
Quantitative Verification-Aided Machine Learning:
A Tandem Approach for Architecting

Self-Adaptive IoT Systems
Javier Cámara

University of York
York, United Kingdom

javier.camaramoreno@york.ac.uk

Henry Muccini
University of L’Aquila

L’Aquila, Italy
henry.muccini@univaq.it

Karthik Vaidhyanathan
Gran Sasso Science Institute

L’Aquila, Italy
karthik.vaidhyanathan@gssi.it

Abstract—Architecting IoT systems able to guarantee Quality
of Service (QoS) levels can be a challenging task due to the inher-
ent uncertainties (induced by changes in e.g., energy availability,
network traffic) that they are subject to. Existing work has shown
that machine learning (ML) techniques can be effectively used
at run time for selecting self-adaptation patterns that can help
maintain adequate QoS levels. However, this class of approach
suffers from learning bias, which induces accuracy problems
that might lead to sub-optimal (or even unfeasible) adaptations
in some situations. To overcome this limitation, we propose an
approach for proactive self-adaptation which combines ML and
formal quantitative verification (probabilistic model checking).

In our approach, ML is tasked with selecting the best adap-
tation pattern for a given scenario, and quantitative verification
checks the feasibility of the adaptation decision, preventing the
execution of unfeasible adaptations and providing feedback to
the ML engine which helps to achieve faster convergence towards
optimal decisions. The results of our evaluation show that our
approach is able to produce better decisions than ML and
quantitative verification used in isolation.

Index Terms—Self-Adaptive architectures, proactive adapta-
tion, machine learning, reinforcement learning, Q-learning, quan-
titative verification, probabilistic model checking, IoT architec-
tures, self-adaptation patterns, software architecture.

I. INTRODUCTION

The advent of the Internet of Things (IoT) is transforming
and shaping the way in which many tasks are supported across
application domains. According to Gartner, 8.4 billion IoT
devices were in use in 2017 and the projection is that this
value will increase to 21 billion by 2020 [2]. Considering the
tremendous increase in the amount of data traffic generated, as
well as the energy consumed by these devices, reducing energy
consumption and data traffic are considered as two of the most
important QoS challenges in IoT [4], [5], [11]. In fact, energy
efficiency is becoming a global concern, with ICT expected to
consume around 21% of the world’s electricity by 2030.

Despite their increasing adoption rate, architecting IoT
systems still poses important challenges that relate to their
inherently dynamic and heterogeneous nature, as well as to
the uncertainties they are subject to, which are induced by
different sources in their execution environment (e.g., fluc-
tuations in resource availability, interactions between software

and physical processes) [12]. Inability to mitigate the effects of
these uncertainties can have major implications on the quality
of service (QoS) levels offered by these systems [4], [5].

To improve this situation, recent years have seen the emer-
gence of multiple architecture-based self-adaptation techniques
aimed at maintaining and guaranteeing improved levels of
QoS in applications deployed in different domains [8], [9].
In the specific area of IoT, architectural patterns for self-
adaptation recently proposed [14] aim at maintaining accept-
able QoS levels at run time. However, different patterns have
disparate impacts and present different tradeoffs in QoS (e.g.,
performance, availability, energy consumption), depending on
the operational context of the system at run time. This calls
for self-adaptive techniques that can autonomously switch
between patterns at run time, depending on the specific condi-
tions of the execution context, to ensure that the system does
not deviate from acceptable QoS levels.

To this end, machine learning (ML) techniques can be used
to perform such adaptations because they can learn from QoS
data, predict situations that might demand adaptation, and
proactively select an adaptation pattern to mitigate the effects
of potential QoS violations that might appear in the short
term [48]. However, ML suffers from learning bias arising
from data and algorithms, which can sometimes result in
bad predictions, leading to sub-optimal, or even infeasible
adaptations [15], [16], [17].

This is a problem where the use of Quantitative Verification
(QV) techniques (and in particular, probabilistic model check-
ing [54]) can improve on the current situation, complementing
the strengths of ML: given a decision (architectural pattern
selection), and a formal description of the current configuration
of the system and its execution conditions, QV is able to
provide feedback concerning the feasibility of the decisions
selected by ML. This feedback, in the form of quantitative
guarantees about expected QoS levels, is used to: (i) prevent
the execution of infeasible solutions selected by ML, and
(ii) improve the quality of future decisions made by ML.

Some existing approaches in self-adaptation propose using
ML either as a means to predict the need for adaptation,
for reducing the solution space, or to perform adaptation



selection [43]–[45], [48]. In contrast, we propose a novel way
of performing proactive adaptation leveraging the use of ML
and QV in such a way that, ML is responsible for making
decisions and QV is used to verify those decisions, as well
as to provide feedback to ML, helping it to achieve faster
convergence towards closer-to-optimal decisions, opening up
the possibility of finding better solutions than using either QV
or ML in isolation.

The contribution in this paper is an approach for architecting
self-adaptive IoT systems which uses the learning ability of
ML, and the verification capabilities of QV to identify and
enact optimal adaptations proactively. Given a scenario and a
set of QoS (energy and data traffic) requirements, our approach
(i) uses Reinforcement Learning (RL) to select an adaptation
pattern, (ii) uses probabilistic model checking to verify the
feasibility of the decisions made by RL with respect to the
QoS requirements, (iii) executes the adaptation if the decisions
are found to be feasible, and otherwise requests a new decision
from RL, and (iv) provides feedback to RL for improving the
quality of future decisions.

Evaluation results of our approach on the NdR case study
(https://nottedeiricercatoriaq.it/) show remarkable increments
in the satisfaction of QoS levels with respect to self-adaptation
based on ML and QV used in isolation.

II. MOTIVATING SCENARIO

We illustrate our approach on a scenario that concerns the
NdR street fair, which is a scientific exhibition event organized
by the University of L’Aquila. In this event, the research
community and public (about 25,000 visitors) are brought
together to participate in activities held in the city center, in
which performances, lectures, demonstrations, and workshops
take place in squares, main streets, and buildings.

Our research group has developed an IoT-based solution to
improve the quality of the visiting experience. Without the loss
of generality, in this paper we focus on two such IoT services
planned for NdR. These services are related to the automated
management of three venues (with capacity for 500 and 2×200
seats) and control of two automated parking lots (capacity 100
and 75 slots). These parking lots and venues are created in an
ad-hoc way and on a temporary basis. Hence, availability of
external power sources and legacy infrastructure is limited.

The system uses sensors at the venue and parking entrances
and exits to gather real-time information on the venue and
parking space availability. This information is then ingested
by a central database and, once processed, results are sent
to the display devices in the parking lots and venues to
redirect users to alternative parking lots based on their venue
preferences. Each of these sensors can operate in: (i) normal
mode, in which the sensor component gathers data at standard
rate (normal operational scenario, and (ii) critical mode, in
which the sensor component gathers data with higher fre-
quency (e.g., when there is a sudden increase in people/vehicle
arrival/departure rate, the data needs to be gathered at a faster
rate to ensure service accuracy).

