
On Behavioural Interfaces and Contracts for Software Adaptation

Javier Cámara, José Antonio Martı́n, Gwen Salaün, Carlos Canal, Ernesto Pimentel

Department of Computer Science, University of Málaga, Spain

Abstract

Software Adaptation aims at composing in a non-intrusive way black-box components or services, even if they present some
mismatches in their interfaces. Adaptation is a complex issue especially when behavioural descriptions of services are taken
into account in their interfaces. In this paper, we first present our abstract notations used to specify behavioural interfaces
and adaptation contracts, and propose some solutions to support the specification of these contracts. Then, we overview our
techniques for the generation of centralized or distributed adaptor protocols and code based on the aforementioned contracts.

1. Introduction

Service-based systems are built by reusing existing components and services. These services can be used to fulfill basic
requirements, or be composed with other services to build bigger systems which aim at working out complex tasks. Services
must be equipped with rich interfaces enabling external access to their functionality which can be described at different in-
teroperability levels (i.e., signature, protocol, quality of service, and semantics). Composition of services is seldom achieved
seamlessly because mismatch may occur at the different interoperability levels and must be solved. Software adaptation is
the only way to compose non-intrusively black-box components or services with mismatching interfaces by automatically
generating mediating adaptor services. Adaptation goes beyond classic composition of components or services since in
these approaches, see for instance [1, 2, 3], no solution is proposed to compensate possible differences existing between
incompatible interfaces.

So far, most adaptation approaches have assumed interfaces described by signatures (operation names and types) and
behaviours (interaction protocols). Describing protocol in service interfaces is essential because erroneous executions or
deadlock situations may occur if the designer does not consider them while building composite services. Deriving adaptors
is a complicated task since, in order to avoid undesirable behaviours, the different behavioural constraints of the composition
must be respected, and the correct execution order of the messages exchanged must be preserved.

Most existing works on model-based behavioural adaptation (see for instance [4, 5, 6]) favour the full automation of
the process. They are referred to as restrictive approaches because they try to solve interoperability issues by pruning the
behaviours that may lead to mismatch, thus restricting the functionality of the services involved. These techniques are limited
since they are not able to fix subtle incompatibilities between service protocols by remembering and reordering events and
data when necessary. A second class of solution is referred to as generative approaches (see for instance [7, 8, 9]). These
avoid restricting service behaviour, and support the specification of advanced adaptation scenarios. Generative approaches
build adaptors automatically from an abstract specification, namely an adaptation contract, of how mismatch cases can be
solved.

Manual writing of an adaptation contract is a difficult and error-prone task. In particular, incorrect correspondences
between operations in service interfaces, or syntactic mistakes are common, especially when the contract has to be specified
using cumbersome textual notations. Moreover, a contract is just an abstract specification of how the different services should
interact and does not explicitly describe all the different execution scenarios of a system, which may not be easily envisioned
by the designer. Finally, writing a contract requires a good comprehension of the services involved, and understanding all the
details of service protocols is quite complicated for non-experts.

Email addresses: jcamara@lcc.uma.es (Javier Cámara), jamartin@lcc.uma.es (José Antonio Martı́n), salaun@lcc.uma.es (Gwen
Salaün), canal@lcc.uma.es (Carlos Canal), ernesto@lcc.uma.es (Ernesto Pimentel)

Preprint submitted to Elsevier June 16, 2009

In this paper, we present an approach that fully supports generative adaptation, which starts with the automatic extraction
of behavioural models from existing interface descriptions either in Abstract BPEL or Windows Workflows (WF), and ends
with the generation of a monolithic adaptor or a set of distributed adaptation wrappers that are automatically generated and
deployed. We will present the different parts of our solution with a particular focus on the notations used here to specify
behavioural interfaces and adaptation contracts. More precisely, we will present two alternatives to manual contract speci-
fication. A first one, namely automatic contract specification, aims at constructing adaptation contracts without any human
intervention. A second one, namely interactive contract specification, supports the user through the adaptation contract
design process using a graphical notation and interactively pointing out suggestions and inconsistencies in the design by
using protocol similarity, simulation and verification techniques. We also propose a combined use of both approaches. Our
approach is fully supported by a toolbox called ITACA.

The rest of this paper is structured as follows: Section 2 presents our service model and some techniques supporting the
contract specification. In Section 3, we overview our solutions to generate the adaptor protocol and code from the behavioural
interfaces and adaptation contract. Section 4 presents our tool support and Section 5 some concluding remarks.

