
Behavioural Self-Adaptation of Services in Ubiquitous Computing Environments

Javier Cámara, Carlos Canal, Gwen Salaün
Department of Computer Science, University of Málaga, Spain

{jcamara,canal,salaun}@lcc.uma.es

Abstract

Self-adaptive software systems are those able to man-
age changing operating conditions dynamically and au-
tonomously. Currently, most proposals in this field rely on
an explicit representation of the constituent elements and
goals of the system. This approach is suitable for sys-
tems where constituent elements are well known at design
time. However, in systems where new elements may dy-
namically enter or leave the execution environment, it is
not possible to obtain a predefined description of the sys-
tem’s architecture nor a complete specification of its goals.
Paradigmatic examples of such systems can be found in
ubiquitous computing, or dynamic web service discovery
and composition, where new adaptability problems arise,
such as the (dis)connection of unforeseen elements to an al-
ready running system, or ensuring properties of the compo-
sition among services, which cannot be addressed at static
verification time since the state space of the system is not
closed anymore. In this paper, we present our approach
for the composition and resolution of interface mismatch
among services in ubiquitous computing environments, dy-
namically reconfiguring the system as new services are in-
tegrated or disconnected.

1 Introduction

The proliferation of software services1 and ubiquituous
computing, as well as other factors, such as the increasing
need of communicating systems spanning across organiza-
tional and physical boundaries, are shaping a world where
the flow of information and connectivity between previ-
ously unacquainted systems and devices tends to be nec-
essary in many situations. In particular, the need to dis-
cover and correctly access services as users move from one
location to another and the conditions of the environment

1We will use service as a general term in the remainder of this article,
standing for any kind of software entity (software component, Web service,
agent, etc.)

change, is a crucial requirement in the design and imple-
mentation of ubiquitous computing environments.

However, in most cases software services are not de-
signed to interoperate with each other, since the different
scenarios in which services may be reused cannot be envi-
sioned a priori by their designers. This results in the appear-
ance of mismatch situations among the public interfaces of
services when we try to compose them. Specifically, four
interoperability levels can be distinguished in Interface De-
scription Languages (IDLs):

• Signature. Deals with the static aspects of service in-
teroperability. At this level, IDLs (e.g., public inter-
faces of Java classes, or WSDL descriptions in the case
of Web Services) provide operation names, type of ar-
guments and return values. Interoperability problems
at this level are for instance operation renaming or pa-
rameter reordering between provided and required op-
erations on the different interfaces.

• Protocol or behaviour. Specifies the order in which the
operations available on an interface should be invoked
(i.e., the interactive behaviour that a service follows
and expects from its environment). Problems at the
protocol level involve bad ordering on the execution
of operations because of differences in the behaviour
of the services involved, which may lead to undersir-
able situations, such as deadlocks or infinite loops. Be-
havioural descriptions are always required for stateful
services since, unlike in stateless services where an op-
eration is available for invocation anytime, operation
availability depends on the internal state of the service
(described by its behavioural interface). Notorious ex-
amples of behavioural IDLs are Abstract BPEL, Win-
dows Workflows (WF), or WS-CDL, used to describe
Web Service orchestrations and choreographies.

• Service. Description of non-functional properties like
temporal requirements, security, cost, etc. Quality of
Service (QoS) descriptions and their related notations,
such as the QoS Modeling Language (QLM), are usu-
ally highly customizable, and the possible specifica-
tions include mean values, standard deviations and a

set of quantiles characterizing the distribution of any
self-defined quality metric.

• Semantic. This level concerns service functional spec-
ifications (i.e. what they actually do). Even if services
present perfectly matching signatures, follow compat-
ible protocols, and are also compatible at the service
level, we must ensure that they are going to behave
as expected. Hence, this level of description provides
semantic information about services using ontology-
based notations such as OWL-S (used in Web Ser-
vices), which are interesting for service mining.

Software Adaptation [11, 37] is a hot topic in Soft-
ware Engineering, since it is the only way to compose
non-intrusively black-box services with mismatching inter-
faces by automatically generating mediating adaptor ser-
vices able to solve interoperability problems at the afore-
mentioned four levels.