The two main concerns in our scenario are to ensure that the
system is efficient with respect to the energy and overall data
traffic requirements. This is due to the fact that all sensors used
are battery-powered. Even though charging can be performed
from time to time, their charge might plummet during peak
hours, and plugging in a new sensor or charging the existing
one might be difficult while keeping the system available.
Moreover, we also need to ensure that the overall data traffic
level is not too low, to be able to maintain an acceptable
service accuracy, nor too high, because network congestion
might have a remarkable impact on system performance.

Hence, given: (i) data traffic constraints Dmax and Dmin,
i.e., the maximum and minimum data traffic levels acceptable
for a given execution period of duration τ , and (ii) Emax being
the maximum energy that can be consumed for that same τ -
period, the goal of the system is maximizing the following
utility function that captures the non-functional requirements
of our scenario and enables us to quantify their satisfaction:

Uτ = we · Eτ + wd · Tτ , with

Tτ =


(Dmax − dτ ) · pdv if dτ ≥ Dmax
dτ −Dmin if Dmax > dτ > Dmin
(dτ −Dmin) · pdv if dτ ≤ Dmin

Eτ =

{
Emax − eτ if eτ < Emax
(Emax − eτ ) · pev otherwise

where, eτ , dτ represent the total energy and data traffic
consumed by the system for the τ -period, and we, wd ∈ R+

are weights that capture the priority of energy and data traffic
savings, respectively. Tτ and Eτ are piece-wise functions that
capture the data traffic and energy savings respectively where,
pev , pdv ∈ R+ represent penalties for the violations of energy
and data traffic thresholds, respectively.

Fig. 1. Approach Overview

III. APPROACH OVERVIEW

The goal of our approach to architecting adaptive IoT
systems is to ensure that QoS requirements are satisfied



throughout the execution of the system. To this end, the
approach employs some of the main ideas behind model
predictive control (MPC) [55], which include: (i) using models
to forecast future system behaviour, (ii) the computation of a
sequence of control (i.e., adaptation) actions, and (iii) using a
receding horizon, i.e., repeating the selection of the sequence
of control actions from the actual system state after the
execution of the first control action. This latter part allows
accounting for the effects of potential disturbances.

Structurally, the approach builds on the MAPE-K pat-
tern [18], and instantiates its different components in the
following way (Figure 1):

The Monitor activity regularly collects two types of data
from the IoT system at run time, namely QoS metrics (e.g.,
instantaneous traffic, energy consumption) and the data col-
lected by sensors. These are continually sent to the Analyze
activity and the Machine Learning Engine.

The Machine Learning Engine (MLE) is responsible for
building two types of ML models using Long Short-Term
Memory (LSTM) Networks [13]: (i) QoS models for forecast-
ing the expected energy consumption and data traffic up to
the duration of the planning horizon, and (ii) forecast models
predicting the expected behaviour of every sensor component
up until the planning horizon. The MLE periodically updates
these trained models in the Knowledge Base.

The Analyze activity is responsible for identifying the need
for adaptation based on the data obtained. It first processes
the data as required by the Predictor component using the
Data Processor component. The Predictor component uses
the processed data to predict the expected QoS of the system
and behaviour of sensors (operational modes) using forecast
models from the Knowledge Base. These forecasts are used to
identify the need for adaptation. If adaptation is needed, the
forecasts are made available to the Plan activity.

The Plan activity mainly consists of two components,
(i) Decision Selector and (ii) Decision Verifier. The Decision
Selector selects the best architectural pattern (from those
available in the Knowledge Base) that can be used to perform
an adaptation based on the forecasts received. It performs this
selection using reinforcement learning. This selection is then
fed to the Decision Verifier for further verification. This is to
ensure that only decisions that are feasible with respect to QoS
goals defined in the Knowledge Base are executed. In case of
an infeasible decision, the decision verifier component sends
negative feedback to the decision selector and requests a new
decision. If the decision produced by the decision selector is
feasible, then the decision verifier sends positive feedback to
the decision selector and sends the decision to the Execute
activity. The Decision Selector collects feedback from two
sources for continuous improvement: (i) the verification results
obtained as the immediate feedback for the decision made, and
(ii) for every decision that was sent to the Execute activity, it
uses the QoS forecast received in the next iteration of decision
making as an additional source for feedback.

The Execute activity is responsible for enacting the selected
adaptation obtained from the Plan activity via effectors em-

bedded at the system level that enable architectural change in
the IoT system.

The Knowledge Base acts as a central storage for different
types of knowledge required by different layers for performing
the adaptations. It stores four types of information: (i) Q-Table,
which is a look up table used by the Decision Selector to select
the best pattern for adaptation, (ii) QoS goals, which capture
the acceptable energy and data traffic thresholds as defined
by stakeholders such as hardware and network engineers,
(iii) Model Repository, which contains the updated ML models
for forecasting the QoS and expected operational modes of
sensor components. These models are further used by the
Predictor component of the Analyze activity, and (iv) Pattern
Repository, which contains the set of adaptation patterns
available for performing the adaptation and their definitions.

Our instantiation of the Monitor and Analyze activi-
ties, along with the MLE have been presented in previous
work [23]. In this paper, we focus on the Plan and Execute
activities (enclosed by grey boxes in Figure 1). In particular,
we focus on how reinforcement learning (Decision Selector)
and formal verification (Decision Verifier) via model checking
can complement each other to guide the system towards
selecting architectural adaptations that optimize the guarantees
of satisfying acceptable QoS levels.

IV. BACKGROUND

S1 S2

Controller

DB

Controller ControllerS1 S2

DB

(a) Synthesize-Utilize (b) Synthesize-Command (c) Collect-Organize

DB

S1 S2

Controller

Fig. 2. Architectural Patterns for Self-Adaptation in IoT

A. Architectural Patterns for Self-Adaptation

Three patterns for self-adaptation in cyber-physical systems
were identified by Musil et al. [14]. A simplified version of
these patterns is illustrated in Figure 2:
a) Synthesize-Utilize (SU) is a fully decentralized pattern in
which each of the sensor nodes has the ability to make
decisions without resorting to an external controller.
b) Synthesize-Command (SC) is a centralized pattern in which
all the sensor nodes and other components communicate with
a central coordinator, which is in charge of making decisions.
c) Collect-Organize (CO) is a semi-decentralized pattern
which uses additional controller components to receive the
data from the sensor nodes and for making decisions, i.e.,
there will be multiple controllers acting as local coordinators
for a group of sensor nodes.

B. Quantitative Verification

Quantitative Verification (QV), or Probabilistic Model
Checking [54], is a set of formal verification techniques that
enable modeling systems that exhibit stochastic behaviour, as



well as the analysis of quantitative properties that concern
costs/rewards (e.g., resource usage, time) and probabilities
(e.g., of invariant violation, reachability, etc.).

In QV, systems are modeled as state-transition systems aug-
mented with probabilities such as discrete-time Markov chains
(DTMC) and continuous-time Markov chains (CTMC), which
is the formalism used in this paper to capture the behaviour
of IoT systems with respect to their message exchange and
energy consumption in a natural way:

Definition 1: A labelled Continuous-Time Markov Chain
(CTMC) extended with rewards is a tuple C = (S, si, R, L, ι),
where S is a finite set of states, si ∈ S is the initial state,
R : S×S → R+ is the transition rate matrix, L : S → 2AP is a
labelling function which assigns to every state s ∈ S a set L(s)
of atomic propositions valid in that state, and ι : S×S → R+

is a transition reward function that assigns a reward every time
a transition occurs in the CTMC.