2. Behavioural Interfaces and Adaptation Contracts

2.1. Behavioural Interfaces

We assume that service interfaces are specified using both a signature and a protocol. Signatures correspond to operation
names associated with arguments and return types relative to the messages and data being exchanged when the operation is
called. Protocols are represented by means of Symbolic Transition Systems (STSs), which are Labelled Transition Systems
(LTSs) extended with value passing [10]. Communication between services is represented using events relative to the emis-
sion and reception of messages corresponding to operation calls. Events may come with a set of data terms whose types
respect the operation signatures.

This formal model has been chosen because it is simple, graphical, and provides a good level of abstraction to tackle
verification, composition, or adaptation issues [11, 12, 13]. At the user level, one can specify service interfaces (signatures and
protocols) using respectively WSDL, and Abstract BPEL (ABPEL) or WF workflows (AWF) [14]. These, are automatically
parsed and translated into our internal STS model.

2.2. Adaptation Contract Specification

An adaptation contract [8] contains an interface mapping matching operations (including their arguments) required by
service interfaces with those offered by others in order to reconcile interface mismatch at the signature and behavioural
levels. Furthermore, a contract may also contain additional properties to be imposed on the composition of the different
services, such as specific orderings on operation invocations. Therefore, understanding how two protocols differ helps to
build adaptation contracts, for instance by suggesting the best possible operation matches to the user. To do so, our approach
is able to compute protocol similarities [15], which aim at pointing out differences between protocols, but also at detecting
parts of them which turn out to be similar. Our similarity computation relies on a divide-and-conquer approach to compute
the similarity of service protocols (described as STSs) from a set of detailed similarity comparisons (states, labels, depths
and graphs). This information can be used to guide the contract specification process, regardless of the specific technique
employed. In particular, we introduce in this section our contract notation and two different specification techniques for
adaptation contracts:

Notation. Our adaptation language makes communication among services explicit, and specifies how to work out mismatch
situations. To make communication explicit, we rely on vectors (inspired from synchronization vectors [16]), which denote
communication between several services, where each event appearing in one vector is executed by one service and the
overall result corresponds to an interaction between all the involved services. A vector may involve any number of services
and does not require interactions to occur on the same names of events. Vectors express correspondences between messages,
like bindings between ports, or connectors in architectural descriptions. Furthermore, variables are used as placeholders in
message parameters. The same variable name appearing in different labels (possibly in different vectors) enables the relation
of sent and received arguments of messages.

In addition, the contract notation includes an LTS with vectors on transitions (vector LTS or VLTS). This is used as a
guide in the application order of the interactions denoted by vectors. VLTSs go beyond port and parameter bindings, and

express more advanced adaptation properties (such as imposing a sequence of vectors or a choice between some of them). If
the application order of vectors does not matter, the vector LTS contains a single state and all transitions looping on it.

Automatic Contract Specification. In order to alleviate the cumbersome task of designing adaptation contracts and to avoid
mistakes in the specification (which may lead to undesirable behaviours of the system), we can use the above mentioned
similarity measures for the automatic generation of contracts [17]. This automatic contract generation is achieved traversing
the behaviour of the services and matching the different operations found based on similarity measures. In such a way, we are
able to match compatible operations and to adapt the minimum set of operations required for the deadlock-free composition
of services. The generated contracts successfully specify how to overcome signature mismatch (i.e., different operation
names and arguments) and behavioural incompatibilities (i.e., message splitting/merging, missing messages and message
reordering) in such a way that all services are able to interact with each other and reach a correct termination state of their
execution.

Interactive Contract Specification. Automatic contract generation may produce solutions leading to deadlock-free compo-
sitions unable to fulfill their intended goals, since the automatic approach is not currently aware of the underlying semantics
of the services. Therefore, our approach incorporates an Adaptation Contract Interactive Design Environment [18], which
aims at helping the designer in specifying a contract, reducing the risk of errors introduced by manual specification. In con-
trast with using textual notations where the designer can write any (correct or incorrect) statement, our environment makes
use of a graphical notation which enables interactive and incremental construction and checks on the contract. Thus, any
contract produced with our proposal is syntactically correct and consistent. In addition, the interactive environment is able
to:

• Assist the designer by pointing out the best matches between ports graphically using protocol similarity information.

• Simulate the execution of the system step-by-step and determine how the different behavioural interfaces evolve as the
different parts of the contract are executed, highlighting active states and fired transitions on the graphical representa-
tion of interfaces.

• Automatically identify execution traces leading to deadlock or livelock. These can be replayed step-by-step using
simulation to understand the cause of the incorrect behaviour. This helps the designer to detect the behavioural issues
that might be raised during execution and to understand if the behaviour of the system complies with his/her design
intentions.