This work addresses the problem of service adaptation in
software systems where changes in the execution environ-
ment are directly subject to the availability of a particular
service which may join (be discovered) or disappear from
the context of the system in any given moment. Paradig-
matic examples of such systems can be found in ubiquitous
computing environments, or dynamic web service discov-
ery and composition. Particularly, we focus on the pro-
tocol or behavioural level, currently acknowledged as one
of the most relevant research directions in software adapta-
tion [2, 3, 4, 6, 27, 37].

In order to illustrate our approach, we will use a run-
ning example which consists of a set of services described
in the context of an airport: Let us suppose a traveller who
walks into an airport with a handheld device (e.g., a PDA)
equipped with a client containing a task specification based
on the different services which may be required while at
the airport. These services may be accessed through a lo-
cal wireless network. First, the user needs to contact his
airline and check-in in order to obtain a seat on the flight.
This is achieved by approaching a kiosk which provides a
local check-in service available to the handheld device and
prints a boarding card for the passenger. Next, the traveller
may browse the duty-free shops located at the airport, and
locally search for the different offers from any of them. The
selected shop should be able to access the airport informa-
tion system in order to check if a passenger has checked-in
on a particular flight, and apply a tax exemption on the sale
in that case. The payment will be completed by means of
the credit and bank account information stored in the trav-
eller’s device, not requiring the use of a physical credit card.
All these interactions must be accomplished without human
intervention to solve interoperability problems.

This paper presents our approach for the composition
and resolution of potential interoperability issues among

services, as those presented above. Specifically, this work
addresses two important problems:

Lack of a predefined architectural description. Although
self-adaptive software systems are able to autonomously
manage changing operating conditions and derive architec-
tural descriptions from a set of system goals, most propos-
als currently rely on an explicit representation of the ele-
ments and goals of the system. These proposals are suitable
for systems where constituent elements are well known at
design time (e.g., industrial control systems, robotics, un-
manned vehicles, etc.), normally due to their close depen-
dency on hardware parts. However, the constituent ele-
ments of a system in ubiquitous computing environments
are known only at run-time, and the relations among them
are volatile, changing constantly.

Verification of behavioural properties at run-time. En-
suring properties of the composition among services in
ubiquitous environments is not possible at static verification
time since the state space of the system is not closed.

In order to address these two problems, this paper con-
tributes: (i) a new service interface model, which enables
the derivation of an architectural description and dynamic
reconfiguration of the system whenever services are discov-
ered or disappear from the execution environment, and (ii)
an extended version of the run-time composition and adap-
tation engine presented in [10], to work with the new model.
Most of the aforementioned approaches in software adapta-
tion build adaptors for the whole system, which is a costly
process. Adaptor generation relies on the specific number
of services involved in the system, and the adaptor has to
be recomputed each time a new entity is taken into account.
Therefore, these static approaches are not suitable in our
problem context. Our run-time composition engine enables
service adaptation without the need of generating adaptors,
and has been extended in this work to ensure user-defined
properties of the composition among services.

The rest of this paper is structured as follows. Section 2
presents our service model. Then, Section 3 describes how
to achieve self-adaptation of service-based systems based
on our model, including analysis of stable state reachabil-
ity and a description of the run-time execution platform re-
quired. Next, Section 4 describes how temporal formulas
can be used to enforce specific constraints in the composi-
tion of services. Finally, Section 5 compares our approach
with the related work in the field, and Section 6 recalls the
contributions of this paper and draws up its conclusions.

2 Model of Services

We propose a service interface model which includes
both a signature, and a behavioural interface.

Signature. Set of required and provided operations signa-
tures.

Definition 1 (Operation Signature) An Operation Signa-
ture is the name of an operation, together with its arguments
and return types.

Behavioural Interface. Consists of: (i) a protocol descrip-
tion (STS); (ii) a set of generic correspondences between
operations or vectors; and in some cases, (iii) a set of con-
straints, expressed as temporal formulas, to be satisfied by
the composition of the service with the rest of the system.
Protocol description. Protocols are represented by means
of Symbolic Transition Systems (STSs) [20]. This formal
model has been chosen because it is simple, and it can be
easily derived from existing implementation platforms’ lan-
guages (see for instance [16, 33, 15] where such abstrac-
tions for Web services were used for verification, composi-
tion or adaptation purposes). Communication between ser-
vices is represented using events relative to the emission (!)
and reception (?) of messages which correspond to opera-
tion calls. Events may come with a set of data terms with
types that respect the operation signatures. In our model, a
label is either the internal action tau or a tuple (M,D, PL)
where M is the message name, D stands for the direction
(!,?), and PL is either a list of data terms if the message cor-
responds to an emission, or a list of variables if the message
is a reception.

