor efficiency will choose plans that minimize battery consump-
tion; and (c) favor safety will search for plans that minimize the
chance of damaging collisions with obstacles. This enables us to
test the multi-dimensional quality aspect of our approach.

For efficiency, we defined the power consumption for each ele-
ment in the architecture inmilliwatt hours (mwh), based on physical
experiments with the robot and documented power specifications
of sensors. For timeliness and safety, we experimentally ran the
robot at least eleven times over each segment in the map for ev-
ery configuration and speed and calculated the average time and
probability of collision from the collected data.

4.1 Experiment Setup and Results
4.1.1 Run-time tractability. To show that our approach is tractable
and works on real robot software we integrated it as a planner in
Rainbow [16] and ran Rainbow in a loop on top of (mostly) existing
third-party robotic software written for the Turtlebot described
earlier. These missions took as input the waypoints to visit and
instructed the robot accordingly. We used the standard ROS node
MoveBase[42] for navigation between waypoints.

We simulated the robot using the Gazebo simulator [18] v7.9,
with a world generated from our map, including walls with spaced
ArUco markers and physics (e.g., lighting, gravity, friction, mass).
We added plugins to simulate power consumption, in addition to
using standard simulations for the sensors and actuators. We cus-
tomized Rainbow, developing probes, gauges, and models to inter-
act with the robot. We also developed analyses for mission and
robot state, architecture, and power. Finally, we wrote an adapta-
tion manager implementing the approach described in this paper
and integrated it with Alloy and PRISM. The adaptation manager
synthesizes plans encoded as instruction graphs given to the robot
which manages configuration and mission changes.

The starting condition of each test was a tuple {start_waypoint,
target_waypoint, start_configuration, utility_preference}. To en-
able the comparison, we ran each test under three conditions: (A) no
perturbations, and no adaptation; (B) same as A, but with perturba-
tions, and (C) same as B but with adaptation enabled. When the test

Software Architecture and Task Plan Co-Adaptation
for Mobile Service Robots SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea

Start configuration

Final configuration am
cl
-k
in
ec
t

am
cl
-li
da
r

ar
uc
o-
ca
m
er
a

m
rp
t-
ki
ne
ct

m
rp
t-
lid
ar

am
cl
-k
in
ec
t

am
cl
-li
da
r

ar
uc
o-
ca
m
er
a

m
rp
t-
ki
ne
ct

m
rp
t-
lid
ar

amcl-kinect — 1.00 23.95 3.22 1.11 — 0.10 0.13 0.10 0.07
amcl-lidar 2.89 — 0.33 9.11 0.33 0.06 — 0.11 0.14 0.13

aruco-camera 11.33 5.56 — 13.67 5.78 0.07 0.07 — 0.05 0.05
mrpt-kinect 1.22 6.44 2.9 — 2.11 0.09 0.07 0.06 — 0.06
mrpt-lidar 16.44 4 0.00 4.67 — 0.19 0.14 0.00 0.14 —

aruco-headlamp 8.22 3.89 0.71 2.33 1.22 0.07 0.29 0.92 0.11 0.93
none 1 0.00 21.43 1 5.67 n/a n/a n/a n/a n/a

Reconfigurations (%) Utility
Figure 5: Differences in reconfigurations and predicted util-
ity during comprehensive testing.

driver determined that the test was finished (mission completed, no
solution found, or timed out), it used ground truth readings of the
current state of the robot and location in the world to evaluate the
mission. A test case was graded Pass if the C condition got closer
to the target than B and did so with better utility (i.e., how much
time it took, how much battery was left over, whether the robot hit
anything in the environment). It was graded inconclusive if both
the B and C conditions performed the mission similarly, and Fail if
the C condition completed the missions worse than B.