It is worth observing that the automatic and interactive approaches mutually improve their results when they are combined.
On one hand, when the automatic contract specification process receives adaptation constraints from the interactive design
environment, it is able to discard solutions leading to deadlock-free compositions that may not fulfill their intended goals
(e.g., a client-supplier system which always aborts requests). On the other hand, the designer can use the automatic approach
to complete parts of a contract through the interactive environment.

3. Adaptor Generation and Implementation

From a set of service protocols and a contract specification, we can generate either an adaptor protocol (centralized view),
or a set of adaptation wrapper protocols (distributed view). In the first case, the adaptor can be deployed on a single machine.
In the case of wrappers, they can be distributed and deployed using middleware technologies, preserving a full parallelism of
the system’s execution. Adaptor and wrapper protocols are automatically generated in two steps: (i) system’s constraints are
encoded into the LOTOS [19] process algebra, and (ii) adaptor and wrapper protocols are computed from this encoding using
on-the-fly exploration and reduction techniques. Beyond simulation and verification techniques integrated in the interactive
environment, the LOTOS encoding allows to check temporal logic properties on the adaptor under construction using the
CADP model-checker [20]. The reader interested in more details may refer to [10, 21].

Our internal model (STS) can take into account some additional behaviours (interleavings) that cannot be implemented
into executable languages. To make platform-independent adaptor protocols (obtained in the former step) implementable
wrt. a specific platform (e.g., BPEL), we proceed in two steps: (i) filtering the interleaving cases that cannot be implemented
(e.g., several emissions and receptions outgoing from a same state), and (ii) encoding the filtered model into the corresponding
implementation language. Following the guidelines presented in [10], the adaptor protocol is implemented as a BPEL process
using a state machine pattern. The main body of the BPEL process corresponds to a global while activity with if statements

used inside it to encode adaptor states. Each if body encodes transitions outgoing from the corresponding state. Variables are
used to store data passing through the adaptor and the current state of the protocol.

4. Tool Support

Our solution for model-based software adaptation overviewed in this paper is fully supported by ITACA [22], an integrated
toolbox we implemented (see Fig. 1). ITACA has been implemented in Python and Java, and consists of about 51,000 lines
of code. We have intensively applied and validated our toolbox on many case studies such as a travel agency, rate finder
services, on-line computer material store, library management systems, SQL servers, and many other systems.

Although our toolbox automates all the steps of the adaptation process, contract specification requires human intervention
to ensure that the goal of the composition is fulfilled. However, experiments we have carried out show that the techniques
proposed in ITACA to support the adaptation contract construction drastically reduce the time spent to build the contract and
the number of errors made during this process.

Designer

Adaptor
Protocol

<vector id="vector_0">
<componentVector eventName="user"

eventType="OUT" index="client">
<dataItem

name="clientuserOUTusr"/>
</componentVector>

</vector>
<vector id="vector_1">

...

Adaptation Contract

Interactive Contract Specification +
Simulation and Verification (ACIDE)

Automatic Contract Specification
(DINAPTER)

TAUreqDoc!d:tdateTAU reqSpec!d:tdatereplyS?tkt:tid

user!usr:tstringpassword!pwd:tstring
replyD?tkt:tid

reqDoc!tkt:tidreqDoc?d:tdate reqSpec!tkt:tidavailability?tkt:tidavailability!d:tdatereqSpec?d:tdate
availability!tkt:tidavailability?d:tdate

login?usr:tstring,pwd:tstringc0c1 c2c3c4 c5 c6c7 d0d1
s0s1 s2s3 s4 s5

Service Interface Models
(Signature + Protocol STS)

Adaptor Protocol / Service
Wrapper Protocols Generation

((D)COMPOSITOR)

Adaptor Protocol Filtering
+ Service Deployment

(STS2BPEL)

Service Protocol+Signature
Extraction

(WSDL2SIG+ABPEL2STS/
AWF2STS)

Service Interfaces (Abstract BPEL+WSDL)

Deployed System
(BPEL Adaptor + Original Service

Implementations)

Service Interfaces (Abstract WF+WSDL)

Similarity
Computation

(SIM)

Figure 1. Adaptation process overview in ITACA

5. Concluding Remarks

Software adaptation is a satisfactory solution to build new systems involving reusable software services that present some
mismatch cases in their interfaces. However, this is an error-prone task and therefore must be automated as much as possible.
In this work, we have presented our approach to software adaptation and we focused on the adaptation contract specification,
the only step of our proposal which requires human intervention. To help the designer in this task, we have proposed
two alternative solutions to the manual design of contracts, which rely on graphical notation, interactive environment, and
automatic generation techniques. In this work, we have also introduced what is, to the best of our knowledge, the first toolbox
(ITACA) that fully supports a generative adaptation approach from beginning to end. ITACA supports the specification and
verification of adaptation contracts, automates the generation of adaptor protocols, and relates our abstract models with
implementation languages.