In the definition above, the transition rate matrix R deter-
mines how transitions between states (e.g., capturing message
exchanges between nodes in an IoT system) are triggered in
a CTMC. Concretely, the probability of a transition being
triggered within t time units is equal to 1 − e−R(s,s′)·t (a
transition of rate 1/t will take on average t time units to be
triggered). Moreover, the reward assignment function can be
used to encode rewards and costs, e.g., the energy consumed
by devices every time a message is exchanged between two
nodes in the network.

System properties are expressed using some form of prob-
abilistic temporal logic, such as Continuous Stochastic Logic
(CSL), which enables quantifying some probability or reward,
or stating that they meet some threshold. In particular, CSL
reward quantification properties can be employed to analyze
the traffic and energy consumption in a IoT system described
as a CTMC. For instance, the class of property Rr

=?[C
<=t φ]

allows quantifying the reward r accrued up to time t across
all execution paths of the system. An example of a property
employing this operator for quantifying energy consumption
in an IoT system might be Renergy

=? [C<=600], meaning “accrued
energy over the next 10 minutes (600 seconds) across all
system execution paths.”

V. VERIFICATION-AIDED ML FOR ADAPTIVE IOT

This section describes how the Plan activity uses reinforce-
ment learning to select the best adaptation pattern and further,
how it uses model checking as a guide to continually improve
the decision making process using feedback obtained from
verification. The decision making process, which involves six
components, is shown in Figure 3. In the remainder of this
section, we first introduce some preliminary definitions used
in the approach, and then we explain each of the components
and their interaction in detail.

A. Preliminaries

The overall goal of the approach is to ensure that the QoS
requirements are satisfied throughout the execution of the
system. These are formalized in QoS goals:

Definition 2 (QoS Goal): We define a QoS goal as a pair
(µ, u), where µ ∈ M is a unique label identifier for a QoS
metric, and u = (ul, uh) ∈ R2 is a pair of threshold values.

Example 1: In our case study, we define two QoS goals:

1. Energy consumption, ge = (energy, (el, eh)), states that the
accrued energy consumed by the system should not exceed a
maximum value eh. In this goal, el represents the threshold
below which the sensors save the maximum energy.

2. Data traffic, gd = (traffic, (dl, dh)) states that the maxi-
mum total traffic allowed in the system should not exceed dh,
and should stay above dl, which is the minimum traffic to be
satisfied by the system to be able to maintain an acceptable
service accuracy.

To achieve these QoS goals, our approach works by pe-
riodically generating an adaptation decision that considers
predictions (forecasts) about the behaviour of the system over
a time horizon of duration H ∈ R+. We assume a decision
period of duration τ ∈ R+, and consider H to be a multiple
of τ . Hence, for a decision generated for time instant t: (i) the
forecasts employed as model of the environment considered
for the decision cover the period [t, t + H], (ii) the decision
made is executed (i.e., change of pattern, if the selected one
is different from the current pattern active in the system), and
(iii) the pattern selected is maintained as active for the time
interval [t, t + τ ]. At that point (t + τ ), a new decision is
generated for the period [t+τ, t+2 ·τ ] that considers forecasts
for the period [t+ τ, t+ τ +H]. This sequence is continually
repeated each τ -period.

Generating decisions employs two types of forecasts over
the lookup horizon: (i) QoS forecasts and (ii) behaviour
forecasts that capture the evolution of relevant system and
environment variables.

Definition 3: A QoS Forecast a pair (µ, u) ∈ M × R+,
where µ is a unique label identifier for a QoS metric, and u
is its predicted value of the metric accrued over the duration
of the lookup horizon.

Definition 4: A Behaviour Forecast is a sequence
〈f1, . . . , fk〉 where each element fi∈1...k is a tuple (v, l, u) ∈
V × R2 × D(v), where: v is a unique identifier for a sys-
tem/environment variable, and l is a time interval during which
v takes the value u. D(v) denotes the domain of v. We assume
that the time intervals of the elements in fi fully cover up to
the duration of the lookup horizon H .

Example 2: Consider a horizon H = 600 seconds in our
system. A sensor s may operate in a mode captured by variable
s.mode, which takes values in the domain {normal, critical}.
A behaviour forecast for the mode in which sensor
is operating during the time interval [t, t + 600] like
〈(s.mode, [0, 100], normal), (s.mode, [101, 600], critical)〉
captures that sensor s is expected to operate in normal mode
for the next 100 seconds, and in critical mode during the
remainder of the time, up until the end of the horizon.



Fig. 3. Detailed View of Decision Making Process

B. QoS State Identifier

Our approach assumes a discrete set of QoS categories for
each dimension of concern (e.g., energy consumption, traffic).1

The first part of decision making is identifying the expected
QoS state of the system EQ for the next τ -period, i.e., the set
of expected QoS categories for every dimension of concern
(Component 1, Figure 3).

For each decision period elapsed, the QoS State Identifier
receives the set of QoS forecasts QF for the next decision
period from the QoS Forecaster of the Analyze activity. Then,
QF is mapped to a set of categories EQ that identifies the QoS
state of the system for the next decision period. The mapping
between QF and EQ is obtained based on the values in QF ,
and how they meet the thresholds stated in QoS goals.

For instance, let the QoS goal for energy consumption
be (energy, (0.5, 2)), meaning that the energy consumption
of the system up until the time horizon should stay in the
range 0.5-2 Joules. We can define a mapping function qc :
R2 → {low,medium, high} as {[0, 0.5] 7→ low, [0.5, 2] 7→
medium, [2,∞] 7→ high} . To identify the QoS state of
the system EQ, this mapping process is repeated across all
quality dimensions of concern for every element of QF . Once
identified, EQ is provided as input to the Pattern Selector
(Component 2, Figure 3).

C. Pattern Selector

The role of the Pattern Selector is to select the best adap-
tation pattern that can be applied based on the expected QoS
state of the system EQ. It uses reinforcement learning [24],
and in particular, Q-Learning [25], to decide on the adaptation
pattern. The problem of selecting the best adaptation pattern
can be converted into an instance of the well-known “Robot
in the Grid World” problem [26], where the running software
architecture can be considered as a robot that has to navigate
through a grid where each location in the grid corresponds
to a QoS state, and the goal is to keep moving to a position

1We denote the set of all QoS categories across dimensions by QC.

in the grid which enables the architecture to become optimal
with respect to energy and data traffic goals as defined by the
set of QoS goals.

The state space of our Q-Learning algorithm S ⊆ 2QC ×P
is defined over the set of possible QoS states, and the set
of available patterns P = {1 . . .m}. The algorithm also
assumes a set of actions, A = {a1, a2..am} that correspond
to reconfigurations to patterns in P , and a reward function
ρ : S → Z that maps states to an integer reward assigned for
moving into a state via a pattern change action.

The algorithm makes use of a lookup Q-Table matrix that
can be encoded as a function Q : S × A → R, that returns a
real number (Q-Value) for any arbitrary state-action pair (s, a).
This value gives an estimation of how valuable it is to select
the action a from state s.