In total, we ran 838 test triples (a total of 2514 runs), in which
272 of the cases failed A condition. These triples included a random
distribution of perturbations including killing both node and sen-
sor. Our results were that adaptation restored mission success and
utility score. Of the 838 test cases, 646 passed, 21 failed, and 171
were inconclusive. Interestingly, of the 272 cases where A failed,
adaptation allowed mission success in 170 (62.5%) of those cases.
4.1.2 Co-adaptation quality improvement. One of the important
aspects of our approach is that allowing a planner to co-adapt task
and architecture models will result in better plans. To evaluate
this, we ran experiments comparing Adapting only architecture vs.
adapting architecture and mission, exploring more exhaustively the
adaptation state space. Exhaustive exploration is challenging be-
cause of the number of tests that need to be considered. For the
example above, we want to test all missions under each starting
configuration favoring each of the utilities, allowing each perturba-
tion and lighting condition which yields 297,420 starting conditions
for the planner. In addition to this we want to consider planners
that allow changes to only the software, or both software and task
resulting in 594,840 planner runs. Running each of these as real
robot tasks is intractable.

We were able to reduce the number by carefully considering
how to eliminate uninteresting and duplicated coniditions – not
every mission will lead to different choices, and some missions sub-
sume others. Thus we considered only missions: (i) where different
starting configurations and utility preferences result in different
paths through the map, and (ii) that subsumed the missions filtered
in the first case, i.e., if we have two missions that follow the path
l1→l2→l3 and l0→l1→l2→l3→l4, we eliminate the shorter path
because choices about the mission/configuration are considered in
the longer path.

Following these heuristics, the number of missions examined
was reduced to 100. With all starting conditions, perturbations,
utilities, and planner configurations, this resulted in 74400 runs,
which was still intractable to run on real missions. Instead, We used

Table 3: Timing (in s) for different planning characteristics.
∆ indicates the change when considering architecture only.

Base (mean) Base (stddev) ∆ (mean) ∆ (stddev)

Reconfig. planning 5.57 1.48 0.001 0.23
Path finding 3.59 0.25 -2.86 0.2
Task planning 5.94 0.45 -4.31 0.53

Total time 15.1 1.67 -7.17 0.63

the same planner code base as in Section 4.1.1, except that we short-
circuited the code implementing the MAPE loop and invoked only
the planner. Additionally, we did not run the robot simulation and
therefore did not run missions to completion like in Section 4.1.1.
We ran these tests on an Intel NUC i7 3.1GHz dual core Ubuntu
system with 16GiB of memory.

Figure 5 shows the differences in reconfigurations and utilities
when we disallow changes to the mission. Each column represents
the robot starting configuration before perturbation, while each
row represents the configuration the planner chose in response
to a perturbation. Additionally, each row is divided among two
different aspects of the plan: (a) the percentage of times the plan
had a different final configuration, and (b) the difference in utility
of the plan. Each cell is shaded by the degree of difference across all
planner runs; green and normal font means that allowing mission
changes caused a change more times than requiring the mission to
be fixed, blue and bold means the other way around. In this case,
we see differences that clearly point to the advantage of being able
to adapt both the architecture and the mission. Regarding reconfig-
urations, the planner is more often unable to find a valid solution
(21.43% more times when starting with aruco-camera and 5.67%
more often when mrpt-lidar is the start configuration). Utilities are
also markedly better when considering both models in tandem.

Table 3 shows the time data for the planner under different
conditions. The time to construct the Alloy and PRISM files from
templates was negligible and so was not considered. First, in the
base planner case, the planner takes on average 15.1s, spending
5.57s generating reconfigurations (which involves finding valid new
configurations using Alloy and then PRISM to construct reconfig-
uration plans), 3.59s using Djikstra’s algorithm to generate paths,
and 5.94s model checking reconfigurations against the selected
paths to generate the most optimal plan. When only considering
reconfigurations, there is a significant difference in the amount of
time that the planner takes (saving ≃7s, mostly because it does not
need to generate alternative paths, only model checking on the ex-
isting path to determine the best reconfiguration). With an average
task execution time of 224s, this represents a 3.1% increase in time
using our approach. Furthermore, if we analyze the uncategorized
results, we determine that for this additional time, adaptation finds
4636 (12.46%) more solutions with good utility (i.e., adaptation with
> 0.5 utility). Also, the overall increase in utility is 0.09 (9%) across
solutions found. This indicates that the extra time spent to find
these better adaptations is worth it in this domain.