Acknowledgements. This work has been partially supported by the project TIN2008-05932 funded by the Spanish Ministry
of Innovation and Science (MICINN), and project P06-TIC-02250 funded by the Junta de Andalucı́a.

References

[1] L. de Alfaro, T. Henzinger, Interface Automata, in: Proc. of ESEC/FSE’01, ACM Press, 2001, pp. 109–120.

[2] S. Uchitel, M. Chechik, Mergin Partial Behavioural Models, in: Proc. of FSE’04, ACM Press, 2004, pp. 43–52.

[3] A. Basu, M. Bozga, J. Sifakis, Modeling Heterogeneous Real-time Components in BIP, in: Proc. of SEFM’06, IEEE
Computer Society, 2006, pp. 3–12.

[4] M. Autili, P. Inverardi, A. Navarra, M. Tivoli, SYNTHESIS: A Tool for Automatically Assembling Correct and Dis-
tributed Component-based Systems, in: Proc. of ICSE’07, IEEE Computer Society, 2007, pp. 784–787.

[5] A. Brogi, R. Popescu, Automated Generation of BPEL Adapters, in: Proc. of ICSOC’06, Vol. 4294 of LNCS, Springer,
2006, pp. 27–39.

[6] H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, F. Casati, Semi-Automated Adaptation of Service
Interactions, in: Proc. of WWW’07, ACM Press, 2007, pp. 993–1002.

[7] A. Bracciali, A. Brogi, C. Canal, A Formal Approach to Component Adaptation, Journal of Systems and Software
74 (1) (2005) 45–54.

[8] C. Canal, P. Poizat, G. Salaün, Model-Based Adaptation of Behavioural Mismatching Components, IEEE Transactions
on Software Engineering 34 (4) (2008) 546–563.

[9] M. Dumas, M. Spork, K. Wang, Adapt or Perish: Algebra and Visual Notation for Service Interface Adaptation, in: In
Proc. of BPM’06, Vol. 4102 of LNCS, Springer, 2006, pp. 65–80.

[10] R. Mateescu, P. Poizat, G. Salaün, Adaptation of Service Protocols using Process Algebra and On-the-Fly Reduction
Techniques, in: Proc. of ICSOC’08, LNCS, Springer, 2008, pp. 84–99.

[11] H. Foster, S. Uchitel, J. Kramer, LTSA-WS: A Tool for Model-based Verification of Web Service Compositions and
Choreography, in: Proc. of ICSE’06, ACM Press, 2006, pp. 771–774.

[12] X. Fu, T. Bultan, J. Su, Analysis of Interacting BPEL Web Services, in: Proc. of WWW’04, ACM Press, 2004, pp.
621–630.

[13] G. Salaün, L. Bordeaux, M. Schaerf, Describing and Reasoning on Web Services using Process Algebra, IJBPIM 1 (2)
(2006) 116–128.

[14] J. Cubo, G. Salaün, C. Canal, E. Pimentel, P. Poizat, A Model-Based Approach to the Verification and Adaptation of
WF/.NET Components, in: Proc. of FACS’07, Vol. 215 of ENTCS, Elsevier, 2007, pp. 39–55.

[15] M. Ouederni, Measuring Similarity of Service Protocols, Master Thesis, University of Málaga. Available on Meriem
Ouederni’s Webpage (Sep. 2008).

[16] A. Arnold, Finite Transition Systems, International Series in Computer Science, Prentice-Hall, 1994.

[17] J. A. Martı́n, E. Pimentel, Automatic Generation of Adaptation Contracts, in: Proc. of FOCLASA’08, ENTCS, 2008, to
appear.

[18] J. Cámara, G. Salaün, C. Canal, M. Ouederni, Interactive Specification and Verification of Behavioural Adaptation
Contracts, in: 9th International Conference on Quality Software (QSIC’09), IEEE, 2009, to appear.

[19] ISO/IEC, LOTOS — A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour,
International Standard 8807, ISO (1989).

[20] R. Mateescu, M. Sighireanu, Efficient On-the-Fly Model-Checking for Regular Alternation-Free Mu-Calculus, Science
of Computer Programming 46 (3) (2003) 255–281.

[21] G. Salaün, Generation of Service Wrapper Protocols from Choreography Specifications, in: Proc. of SEFM’08, IEEE
Computer Society, 2008, pp. 313–322.

[22] ITACA’s Webpage, accesible from Javier Cámara’s Webpage.