Pattern selection is presented in Algorithm 1. It takes as
inputs the states, actions, expected QoS state and current
pattern (S, A, EQ and p). Further inputs are reward function
ρ, as well as parameters α and γ where, 0 ≤ α ≤ 1 represents
the learning rate which captures the importance given to the
learned observation at each step, and 0 ≤ γ ≤ 1 represents the
discount factor, which can be considered as the weight given
to the next action.

Algorithm 1 Pattern Selection Algorithm
1: procedure PATTERN-SELECTOR(S,A,EQ,p,ρ,α, γ) .

States, Actions, QoS state, active pattern, learning rate and
discount rate

2: st ← (EQ, p)
3: at ← ap
4: rt ← ρ(st)
5: (st+1, a)← argmax(s,a)∈S×AQ(s, a)
6: Q′(st, at) = (1−α) ·Q(st, at)+α ·(rt+γ ·Q(st+1, a))
7: return a

Before learning begins, Q is initialized to an arbitrary fixed
value. The Expected QoS state, EQ along with the current
execution pattern p, becomes the current state st and the action
corresponding to the pattern p (denoted by ap) is assigned
to the current action at (lines 2 and 3). At each time t the
agent selects an action at, observes a reward rt, enters a
new state st+1(that depends on the selected action – line
5), and Q is updated (line 6). The core of the algorithm is
a simple value iteration update, using the weighted average
of the old value and the new information (controlled by the
α and γ parameters, respectively). The algorithm returns the
action a, which corresponds to the selection of the new pattern.
This action maximizes the Q-value that can be obtained by
performing the different actions available for the next state
st+1 (line 5) ensuring that for every time instant, the best
pattern for adaptation according to Q is selected.

The pattern selected by the algorithm is sent to the Model
checker for verification through the Configuration Generator.



D. Configuration Generator

The Configuration Generator is responsible for creating the
configuration of the selected pattern at run time as required
by the CTMC Model Generator. It uses the definitions of the
patterns from the Pattern Repository along with the run-time
execution data from the Analyze activity and the forecasts on
the expected behaviour of sensors from the Sensor Data Fore-
caster to build the description of the different configurations.

The Pattern Repository contains the static information on
the configuration of each adaptation pattern, which consists of
a set of components involved C, and the set of connectors that
exist between the components, K ⊆ C × C.

Sensor components in C are annotated by properties such
as the idle energy consumption and frequency of data transfers
in different execution modes (for example, during critical
situations such as emergency, sensors might communicate data
more frequently, compared to a normal scenario).

Each connector (c, c′) ∈ K is annotated by properties such
as the energy consumed for sending data from c to c′, energy
consumed by c for processing the data to be sent, and the
energy consumed by c′ for receiving the data from c.

Based on the pattern p selected by the Pattern Selector,
the static configuration of the corresponding pattern is re-
trieved from the pattern repository and annotated with run-
time information about sensor components, which includes
the Sensor Data Forecasts obtained from the Sensor Data
Forecaster component of the Analyze activity (details on how
the forecasts are generated have already been presented in our
previous work [23] and are left out of scope in this work). The
forecast-annotated version of the configuration is then passed
on to the CTMC Model Generator.

E. CTMC Model Generator

The CTMC model generator takes as input the configuration
description obtained from the configuration generator, and
produces a CTMC model analyzable via model checking.
Concretely, the generator takes the specification of the set of
components in the configuration, and for each one of them, it
instantiates a process description using the different patterns
shown in Figure 4. The mapping between component types in
the class of IoT system we describe, and process types used
in the CTMC models is shown in Table I.

TABLE I
COMPONENT-PROCESS TYPE INSTANTIATION FOR PATTERNS

Pattern / Comp. Sensor Database Controller Display
SU Produce-Forward Consume - (in-sensor) Consume
SC Produce Forward Consume Consume
CO Produce Consume Forward Consume

The Produce/Produce-Forward process type captures the
behaviour of sensors, which can be in normal and critical
mode (states N and C, respectively). Each one of the modes
produces and sends sensor data at different rates (λn and
λc) via action msg. Mode changes can be triggered by an
exogenous event mode chg (modeling, e.g., a variation in

rate of cars entering a parking lot). In the SU pattern, this
process type includes the additional states and transitions
required to forward data received from other sensors (shown in
dashed lines in Figure 4). In each one of the modes, the process
can receive a message from any component it is connected
to in the configuration (brackets denote multiple transitions),
going into the states (N’,C’), from which the message can
be forwarded immediately (λi is a constant that denotes an
instantaneous transition rate). Transitions that do not show a
rate have a default value of 1, meaning that they are only
triggered via synchronization on the events they are labeled
with. Concerning reward structures, sending and receiving
messages from node i accrues an energy cost of eis and eir
units in reward structure energy, respectively, and 1 message
for traffic in reward structure messages.

1 e
i

r
[msg]

N C

λcλn

11 e
i

s
e
i

s

mode chg

N’

[msg]

e
i

r

λi

1
C’

[msg]

e
i

r

λi

1

mode chg

msg msg
e
i

s

1

msg msg

S

S’

[msg]λi

1

e
i

r

1

e
i

s

[msg]

Produce/Produce-Forward

Consume Forward

Fig. 4. CTMC process types for IoT nodes

The Consume process type is used to capture data sink
nodes in the system (e.g., displays, the database in the CO
and SU patterns). It just receives messages from any node in
the network it is connected to, consuming energy eir.

Finally, the Forward process type captures the behaviour of
intermediate nodes in the network, which can receive messages
from multiple nodes, and forward them to other nodes (e.g.,
controller in the CO pattern, database in the SC pattern).

The overall CTMC model results from the standard CSP
parallel composition of all the processes instantiated, which
synchronize on shared labels generated from the connections
included in the configuration description.

F. Model Checker

The model checking component takes as input the CTMC
model produced by the CTMC model generator, and is able to
quantify the expected amount of energy consumed, as well the
overall number of messages exchanged in the system for the



TABLE II
CSL PROPERTIES FOR MODEL CHECKING

Name CSL Formula Description
φe Renergy

=? [C<=H] Efficiency: overall energy units con-
sumed during H time units.

φt Rmessages
=? [C<=H] Traffic: overall number of messages

exchanged during H time units.

time frame of the lookup horizon H . Quantification of each
one of these properties is achieved via model checking of the
CSL properties shown in Table II, for which the component
uses PRISM’s model checking engine.

G. Decision Generator

The Decision Generator is responsible for deciding the fea-
sibility of the decision produced by the Pattern Selector based
on the results of the analysis obtained from the Model Checker.
The output from the model checker consists of the expected
energy consumption and data traffic of the system while using
the selected pattern. The decision generator verifies if these
values are within the thresholds specified in QoS goals. If
the expected energy consumption is less than the threshold,
eh as defined in QoS goal ge and the expected data traffic
is within the thresholds as defined in QoS goal gd, then the
decision is considered as a feasible (valid) one, and a positive
feedback in the form of a reward, rm > 0 is fed sent to
the Pattern Selector. Otherwise, the decision is considered as
infeasible (invalid), and a negative feedback in the form of
penalty pm < 0 is sent back to the Pattern Selector, along
with the request of a different pattern.