Definition 2 (STS) An STS is a tuple (A, S , I, B,T) where:
A is an alphabet that corresponds to message events relative
to the service’s provided and required operations, S is a set
of states, I ∈ S is the initial state, B ∈ S are stable states,
and T ∈ S ×A×S is the transition function. A stable state is
one in which the service is not engaged in any transactions
and can be removed from the current system configuration.

Generic Correspondences. Adaptor generation ap-
proaches rely on a description of the adaptations to
be performed, usually referred as adaptation contracts.
These contracts express correspondences between opera-
tions names, or parameter types and ordering on the dif-
ferent interfaces. However, adaptation contracts can be pro-
duced only once the description of the different interfaces is
known, since specific information such as operation names
or parameter types is required. Unfortunately, in ubiqui-
tous environments, this information is only available when
the particular service is available in the system. Specifi-
cally, when we are describing the protocol of a service to be
reused in such systems, we know what the required opera-
tions are, but we just do not know their specific name yet,
or which service is going to provide them.

In order to overcome this situation, we assume the ex-
istence of a common service ontology that describes the

properties and capabilities of services in unambiguous,
computer-interpretable form. We also assume that services
available in the system’s environment are exposed using this
service ontology, which will be used as a reference to relate
service behaviour using elements of the specific domain.
For simplicity, instead of using any of the emerging stan-
dards for the semantic description of services, we will use
in the remainder of this paper a notation for this service on-
tology which abstracts away specific notations for service
descriptions such as OWL-S2 in Web services, or the Roset-
tanet3 common standards in the case of e-business services:

Definition 3 (Abstract Operation Signature) An abstract
operation signature is the name of a generic operation, to-
gether with its arguments and return types defined within
the context of a service ontology.

Definition 4 (Abstract Role) We define an abstract role as
a set of abstract operation signatures associated with a
common task or goal.

In order to solve the aforestated problem, our model of
interface contains generic correspondences of how labels in
the protocol description (STS) are related with generic oper-
ations described by the service ontology (instead of directly
relating labels between STSs like traditional adaptation con-
tracts normally do). To do so, we rely on synchronization
vectors [5] (or vector for short), which denote communica-
tion between different services, where each event appearing
in one vector is executed by one service and the overall re-
sult corresponds to an interaction between all the involved
services.

Definition 5 (Vector) A vector for a service STS
(A, S , I, B,T) and an abstract role, is a couple 〈el, er〉
where el is a label term for A, and er is an abstract label
term for an abstract role. A label term t contains the name
of the operation, a direction, and as many untyped fresh
names as elements in the argument type list. To identify
messages in a vector, label terms are prefixed by a service
identifier. An abstract label term is defined in the context of
an abstract role, instead of a service interface.

Definition 6 (Vector Instance) A vector instance for a
pair of service STSs (Al, S l, Il, Bl,Tl) and (Ar, S r, Ir, Br,Tr)
is a couple 〈el, er〉 where el, er are label terms in Al and
Ar, respectively. To identify messages in a vector instance,
label terms are prefixed by a service identifier, e.g., 〈s1 :
comm!x, s2 :comm?y〉.

Vectors express correspondences between messages, like
bindings between ports, or connectors, in architectural de-
scriptions [19]. Furthermore, variables are used as place-
holders in message parameters. The same variable name

2http://www.daml.org/services/owl-s/1.0/
3http://www.rosettanet.org/

T A S K S P E C I F I C A T I O N

checkin!

(passport,idflight)

search?(result)

A I R L I N E C H E C K - I N K I O S K

checkin?

(flight,id)
checkin!

(seat)

checkin?(seat)

search!(string)

search!string

quit!

buy!(result)

buy?

(success)

A I R P O R T I N F O R M . S Y S T E M

checkedin?

(id,flight)

checkedin!

(result)

D U T Y - F R E E S H O P

search!res

search?(query)

idbuy?(id,f,r)

checkedin!(id,f)

checkedin?(res)

ack!

buy?(r)

ack!