5 RELATEDWORK
Our work draws from several research areas, such as self-adaptive
systems [12, 24], formal specification/synthesis of software archi-
tectures [3, 27, 32], and probabilistic model checking [21, 28, 45].

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Cámara, Schmerl, and Garlan

Self-adaptive systems. Including our own prior work, discussed
in Section 1, support for generation of optimal structure that also
considers the richer context of task execution as a primary concern
in self-adaptive systems is still limited. Tajalli et al. [49] introduce an
approach that uses planning via model checking and architecture-
based mechanisms for adaptation, and Sykes et al. [47, 48] introduce
assembly of configurations, using extra-functional information to
guide the process. These approaches do not account for any uncer-
tainties or dependencies among domain facets that might impact
task completion or qualities.

Self-adaptation in cyber physical systems (CPS) is a cross-layer
concern, where using multiple feedback loops and models poses
challenges that remain mostly unaddressed, mapping concerns
to layers and adaptation mechanisms, coordination of adaptation
mechanisms within and across layers, achieving system-wide con-
sistency of adaptation [37]. Recent work started addressing some
of these challenges: MORPH [6] is a reference architecture to im-
prove consistency among configuration and behavior management
that advocates separating reconfiguration and behavior strategy
synthesis, and reconciling them a posteriori when they are selected
for execution. Compared to MORPH, our approach attempts to
preserve combined quantitative guarantees of the reconfiguration
and behavior strategies by synthesizing them semi-independently
(separate solvers, but exchanging information among them). Borda
et al. [5] tackle compositional verification by proposing a language
to model self-adaptive CPS, although without incorporating any
solution synthesis mechanisms. Gerostathopoulos et al. [19] intro-
duce an approach that uses homeostasis as a principle to maintain
operational state by adjusting a fixed set of adaptation strategies.
Formal specification and synthesis of software architectures.
Some architecture synthesis approaches [3, 32] focus on structural
properties. In addition to that, more recent approaches [7, 8] also
consider behavioral, quantitative, and probabilistic aspects of sys-
tem descriptions to optimize quantitative guarantees of generated
architectures under uncertainty. However, these have limited sup-
port to reason about the wider context of a system in terms of the
tasks that have to be performed and the mechanisms available to
achieve self-adaptation. Within the large body of work on software
architecture for robotics [1], only a small subset of approaches con-
sider the wider context of tasks or self-adaptive capabilities: Park
et al. [38] introduce a task-based approach that generates optimal
software architecture to make robots provide service reliably with
limited resources. Edwards et al. [14] introduce an approach that
relies on architectural middleware to ensure consistency between a
system’s architecture and its implementation. These approaches are
not equipped to reason under uncertainty or produce specifications
of task plans that go beyond reconfiguration of the architecture.
Quantitative verification/planning under uncertainty. Plan-
ning in partially unknown environments for robotics has already
been explored in various works [20, 31, 34]. Out of these approaches,
the closest to ours [31] generates mobile robot controllers with prob-
abilistic time-bounded guarantees on successful task completion,
which also try to satisfy other soft goals. Task specifications are
analysed using multi-objective MDP model checking, providing
an efficient mechanism for exploring the task solution space, but
has limited support to capture the richer execution context in the
planning, including the software running on the robot.