Hence, for every decision made by the Pattern Selector,
a verification step is performed by the Model Checker, im-
proving the chances that only adaptations that are feasible
are executed. Given an adaptation scenario, this combination
provides multiple advantages: (i) it helps the system to select
decisions based on past feedback obtained from the model
checker as well as from the previous forecasts, (ii) it ensures
that, even if RL generates a bad decision, it does not affect the
system execution due to the involvement of the model checker,
and (iii) it ensures that the model checker does not have to
perform exploration of a broader solution space, because it just
has to analyze system behaviour under the selected pattern.

VI. IMPLEMENTATION OVERVIEW

We implemented our approach using a traditional layered
architecture with an enterprise-grade big data stack. We used
a customized version of CupCarbon [27], [28] for realizing
the architecture of the NdR case study and its corresponding
simulations. Concretely, we modified CupCarbon to support
dynamic pattern changes based on the decisions produced.

For generating the forecast models, we employed Python,
along with the deep learning library Keras [34]. The Pattern
Selector implementing Q-Learning was written in Python. The
Model Checker component is written in Java and makes use of
the PRISM model checker [56] API. The integration between

the Decision Maker and the Model Checker was done using
JPype [32]. Additionally, a web service implemented in Python
using the Tornado framework [33] is used for communicating
the pattern change to CupCarbon. The communication between
CupCarbon and the different MAPE-K activities is powered by
Apache Kafka [31].

VII. EXPERIMENTATION AND RESULTS

The objective of our evaluation is to assess the effectiveness
and efficiency of the approach by answering:

RQ1. How effective is the approach with respect to satisfying
overall energy and data traffic goals?
RQ2. How much does using model checking along with ML
improve satisfaction of goals over the use of just ML?
RQ3. What is the efficiency of adaptations?
RQ4. What is the computation overhead of adaptation?

In the remainder of this section, we first describe our
experimental setup, as well as the data and metrics used for
the evaluation of the approach, following with a discussion of
the evaluation questions informed by our results.

A. Experimental Setup

Our testbed was deployed on two VM instances in Google
Cloud. The first one run on a N1-Standard-4 CPU Intel
Skylake Processor comprising 4 vCPU with 16 GB RAM.
This instance was used for running the CupCarbon simulation
and the producers for sending the QoS metrics and Sensor data
to the Kafka broker. The second one runs on a N1-Standard-8
CPU with Intel Skylake Processor comprising 8 vCPU with
32 GB RAM. This was used for running the Kafka broker and
the MAPE activities of our approach.

To simulate the real scenario of the case study with as much
fidelity as possible, we created a script that generates data for
each of the sensor components using intervals of 60 seconds
with arrival rates based on a Poisson distribution for a period
of 24 hours. The mean values of the distribution were selected
based on observations from real NdR scenarios.

We evaluated the approach by performing the simulation of
the case study using six different approaches for a period of
24 hours. Three of the approaches consisted of simulating the
case study, fixing each of the patterns (SU, SC and CO). The
other three approaches are as follows:

1. RL: Adaptation using just reinforcement learning (Q-
Learning) as described in Section V.
2. MC: Approach which performs adaptation just based on
model checking, but without using Q-Learning. For every
decision period, it performs model checking to identify the
best pattern by finding which pattern gives the maximum
benefit for the thresholds specified.
3. RLMC: Our approach, which performs adaptation combin-
ing Q-Learning and model checking.

Considering the operational constraints we have from the
case study, we defined the set of QoS goals, QG =
{(energy, (10.0, 6.0)), (traffic, (2500, 3000))}, with energy



TABLE III
ENERGY CONSUMPTION AND DATA TRAFFIC COMPARISON (#DV : NUMBER OF DATA TRAFFIC VIOLATIONS, #EV : NUMBER OF ENERGY VIOLATIONS)

Approach Energy (Joules) Data Traffic (# messages) Utility Score # Max DV # Min DV # EV
CO 752.43 437885 186.89 90 0 0
SU 1995.85 382896 61.11 5 20 143
SC 1498.57 398393 158.11 14 8 104

RLMC 851.35 400239 355.24 17 6 2
MC 1246.43 407107 218.43 26 3 25
RL 1051.38 398294 272.98 18 7 8

measured in Joules and traffic in # of messages exchanged. We
consider a horizon H = 600 seconds and τ = 60 seconds. We
use a learning rate α = 0.02 and discount factor γ = 0.2
for performing the Q-Learning. The complete implementation
along with the source code, datasets and ML models used for
forecasts can be found here.2

B. Evaluation Metrics

To measure the effectiveness of the approach, we introduce
four evaluation metrics: (i) Max and Min DV, which capture
the number of violations of maximum (dh) and minimum (dl)
data traffic thresholds as defined in gd (c.f. Example I), (ii) EV,
capturing the number of violations of the maximum energy
threshold (eh) as defined in ge, and (iii) Utility Score (U)
as defined in Section II, using normalized values for energy
consumed eτ and data traffic dτ for every τ -period. We set
we = 2, wd = 5, pev = 0.3, and pdv = 0.5. We assign a
slightly higher weight to the traffic term (and also higher value
to its penalty) because, although saving energy is a priority,
we do not want to do it at the expense of a system that does
not operate with the required accuracy.

C. Results

RQ1. How effective is the approach with respect to satisfying
overall energy and data traffic goals?

To measure effectiveness, we calculate the total energy
and data traffic consumed during simulation by each of the
approaches. The aggregated results for our evaluation metrics
are reported in Table III. The table shows that CO consumes
the least energy, but at the same time, it maximizes data traffic.
This is due to the semi-decentralized nature of the pattern
which results in an increased amount of exchanged messages,
resulting from the presence of extra controller components in
the architecture. SU is the pattern that presents the lowest
traffic volume, although to a level that is detrimental to
maintain service accuracy (presents more than double Min
DV count, compared to other approaches). SU is also the
least energy-efficient. In contrast, SC is more energy-efficient
than SU, but presents a higher data traffic volume with a high
count of Max DV. This is due to the fact that every decision
has to be taken by the centralized controller and hence the
sensors need to send information to the database at a faster rate
compared to SU, where sensors are equipped with decision
making abilities. MC consumes less energy than SU and SC,

2https://github.com/karthikv1392/IoT RLMC/

Fig. 5. A bar plot of the different approaches and their respective normalized
energy and traffic consumption along with overall utility scores

also with lower traffic than CO. It offers better utility compared
to fixed patterns because it can choose what is determined to
be more adequate for different decision episodes. However, RL
offers much better Utility and consumes less energy with lower
traffic compared to MC. This can be attributed to the ability of
RL to learn from feedback over time. Furthermore, RLMC is
the most energy-efficient, compared to RL and MC and only
at a slightly higher traffic volume than RL. This yields an
increment in utility of 39% and 63% with respect to RL and
MC, respectively. This clearly shows the remarkable impact
that QV has on RL for decision making. The normalized values
of energy, traffic and utility are shown in 5. RLMC scores
the highest utility, being second to CO in energy efficiency.
Although RL has lower data traffic than RLMC, the ratio of
energy saved/traffic saved for RLMC (0.78/0.62 = 1.26) is
higher than that of RL (0.62/0.75 = 0.83).