B o a r d i n g p a s s

i s p r i n t e d b y t h e

k i o s k .
blueSkyCheck:

checkInPoint

flightList:

flightInfo

bookStore:retailer

Figure 1. Service protocols for our running example. Initial and stable states are respectively noted
in STSs using bullet arrows and darkened states

appearing in different labels (possibly in different vectors)
enables the relation of sent and received arguments of mes-
sages. Vectors can be either written by hand, obtained
from a graphical description of the architecture built by
the designer, or automatically generated in some specific
cases [28].
Constraints. Last but not least, interfaces may also add
some constraints on the application order of its own vec-
tors. This is specified in our approach using the LTL modal
temporal logic [14]. This part of interface descriptions will
be explained in further detail in Section 4.

Example. Figure 1 depicts the protocols for the different
services and the user task specification involved in the ex-
ample presented in the introduction. For space reasons, we
describe service interfaces only with their STSs. Signatures
will be left implicit, yet they can be inferred from the typing
of arguments (made explicit here) in STS labels. If we take
for instance the user task specification protocol, we can ob-
serve that it can initially either request a checkin!, receiv-
ing a response with the seat number assigned on the flight,
or perform a search! on a shop’s catalog. After that, the
client can perform an arbitrary number of searchs, and then
return to the initial state either buying an item (buy!), or
aborting the transaction (quit!).

Table 2 lists the abstract roles fulfilled by each of the ser-
vices in our example, along with the abstract operation sig-
natures they contain. It is worth observing in Figure 1 that
each service makes explicit the set of abstract roles they ful-
fill (only one on each service in our example). For instance,
all check-in kiosks at the airport fulfill the checkInPoint

abstract role. In particular, the kiosk in our example con-
tains a role blueSkyCheck which fulfills the aforemen-
tioned abstract role.

Table 3 includes the correspondences between STS la-
bels in each of the services, and abstract operations defined
in abstract roles. For instance, vcheckin in the airport in-
formation system, establishes that any requests for passen-
ger information passengerInFlight in the abstract role
flightInfo, will be received by checkedin in the ser-
vice protocol. Likewise, the table contains a set of user-
defined properties for the client task specification in the ex-
ample which must be satisfied by the composition of the
service with its environment. The purpose and specification
of these properties will be detailed in Section 4.

3 Service Behavioural Self-Adaptation

In this section, we present our approach to build dynam-
ically a system with services entering and leaving at run-
time (see an overview in Figure 4). At this stage, we do
not consider service interfaces equipped with temporal for-
mulas, which will be presented in Section 4. Our proposal
is completely automated, and guided by a user requirements
description. Three main tasks have to be fulfilled every time
a new entity appears or leaves: (i) instantiation of vectors,
(ii) checking stable state reachability, (iii) run-time execu-
tion of the involved services.

Abstract Role Operation Argument Types Return Val.
checkInPoint checkIn passportId, flightId seatCode

flightInfo passengerInFlight passportId, flightId boolean

retailer search searchString itemId, price

sale itemId boolean

taxFreeSale passportId, flightId, itemId boolean

..

Figure 2. Abstract role definitions in the airport example

USER TASK SPECIFICATION (U)
vcheckin = 〈checkin!(pid,fid); checkInPoint.checkIn?(pid,fid)〉
vcheckinResponse = 〈checkin?(sid); checkInPoint.checkIn!(sid)〉
vsearch = 〈search!(str); retailer.search?(str)〉
vsearchResponse = 〈search?(iid); retailer.search!(iid,p)〉
vsale = 〈buy!(iid); retailer.sale?(iid)〉
vtaxFreeS ale = 〈buy!(iid); retailer.taxFreeSale?(pid,fid,iid)〉
vsaleResponse = 〈buy?(r); retailer.sale!(r)〉
vquit = 〈quit!; process.stop?〉
...
^vcheckin (Check-in will eventually happen)
�(vtaxFreeS ale → ¬^vcheckin) (Tax Free sales will always happen after Check-in)
�(vcheckin → ¬^vcheckin) (Check-in will happen only once)
AIRLINE CHECK-IN KIOSK (K)
vcheckinRequest = 〈checkin?(fid,pid); checkInPoint.checkIn!(pid,fid)〉
vcheckinResponse = 〈checkin!(sid); checkInPoint.checkIn?(sid)〉