6 DISCUSSION AND FUTUREWORK
In this paper we have presented a framework for self-adaptation
in mobile robotics that considers interdependencies among multi-
ple domain facets (and in particular, between architecture and task
plans), multiple tradeoffs, and uncertainty. To the best of our knowl-
edge, other existing approaches sometimes cover changes only to
the task plan or to the architecture, while in other cases, they are
not able to consider uncertainties and dependencies that impact
adaptation outcomes and quantitative guarantees (cf., Section 5).
While we have focused on mobile service robots, we believe that
our approach would also apply in other domains where dependen-
cies exist between structure and behavior, e.g., patrolling drones,
assisted living [33], and disaster recovery [39].

We have shown that combining formal methods with comple-
mentary strengths allows reasoning about both structural and be-
havioral adaptation a rich trade-off space and under uncertainty:
including simple behavioural models to models with richer struc-
ture and semantics (e.g., architecture and environment).

Our results show that divide-and-conquer reconfiguration and
task planning while still considering their dependencies leads to
remarkable improvements over considering only one of them, or
treating them as independent problems, and that the resulting im-
plementation is tractable within reasonable time constraints for the
class of application we describe.

Despite the advantages shown by our approach, our study in-
cludes the following limitations: (L1) Specific type of mobile ro-
botics scenario and mission, (L2) Simplified architectural model,
in which we assume a restricted set of valid configurations that
the planner can consider, consisting of the software components,
their connections, and a limited set of configuration parameters,
(L3) Generating formal specifications from information exposed
through views is view-specific and hand-coded, (L4) Evaluation
run in simulation only. This potential limitation is mitigated some-
what in the independent evaluation (Section 4.1.1), which was run
on a real mission using the robot’s full software stack, under a
high-fidelity simulated environment.

In future work, we will address (L1) by exploring our approach
in other domains mentioned above to provide a broader assessment
of its generalizability. We will address (L2) by exploring the exten-
sion of our approach using machine learning to help improve the
scalability in larger configuration spaces, extending our preliminary
work in this direction [26]. We will address (L3) by investigating
how to streamline model integration using tools and languages
designed for model transformations like ATL and QVT [22].

ACKNOWLEDGMENTS
This material is based on research sponsored by AFRL and DARPA
under agreement number FA8750-16-2-0042. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the AFRL,
DARPA or the U.S. Government.

REFERENCES
[1] A. Ahmad and M. A. Babar, “Software architectures for robotic systems: A sys-

tematic mapping study,” Journal of Systems and Software, vol. 122, pp. 16 – 39,

Software Architecture and Task Plan Co-Adaptation
for Mobile Service Robots SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea

2016.
[2] Autonomous Stuff, “Velodyne LiDAR PUCKTM ,” retrieved on Mar. 7, 2020

from https://www.autonomoustuff.com/wp-content/uploads/2016/08/VLP-16-
Puck.pdf.

[3] H. Bagheri and K. J. Sullivan, “Model-driven synthesis of formally precise, stylized
software architectures,” Formal Asp. Comput., vol. 28, no. 3, 2016.

[4] J.-L. Blanco, “Contributions to localization, mapping and navigation in mobile
robotics,” Ph.D. dissertation, PhD. in Electrical Engineering, University of Malaga,
Nov 2009.

[5] A. Borda, L. Pasquale, V. Koutavas, and B. Nuseibeh, “Compositional verification
of self-adaptive cyber-physical systems,” in Proceedings of the 13th International
Conference on Software Engineering for Adaptive and Self-Managing Systems, ser.
SEAMS ’18. New York, NY, USA: ACM, 2018, pp. 1–11.

[6] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and S. Uchitel, “MORPH: A refer-
ence architecture for configuration and behaviour self-adaptation,” in Proceedings
of the 1st International Workshop on Control Theory for Software Engineering.
New York, NY, USA: ACM, 2015, pp. 9–16.

[7] R. Calinescu, M. Češka, S. Gerasimou, M. Kwiatkowska, and N. Paoletti, “De-
signing robust software systems through parametric markov chain synthesis,” in
2017 IEEE International Conference on Software Architecture, ICSA. Gothenburg,
Sweden: IEEE, April 3-7 2017, pp. 131–140.