RQ2. How much does using model checking along with ML
improve satisfaction of goals over the use of just ML?

To answer this question, we compare the cumulative utility
score of all approaches (Figure 6). The plot shows how accrued
utility starts diverging marginally during the initial stage, but
then the gap between RL/RLMC and other approaches keeps
on increasing. MC still offers better performance compared to
each of the fixed patterns because it selects what it expects
to give the best utility at the start of every decision period.



However, it does not have a way to improve the decision in
the next iteration based on the feedback of the past decision. In
contrast, both RL and RLMC have the advantage of feedback
which allows them to progressively improve their decisions.
Unlike in RLMC, the feedback in RL is obtained only after
execution of the selected adaptation, which might end up being
sub-optimal. The effect of these sub-optimal decisions can be
clearly observed in the graph, where RLMC offers initially an
increment of just 1% in utility over RL, but as time progresses,
this value increases up to 39% over a span of 24 hours.

Fig. 6. Cumulative Utility scores for each of the approaches

RQ3. What is the efficiency of adaptations?

We evaluate adaptation efficiency in terms of the number of
corrections made by the model checker during each decision
period. A scatter plot showing the number of corrections made
per interval can be seen in Figure 7. The figure shows that
in between intervals, there is an increase in the number of
corrections, which goes as high as 6. At the start of simulation,
correction count is high for the first two adaptation cycles (due
to the time required for initial learning). Then, we can observe
that the number of corrections made remains 0 until 160
minutes. This again increases and RLMC is able to continue
without many corrections for some time until the next peak.
The next peak is given when MC identifies that a decision at
a given point is not feasible based on the expected context
(behaviour/mode changes of sensors).

This behaviour illustrates the ability of RLMC to learn and
improve from the results obtained by the model checker, as
well as from the feedback obtained from ML forecasts. On
average, the number of corrections amounts to 1, but there
are instances where it is 0 and few instances where it is as
high as 6 where RL is forced to generate decisions, incurring
high penalties (negative rewards) and additional computation
overhead. It is due to this effect that even with such a high
increment in the number of corrections, RLMC is still able
to continue operating for some time without need for new
corrections. This indicates that RLMC is very efficient with

respect to the number of corrections performed by the model
checker.

Fig. 7. Number of corrections performed by MC per adaptation

RQ4. What is the computation overhead of adaptation?

To evaluate adaptation efficiency in terms of computation
overhead, we clocked the time required to generate adaptation
decisions. The results show that on average, RLMC takes
approximately 2 seconds for generating an adaptation decision.
From that time, the fraction employed by RL amounts to
approximately 0.23 seconds because it consists of simple look
up operations and state update. Each correction operation from
model checker takes close to 1 second. Despite the overhead
introduced by the model checker, the observed decision times
are reasonable in the context of the class of IoT application
described, showing feasibility of RLMC.

VIII. THREATS TO VALIDITY

Threats to construct validity concerns the decisions made
due to incorrect forecasts which could arise from the Analyze
activity. It might happen that the model forecasts a high energy
consumption whereas the system would not have entered such
a state and this leads to lower utility score. We understand this
issue and since the same prediction model and sensor data sets
are used for the evaluation for all the three approaches, this
does not over-weights or under-weights the overall utility score
of any approach.

Threats to external validity concerns the generalizability
and scalability of our approach. Although our approach has
been applied on a specific case study, it uses techniques that
can be generalized to other classes of IoT system with simi-
lar concerns (energy consumption, performance, availability).
Moreover, we believe that our approach can be applied to
more complex systems with larger number of components with
optimization of reinforcement learning and model checking
components (e.g., using statistical model checking to improve
scalability). In addition, the layered architecture used for im-
plementation supports both horizontal and vertical scalability.



IX. RELATED WORK

Self-adaptation in IoT/CPS: Weyns et al. in [35] propose
an approach for managing run-time uncertainities associated
with over-provisioning of resources in IoT systems. Fahad
et al. [36] propose the notion of emergent configuration for
engineering self-adaptive goal-oriented IoT systems. Model
Driven Engineering (MDE) based approaches [37]–[39] use
the concept of models@run.time and MAPE-K loops for
adaptation. Nascimento et al. [40] propose an agent-based
framework for performing self-adaptation for IoT applications.
These approaches perform adaptations reactively and they do
not acquire knowledge from the performed adaptations.

ML in self-adaptation: Some works that use ML to sup-
port self-adaptation in other domains include planning and
adaptation in software systems [44], [45] where RL is used
to identify the best adaptation strategy in a reactive manner
and without any guarantees about the correctness of decisions.
Anaya et al. [46] describe an approach for self-adaptive sensor
networks that uses ML to predict the need for adaptation based
on a forecast horizon. Idziak et al. [47] present an analysis of
different decision-making techniques in self-adaptive systems,
where reactive adaptations were carried out for a simple VM
replacement problem using different learning algorithms. Chen
et al. [48] present a multi-learner approach for self-adaptive
and online QoS modeling for cloud-based software services
where ML is used to predict the need for adaptation. A
self-adaptive mechanism based on reinforcement learning for
adaptation in autonomous systems was proposed by Mallozzi
et al. [49], where RL is used reactively.

ML and QV in self-adaptation: There have been some works
that use ML and QV for performing self-adaptation. Jamshidi
et al. [41] describe an approach that uses ML to find a set of
Pareto-optimal configurations in a large configuration space
which are then used to identify the best adaptation plan using
probabilistic model checking in autonomous mobile robots.
Van Der Donckt et al. [42] also employ ML to identify a
subset of adaptation options from a larger adaptation space
and further select the best option using using cost-benefit
based analysis. An approach that enhances traditional MAPE-
K loop to support the use of ML for efficiently analyzing large
adaptation spaces was presented by Quin et al. [43] where ML
was shown to be effective in analyzing large adaptation space
to identify the best solution candidates and further select the
best decision using statistical model checking. However, these
are reactive approaches where ML is used to aid QV and not
the other way around. Also ML does not receive feedback to
improve its decision making based on results of QV.

There has also been some work done in proactive adap-
tation. Moreno et al. employ time series forecasts combined
with probabilistic model checking [50] and stochastic dynamic
programming [51], [52] to perform proactive latency-aware
adaptations based on a look-ahead horizon considering the
uncertainty that may arise from the environment. Another
approach, also based on principles of model predictive con-
trol with analytical models that capture the relation between

control parameters and system outputs was proposed by An-
gelopoulos et al. [53]. In their approach, models are used
to predict system behaviour and compose adaptation plans.
While Moreno’s approach [50]–[52] does not make use of
feedback from performed adaptations to continually improve
decision making, Angelopoulos’ [53] does, although it focuses
on parameter value tuning as control actions instead of the
complex structural changes present in (IoT) architectures.

Our approach uses a combination of ML and QV for proac-
tive decision making and, unlike all the existing approaches
mentioned above, it employs QV as a means to verify the
feasibility of decisions produced by ML with respect to the
system context. It further uses the feedback of the verification
to help ML achieve faster convergence towards closer-to-
optimal decisions. Works that combine ML and QV employ
ML as an aid for reducing the decision space for QV.