AIRPORT INFORMATION SYSTEM (F)
vin f oRequest = 〈checkedin?(pid,fid); flightInfo.passengerInFlight!(pid,fid)〉
vin f oResponse = 〈checkedin!(sid); flightInfo.passengerInFlight?(sid)〉
DUTY-FREE SHOP (S)
vsearch = 〈search?(s); retailer.search!(s)〉
vsearchResponse = 〈search!(r); retailer.search?(r,p)〉
vpurchase = 〈buy?(iid); retailer.purchase!(iid)〉
vtaxFreePurchase = 〈idbuy?(pid,fid,iid); retailer.taxFreeSale?(pid,fid,iid)〉
vcheckin = 〈hascheckedin!(pid,fid); flightInfo.passengerInFlight?(pid,fid)〉
vcheckinResponse = 〈hascheckedin?(sid); flightInfo.passengerInFlight!(sid)〉
vack = 〈ack!; retailer.taxFreeSale?(r)〉
vtaxFreeAck = 〈ack!; retailer.sale?(r)〉

Figure 3. Service vector and property definitions for the airport example

3.1 Vector Instantiation

In this section, we describe how a set of vectors from
several service interfaces are instantiated by using abstract
operation signatures. For each vector v, we extract all the
other vectors including abstract label terms corresponding
to the same abstract operation signatures. A vector is in-
stantiated as many times as there are possible combinations
wrt. the set of available vectors.

More concretely, an instantiation of v is obtained in two
steps: (i) finding a set of matching vectors Vm (sharing ab-
stract label terms with v, although with opposite direction in
communication), and (ii) aggregating in a new set of vector
instances Vinst the non-abstract label term of v with all the
non-abstract label terms appearing in each of the vectors in
Vm. The algorithm keeps track on already instantiated vec-
tors to avoid repeating instantiations.

Example. We consider a scenario in our running ex-
ample where the user enters the airport and walks into
the check-in area. Once there, the airline check-in kiosk
service becomes available, and vectors both on the user
task specification and the check-in service interface must
be used in order to instantiate the vectors which will make
the interaction of both partners possible. As it can be
observed in Table 3, the only abstract label terms shared by
both partners correspond to checkInPoint.checkIn:

USER TASK SPECIFICATION
vcheckin
〈checkin!(pid, fid); checkInPoint.checkIn?(pid, fid)〉
vcheckinResponse
〈checkin?(sid); checkInPoint.checkIn!(sid)〉
...
AIRLINE CHECK-IN KIOSK
vcheckinRequest
〈checkin?(fid, pid); checkInPoint.checkIn!(pid, fid)〉
vcheckinResponse
〈checkin!(sid); passenger.checkIn?(sid)〉

Stable
states?

Executable

v in V?
Yes

No

Interaction
with service
emissions

Execution of v

No

No

Interaction
with service
receptions

Composition
started?

Yes

User
Requirements

Add/Remove
Service

Instantiate
vectors V

Service
Ontology

Abstract Roles
Abstract Operation Signatures

Stop Execution
Stable state
configuration

Validation
Stable State Reachability

Temporal Formulas Check

Execution

Yes

Yellow PagesYellow PagesYellow Pages

Services

Execution

Figure 4. Overview of our approach

VECTOR INSTANCES
vinsta
〈u : checkin!(p, f); k : checkin?(f, p)〉
vinstb
〈u : checkin?(s); k : checkin!(s)〉

As it can be observed above, each vector instance in-
cludes a set of STS label terms prefixed by an identifier of
the service. In this case, vcheckin on the task specification has
been matched with vcheckinRequest on the kiosk, resulting on
vinsta. Vector instance names are not relevant, since they are
only used for run-time execution of the system. It is worth
noticing that fresh names p,f, and s are used as placeholders
for correct parameter exchange. These names are placed in
the vector instance taking as reference the order of param-
eters in the shared abstract label term. Notice the inverted
order of these names in the different label terms of vinsta.

3.2 Stable State Reachability

Once we have described interfaces and the process of
vector instantiation, in this section we sketch two solutions
to compute the reachability analysis of stable states being
given a set of service protocols, and a set of instantiated
vectors. A stable state of the system is one, where each of
the services in the system is on a stable state. It is only at
this point that services can be incorporated or removed, and
the system properly reconfigured.