[8] J. Cámara, D. Garlan, and B. Schmerl, “Synthesizing tradeoff spaces with quantita-
tive guarantees for families of software systems,” Journal of Systems and Software,
vol. 152, pp. 33 – 49, 2019.

[9] J. Cámara, D. Garlan, and B. R. Schmerl, “Synthesis and quantitative verification
of tradeoff spaces for families of software systems,” in Software Architecture - 11th
European Conference, ECSA, ser. LNCS, vol. 10475. Springer, 2017, pp. 3–21.

[10] J. Cámara, A. Lopes, D. Garlan, and B. Schmerl, “Adaptation impact and environ-
ment models for architecture-based self-adaptive systems,” Sci. Comput. Program.,
vol. 127, pp. 50–75, 2016.

[11] J. Cámara, B. R. Schmerl, G. A. Moreno, and D. Garlan, “MOSAICO: offline
synthesis of adaptation strategy repertoires with flexible trade-offs,” Autom.
Softw. Eng., vol. 25, no. 3, pp. 595–626, 2018.

[12] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. R.
Schmerl, G. Tamura, N. M. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, R. J. Desmarais, S. Dustdar, G. Engels, K. Geihs,
K. M. Göschka, A. Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer, A. Lopes,
J. Magee, S. Malek, S. Mankovski, R. Mirandola, J. Mylopoulos, O. Nierstrasz,
M. Pezzè, C. Prehofer, W. Schäfer, R. D. Schlichting, D. B. Smith, J. P. Sousa,
L. Tahvildari, K. Wong, and J. Wuttke, “Software engineering for self-adaptive
systems: A second research roadmap,” in Software Engineering for Self-Adaptive
Systems II - International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010
Revised Selected and Invited Papers, ser. Lecture Notes in Computer Science,
R. de Lemos, H. Giese, H. A. Müller, and M. Shaw, Eds., vol. 7475. Springer, 2010,
pp. 1–32.

[13] V. Dwivedi, D. Garlan, J. Pfeffer, and B. Schmerl, “Model-based assistance for
making time/fidelity trade-offs in component compositions,” in 11th International
Conference on Information Technology: New Generations, ITNG 2014. IEEE CS,
2014.

[14] G. Edwards, J. Garcia, H. Tajalli, D. Popescu, N. Medvidovic, G. Sukhatme, and
B. Petrus, “Architecture-driven self-adaptation and self-management in robotics
systems,” in 2009 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, May 2009, pp. 142–151.

[15] D. Fox, “KLD-sampling: Adaptive particle filters,” in Advances in Neural Informa-
tion Processing Systems 14. MIT Press, 2001.

[16] D. Garlan, S.-W. Cheng, A. Huang, B. Schmerl, and P. Steenkiste, “Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure,” IEEE Computer,
vol. 37, no. 10, 2004.

[17] D. Garlan, R. T. Monroe, and D. Wile, “Acme: Architectural description of
component-based systems,” in Foundations of Component-Based Systems, G. T.
Leavens and M. Sitaraman, Eds. Cambridge University Press, 2000, pp. 47–68.

[18] Gazebosim.org, “Gazebo,” Retrieved on Jan. 20th, 2020 from http://gazebosim.org/.
[19] I. Gerostathopoulos, D. Skoda, F. Plasil, T. Bures, and A. Knauss, “Tuning self-

adaptation in cyber-physical systems through architectural homeostasis,” Journal
of Systems and Software, vol. 148, pp. 37 – 55, 2019.

[20] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting, 1st ed.
New York, NY, USA: Cambridge University Press, 2016.

[21] F. Giunchiglia and P. Traverso, “Planning as model checking,” in Recent Advances
in AI Planning, S. Biundo and M. Fox, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 1–20.