X. CONCLUSIONS AND FUTURE WORK

This paper shows how ML and QV can be combined
to architect self-adaptive IoT systems able to optimize the
guarantees of satisfying acceptable QoS levels with respect
to energy consumption and network traffic. Our evaluation
shows that the approach exhibits a remarkable improvement
(39% and 63%) over the use of ML and QV in isolation.
Although the use of QV adds computational overhead with
respect to using just ML, our results also show feasibility
of the approach, which is able to produce decisions within
a reasonable timescale for IoT applications.

With respect to future work, a first research avenue that we
plan to explore is scalability. This will entail considering more
QoS parameters and patterns, extending and validating the ap-
proach for performing adaptation by identifying more patterns
and factoring into decision making additional QoS parameters
like response time, utilization, and throughput, as well as their
trade offs. A second extension of our approach concerns con-
sidering finer-grained topological changes, instead of the more
general, coarse-grained patterns that we are currently using.
This will enable us to explore a much richer solution space,
in which systems exhibit hybrid topologies with respect to the
patterns considered (e.g., a part of the system may be config-
ured as Synthesize-Utilize, whereas another part operates in
a Synthesize-Command style), potentially leading to closer-
to-optimal solutions with respect to the existing approach.
Finally, our approach currently assumes that forecasts can be
produced with acceptable accuracy. We plan on assessing the
robustness of our approach with respect to uncertainties that
affect the accuracy of the forecasts employed for decision
making, studying how the quality of the decisions degrade
with higher levels of uncertainty, and devising extensions to
mitigate the degradation of decision quality.

ACKNOWLEDGMENT

This material is based on work supported by Google Cloud.



REFERENCES

[1] A. Taivalsaari and T. Mikkonen. A roadmap to the programmable world:
Software challenges in the iot era. IEEE Software, 34(1):72–80, Jan
2017. ISSN 0740-7459.

[2] Gartner, (2017).[online] Available at: https://tinyurl.com/hd8b9l8 [Ac-
cessed 5 Feb. 2020].

[3] Metzger, Andreas, Osama Sammodi, and Klaus Pohl. ”Accurate proac-
tive adaptation of service-oriented systems.” In Assurances for Self-
Adaptive Systems, pp. 240-265. Springer, Berlin, Heidelberg, 2013.

[4] Hammoudi, Sarra, Zibouda Aliouat, and Saad Harous. ”Challenges and
research directions for Internet of Things.” Telecommunication Systems
67, no. 2 (2018): 367-385.

[5] Hassan, Zozo & Ali, Hesham & M Badawy, Mahmoud. (2015). Internet
of Things (IoT): Definitions, Challenges, and Recent Research Direc-
tions. International Journal of Computer Applications. 128. 975-8887.

[6] Gubbi, Jayavardhana, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. ”Internet of Things (IoT): A vision, architectural elements,
and future directions.” Future generation computer systems 29, no. 7
(2013): 1645-1660.

[7] Alreshidi, Abdulrahman, and Aakash Ahmad. ”Architecting Software for
the Internet of Thing Based Systems.” Future Internet 11, no. 7 (2019):
153.

[8] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Land-
scape and research challenges. ACM Trans. Auton. Adapt. Syst.,
4(2):14:1-14:42, May 2009. ISSN 1556-4665.

[9] Danny Weyns. Software engineering of self-adaptive systems: an or-
ganised tour and future challenges. Chapter in Handbook of Software
Engineering, 2017

[10] Krupitzer, Christian, Felix Maximilian Roth, Sebastian VanSyckel, Gre-
gor Schiele, and Christian Becker. ”A survey on engineering approaches
for self-adaptive systems.” Pervasive and Mobile Computing 17 (2015):
184-206.

[11] Atzori, Luigi, Antonio Iera, and Giacomo Morabito. ”The internet of
things: A survey.” Computer networks 54, no. 15 (2010): 2787-2805.

[12] Esfahani, Naeem, and Sam Malek. ”Uncertainty in self-adaptive software
systems.” In Software Engineering for Self-Adaptive Systems II, pp.
214-238. Springer, Berlin, Heidelberg, 2013.

[13] Hochreiter, Sepp, and Jürgen Schmidhuber. ”Long short-term memory.”
Neural computation 9, no. 8 (1997): 1735-1780.

[14] Musil, Angelika, Juergen Musil, Danny Weyns, Tomas Bures, Henry
Muccini, and Mohammad Sharaf. ”Patterns for self-adaptation in cyber-
physical systems.” In Multi-disciplinary engineering for cyber-physical
production systems, pp. 331-368. Springer, Cham, 2017.

[15] Nature.com. (2020). Bias detectives: the researchers
striving to make algorithms fair. [online] Available at:
https://www.nature.com/articles/d41586-018-05469-3 [Accessed 5
Feb. 2020].

[16] Mehrabi, Ninareh, Fred Morstatter, Nripsuta Saxena, Kristina Lerman,
and Aram Galstyan. ”A survey on bias and fairness in machine learning.”
arXiv preprint arXiv:1908.09635 (2019).

[17] Jabbari, Shahin, Matthew Joseph, Michael Kearns, Jamie Morgenstern,
and Aaron Roth. ”Fairness in reinforcement learning.” In Proceedings
of the 34th International Conference on Machine Learning-Volume 70,
pp. 1617-1626. JMLR. org, 2017.

[18] Kephart, J. O., Chess, D. M. (2003). The vision of autonomic computing.
Computer, (1), 41-50.

[19] Warrier, Maya M., and Ajay Kumar. ”Energy efficient routing in
Wireless Sensor Networks: A survey.” In 2016 International Confer-
ence on Wireless Communications, Signal Processing and Networking
(WiSPNET), pp. 1987-1992. IEEE, 2016.

[20] Andrae, Anders & Edler, Tomas. (2015). On Global Electricity Usage
of Communication Technology: Trends to 2030. Challenges. 6. 117-157.
10.3390/challe6010117.

[21] Malmodin, Jens, and Dag Lundén. ”The energy and carbon footprint of
the global ICT and E&M sectors 2010–2015.” Sustainability 10, no. 9
(2018): 3027.

[22] Stack, T. (2020). Internet of Things (IoT) Data Continues to Explode
Exponentially. Who Is Using That Data and How? - Cisco Blogs.
[online] Cisco Blogs. Available at: http://tinyurl.com/y6bf2cgj [Accessed
5 Feb. 2020].

[23] Henry Muccini and Karthik Vaidhyanathan, ”Leveraging Machine
Learning Techniques for Autonomous Decision Making in Adaptive
Architectures”, DISIM, University of L’Aquila, L’Aquila, Italy, TRCS:

001/2019, Jul. 16, 2019. Accessed on: Feb. 14, 2020. [Online]. Avail-
able: https://tinyurl.com/y445f45k

[24] Sutton, Richard S., and Andrew G. Barto. Introduction to reinforcement
learning. Vol. 135. Cambridge: MIT press, 1998.

[25] Watkins, Christopher JCH, and Peter Dayan. ”Q-learning.” Machine
learning 8, no. 3-4 (1992): 279-292.

[26] Tokic, Michel, and Haitham Bou Ammar. ”Teaching reinforcement
learning using a physical robot.” In Proceedings of the ICML Workshop
on Teaching Machine Learning. 2012.

[27] Bounceur, Ahcène. ”CupCarbon: a new platform for designing and
simulating smart-city and IoT wireless sensor networks (SCI-WSN).”
In Proceedings of the International Conference on Internet of things
and Cloud Computing, p. 1. ACM, 2016

[28] Cupcarbon.com. (2020). CupCarbon - A Smart City IoT WSN Simula-
tor. [online] Available at: http://www.cupcarbon.com [Accessed 5 Feb.
2020].

[29] Chernyshev, Maxim, Zubair Baig, Oladayo Bello, and Sherali Zeadally.
”Internet of Things (IoT): research, simulators, and testbeds.” IEEE
Internet of Things Journal 5, no. 3 (2018): 1637-1647.

[30] Lopez-Pavon, Cristina & Sendra, Sandra & F. Valenzuela-Valdes,
Juan. (2018). Evaluation of CupCarbon Network Simulator for
Wireless Sensor Networks. Network Protocols and Algorithms. 10.
10.5296/npa.v10i2.13201.

[31] Kreps, Jay, Neha Narkhede, and Jun Rao. ”Kafka: A distributed mes-
saging system for log processing.” In Proceedings of the NetDB, pp.
1-7. 2011.

[32] Jpype.readthedocs.io. (2020). JPype documentation — JPype 0.7.1 doc-
umentation. [online] Available at: https://jpype.readthedocs.io/en/latest/
[Accessed 5 Feb. 2020].

[33] Tornadoweb.org. (2020). Tornado Web Server — Tornado 6.0.3 docu-
mentation. [online] Available at: https://www.tornadoweb.org/en/stable/
[Accessed 5 Feb. 2020].

[34] Keras.io. (2020). Home - Keras Documentation. [online] Available at:
https://keras.io [Accessed 5 Feb. 2020].

[35] Weyns, Danny, Gowri Sankar Ramachandran, and Ritesh Kumar Singh.
”Self-managing internet of things.” In International Conference on Cur-
rent Trends in Theory and Practice of Informatics, pp. 67-84. Edizioni
della Normale, Cham, 2018.

[36] Alkhabbas, Fahed & Spalazzese, Romina & Davidsson, Paul. (2018).
ECo-IoT: An Architectural Approach for Realizing Emergent Configu-
rations in the Internet of Things. 86-102.

[37] Mirko D’Angelo, Annalisa Napolitano, and Mauro Caporuscio. Cyphef:
a model drivenp engineering framework for self-adaptive cyber-physical
systems. In Proceedings of the 40th International Conference on Soft-
ware Engineering: Companion Proceeedings, pages 101-104. ACM,
2018.

[38] Acosta Padilla, Francisco Javier. ”Self-adaptation for Internet of things
applications.” PhD diss., Rennes 1, 2016.

[39] Federico Ciccozzi and Romina Spalazzese. Mde4iot: supporting the
internet of things with model-driven engineering. In International Sym-
posium on Intelligent and Distributed Computing, pages 67-76. Springer,
2016.

[40] do Nascimento Nathalia Moraes, and Carlos José Pereira de Lucena.
”FIoT: An agent-based framework for self-adaptive and self-organizing
applications based on the Internet of Things.” Information Sciences 378
(2017): 161-176.

[41] Pooyan Jamshidi, Javier Cámara, Bradley Schmerl, Christian Kästner,
and David Garlan. 2019. Machine learning meets quantitative planning:
enabling self-adaptation in autonomous robots. In Proceedings of the
14th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS ’19). IEEE Press, Piscataway, NJ,
USA, 39-50.

[42] Van Der Donckt, J., Weyns, D., Iftikhar, M. U., & Buttar, S. S. (2018,
March). Effective Decision Making in Self-adaptive Systems Using
Cost-Benefit Analysis at Runtime and Online Learning of Adaptation
Spaces. In International Conference on Evaluation of Novel Approaches
to Software Engineering (pp. 373-403). Springer, Cham.

[43] Quin, Federico, Thomas Bamelis, Singh Buttar Sarpreet, and Sam
Michiels. ”Efficient analysis of large adaptation spaces in self-adaptive
systems using machine learning.” In 2019 IEEE/ACM 14th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pp. 1-12. IEEE, 2019.



[44] Kim, Dongsun, and Sooyong Park. ”Reinforcement learning-based dy-
namic adaptation planning method for architecture-based self-managed
software.” In Software Engineering for Adaptive and Self-Managing
Systems, 2009. SEAMS’09. ICSE Workshop on, pp. 76-85. IEEE, 2009.

[45] Han Nguyen Ho and Eunseok Lee. Model-based reinforcement learning
approach for planning in self-adaptive software system. In Proceedings
of the 9th International Conference on Ubiquitous Information Manage-
ment and Communication, page 103. ACM, 2015.

[46] Anaya, Ivan Dario Paez, Viliam Simko, Johann Bourcier, Noël Plouzeau,
and Jean-Marc Jézéquel. ”A prediction-driven adaptation approach for
self-adaptive sensor networks.” In Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pp. 145-154. ACM, 2014.

[47] Pawel Idziak and Siobhan Clarke. An analysis of decision-making
techniques in dynamic, self-adaptive systems. In Self-Adaptive and
Self-Organizing Systems Work- shops (SASOW), 2014 IEEE Eighth
International Conference on, pages 137-143. IEEE, 2014.

[48] Tao Chen and Rami Bahsoon. Self-adaptive and online qos modeling
for cloud-based software services. IEEE Transactions on Software
Engineering, 43(5):453-475, 2017.

[49] Piergiuseppe Mallozzi. Combining machine-learning with invariants
assurance techniques for autonomous systems. In Proceedings of the
39th International Conference on Software Engineering Companion,
pages 485-486. IEEE Press, 2017.

[50] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl.
2015. Proactive self-adaptation under uncertainty: a probabilistic model

checking approach. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). ACM, New
York, NY, USA, 1-12.

[51] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl.
2016. Efficient Decision-Making under Uncertainty for Proactive Self-
Adaptation. In Proceedings of the 2016 IEEE International Conference
on Autonomic Computing (ICAC 2016). IEEE Computer Society. 147-
156. 2016.

[52] Gabriel A. Moreno, Javier Cámara, David Garlan, Bradley R. Schmerl.
Flexible and Efficient Decision-Making for Proactive Latency-Aware
Self-Adaptation. ACM Transactions on Autonomous and Adaptive Sys-
tems 13(1): 3:1-3:36. ACM. 2018.

[53] Konstantinos Angelopoulos, Alessandro V. Papadopoulos, Vı́tor E. Silva
Souza, and John Mylopoulos. 2016. Model predictive control for soft-
ware systems with CobRA. In Proceedings of the 11th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS ’16). ACM, New York, NY, USA, 35-46.

[54] Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking.
In: FM for Performance Evaluation, 7th Int. School on Formal Methods
for the Design of Computer, Communication, and Software Systems.
LNCS, vol. 4486. Springer (2007)

[55] E. Camacho and C. Bordons, Model Predictive Control, ser. Advanced
Textbooks in Control and Signal Processing. Springer London, 2004.

[56] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In Computer Aided Verification,
volume 6806 of LNCS. Springer, 2011.