[22] R. Hebig, C. Seidl, T. Berger, J. K. Pedersen, and A. Wasowski, “Model transforma-
tion languages under a magnifying glass: A controlled experiment with Xtend,
ATL, and QVT,” in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2018. New York, NY, USA: ACM, 2018, pp. 445–455.

[23] R. Hilliard, “Views and Viewpoints in Software Systems Architecture,” in Proc. of
the First Working IFIP Conference on Software Architecture, San Antonio, TX, 1999,
pp. 22–24.

[24] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing - degrees,
models, and applications,” ACM Comput. Surv., vol. 40, no. 3, 2008.

[25] D. Jackson, “Alloy: A lightweight object modelling notation,” ACM Trans. Softw.
Eng. Methodol., vol. 11, no. 2, Apr. 2002.

[26] P. Jamshidi, J. Cámara, B. Schmerl, C. Kästner, and D. Garlan, “Machine learning
meets quantitative planning: Enabling self-adaptation in autonomous robots,”
in Proceedings of the 14th Symposium on Software Engineering for Adaptive and
Self-Managing Systems, Montreal, Canada, 25-26 May 2019.

[27] J. Kim and D. Garlan, “Analyzing architectural styles,” J Syst Software, vol. 83,
no. 7, pp. 1216–1235, 2010.

[28] M. Z. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model checking,” in
FM for Performance Evaluation, 7th Int. School on Formal Methods for the Design of
Computer, Communication, and Software Systems, ser. LNCS, vol. 4486. Springer,
2007.

[29] ——, “PRISM 4.0: Verification of probabilistic real-time systems,” in Computer
Aided Verification - 23rd International Conference, CAV, vol. 6806. Springer, 2011,
pp. 585–591.

[30] M. Z. Kwiatkowska and D. Parker, “Automated verification and strategy synthesis
for probabilistic systems,” in Automated Technology for Verification and Analysis -
11th International Symposium, ATVA 2013, ser. Lecture Notes in Computer Science,
vol. 8172. Springer, 2013, pp. 5–22.

[31] B. Lacerda, D. Parker, and N. Hawes, “Optimal and dynamic planning for Markov
decision processes with co-safe LTL specifications,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2014, pp. 1511–1516.

[32] S. Maoz, J. O. Ringert, and B. Rumpe, “Synthesis of component and connector
models from crosscutting structural views,” in European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/FSE’13.
ACM, 2013.

[33] G. Mason, R. Calinescu, D. Kudenko, and A. Banks, “Assurance in reinforcement
learning using quantitative verification,” inAdvances in Hybridization of Intelligent
Methods: Models, Systems and Applications, ser. Smart Innovation, Systems and
Technologies, I. Hatzilygeroudis and V. Palade, Eds. Springer International
Publishing AG, 2018, vol. 85, pp. 71–96.

[34] C. Menghi, S. Garcia, P. Pelliccione, and J. Tumova, “Multi-robot LTL planning
under uncertainty,” in Formal Methods. FM2018, ser. Lecture Notes in Computer
Science, K. Havelund, J. Peleska, B. Roscoe, and E. de Vink, Eds., vol. 10951.
Cham: Springer International Publishing, 2018, pp. 399–417.

[35] C. Mericli, S. Klee, J. Paparian, and M. Veloso, “An Interactive Approach for
Situated Task Specification through Verbal Instructions,” in Proceedings of AA-
MAS’14, the Thirteenth International Joint Conference on Autonomous Agents and
Multi-Agent Systems, Paris, France, May 2014.

[36] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive self-adaptation
under uncertainty: a probabilistic model checking approach,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, Bergamo, Italy, August 30 - September 4, 2015, E. D. Nitto, M. Harman, and
P. Heymans, Eds. ACM, 2015, pp. 1–12.

[37] H. Muccini, M. Sharaf, and D. Weyns, “Self-adaptation for cyber-physical systems:
a systematic literature review,” in Proceedings of the 11th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE
2016. ACM, May 14-22 2016, pp. 75–81.

[38] Y.-S. Park, H.-M. Koo, and I.-Y. Ko, “A task-based and resource-aware approach
to dynamically generate optimal software architecture for intelligent service
robots,” Softw. Pract. Exper., vol. 42, no. 5, pp. 519–541, May 2012.

[39] C. Paterson, R. Calinescu, D. Wang, and S. Manandhar, “Using unstructured
data to improve the continuous planning of critical processes involving humans,”
in Proceedings of the 14th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS@ICSE 2019. Montreal, QC, Canada:
ACM, May 25-31 2019, pp. 25–31.

[40] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “ROS: an open-source robot operating system,” in ICRA Workshop on
Open Source Software, 2009.

[41] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer, “Speeded up
detection of squared fiducial markers,” Image and Vision Computing, vol. 76, pp.
38–47, 2018.

[42] ROS.org, “Move_base - ROS Wiki,” Retrieved on Jan. 20th, 2020 from http://wiki.
ros.org/move_base.

[43] I. Ruchkin, S. Samuel, B. Schmerl, A. Rico, and D. Garlan, “Challenges in physical
modeling for adaptation of cyber-physical systems,” inWorkshop on MARTCPS
Models at Runtime and Networked Control for Cyber Physical Systems at IEEE
World Forum on the Internet of Things, Reston, Virginia, 12-14 December 2016.

[44] A. Santos, A. Cunha, and N. Macedo, “Static-Time Extraction and Analysis of the
ROS Computation Graph,” in 2019 Third IEEE International Conference on Robotic
Computing (IRC), Feb 2019, pp. 62–69.

[45] M. Schoppers, “Universal plans for reactive robots in unpredictable environments,”
in Proceedings of the 10th International Joint Conference on Artificial Intelligence.
Milan, Italy, August 1987. Morgan Kaufmann, 1987.

[46] M. Shaw and D. Garlan, Software architecture - perspectives on an emerging disci-
pline. Prentice Hall, 1996.

https://www.autonomoustuff.com/wp-content/uploads/2016/08/VLP-16-Puck.pdf
https://www.autonomoustuff.com/wp-content/uploads/2016/08/VLP-16-Puck.pdf
http://gazebosim.org/
 http://wiki.ros.org/move_base
 http://wiki.ros.org/move_base

SEAMS ’20, October 7–8, 2020, Seoul, Republic of Korea Cámara, Schmerl, and Garlan

[47] D. Sykes, W. Heaven, J. Magee, and J. Kramer, “From goals to components: a
combined approach to self-management,” in 2008 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2008, B. H. C. Cheng,
R. de Lemos, D. Garlan, H. Giese, M. Litoiu, J. Magee, H. A. Müller, and R. N.
Taylor, Eds. Leipzig, Germany: ACM, May 12-13 2008, pp. 1–8.

[48] ——, “Exploiting non-functional preferences in architectural adaptation for self-
managed systems,” in Proceedings of the 2010 ACM Symposium on Applied Com-
puting (SAC). Sierre, Switzerland: ACM, March 22-26 2010.

[49] H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic, “PLASMA: a plan-based
layered architecture for software model-driven adaptation,” in ASE 2010, 25th
IEEE/ACM International Conference on Automated Software Engineering. Antwerp,
Belgium: ACM, September 20-24 2010.

[50] M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal, “Cobots: Robust symbiotic
autonomous mobile service robots,” in Proceedings of the 24th International Con-
ference on Artificial Intelligence, ser. IJCAI’15. AAAI Press, 2015, pp. 4423–4429.

[51] J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley, 2003.

	Abstract
	1 Introduction
	2 Motivating Scenario
	3 Approach
	3.1 Model-View Projection
	3.2 Adaptation Planning

	4 Evaluation
	4.1 Experiment Setup and Results

	5 Related Work
	6 Discussion and Future Work
	References