A first solution is an ad-hoc search algorithm. In [10], we
presented a depth-first search algorithm which seeks correct
termination states, and stops as soon as a final state for the
whole system has been found. The main idea is that vectors
belonging to the composition specification are applied go-
ing in depth until either a final state is reached (end of the
algorithm), or a deadlock state is found. In the latter case,
the algorithm backtracks and tries a different path. We keep
track of the already traversed states and use Floyd’s cycle-
finding algorithm [24]4 in order to avoid reach already vis-

4Floyd never published his cycle-finding algorithm. It was first pre-
sented by Knuth in the referenced book.

ited states and remain indefinitely in cyclic paths. This solu-
tion is appropriate for systems of a moderate size (see [10]
for details).

However, in the context of pervasive systems where a
large number of services have to interact or feature proto-
cols with a large number of states and transitions, a second
solution is to use an informed search algorithm in order to
find potential solutions efficiently. Specifically, the A* al-
gorithm, is a particular best-first search strategy which de-
termines the mimimum cost path from a given state of the
system to a goal state by expanding the most promising can-
didate paths first. However, guidance information for this
search is required. This is achieved by defining a heuristic
estimation function of the cost of arriving from the current
state of the services to a global stable state in the compo-
sition. In our particular case, we use a heuristic estimation
based on the minimum distance from the current state of the
system to a global stable state (see [8] for details).

3.3 Run-time Execution

Once vectors instantiated and validation achieved to be
sure that the system can be run and will reach a correct ter-
mination state (global stability), execution of the system can
be launched. In this section, we present a run-time engine
that executes a system involving a set of services using vec-
tors as their interaction constraints. We promote a dynamic
execution of vectors instead of the execution of an adaptor
generated statically from vectors, because adaptor genera-
tion is costly and algorithms are exponential [12, 32].

The application of the composition specification (vec-
tors) can lead the system constituted of the involved services
into deadlocking situations. This can be caused by a miss-
ing service, a missing interaction, or a possible execution
scenario that makes the system fail. Indeed, the composi-
tion specification is an abstract description of how services
work together, and does not take into account all the pos-
sible execution scenarios of the system. Removing these
remaining spurious interactions is required to let the system

reach a stable state.
Since the composition specification is applied at run-

time, it is not possible to apply the removal of deadlocks
as a pre-processing as it is the case in static composition
and adaptation approaches [21, 29]. Therefore, before ap-
plying a vector, we check that after the application of this
vector, there exists at least one reachable stable state for the
whole system (i.e., all services are in a stable state). Thus,
our dynamic composition engine will prevent the system to
end up in deadlocking situations. This check is achieved
using techniques presented in Section 3.2.

Figure 4 (right) sketches the operation of the dynamic
composition engine. More details about that and ideas of
how these techniques can be implemented using Dynamic-
AOP (Aspect-Oriented Programming) can be found in [10].

Example. The passenger walks into the airport and reaches
the check-in kiosk. At this point vectors for client and the
kiosk check-in service are instanced. In Figure 5 we can
observe how the check-in process is executed (vinsta,vinstb)
and the system reaches a stable state. At this point, ser-
vices can be added to or removed from the system. The
user now enters a duty free shop. The check-in service is no
longer accessible, but the shop’s service (connected to the
airport information system) becomes available. The vector
instantiation process is performed again. It is worth noticing
that this time no vectors for non-tax free sales are instanced,
since the user task specification on the client does not con-
tain any vector definitions for that kind of transaction. The
user searches the catalog (one or more times) for products
(vinstc,vinstd), and then performs a purchase(vinste). The shop
contacts the airport information system to confirm that the
passenger is checked-in on a flight (vinst f ,vinstg), and then
acknowledges the end of the transaction (vinsth).

4 Self-Adaptation with Temporal Formulas

In this section we describe how the interaction of differ-
ent services can be constrained at run-time by defining in-
teresting properties of the composition which must be satis-
fied by every possible execution trace of the system. To ex-
press such properties, we make use of linear temporal logic
(LTL). In particular, we use the next-free variant of LTL
(LTL-X)5, guaranteed to be insensitive to stuttering [13].

In our approach, LTL atomic propositions correspond to
vector labels. Since our run-time execution engine executes
vectors one after the other in a sequential fashion to make
the system evolve, we can assume that the execution of v
is synonymous to the proposition v in a temporal formula.
Hence, given a finite set of atomic propositions υ, formulas
are constructed inductively as:

5LTL-X denotes the class of LTL formulas without the next temporal
operator. In the rest of this paper, the use of LTL-X is implied whenever
LTL is mentioned.

Propositions Every φ ∈ υ is a formula.

Boolean operators Given the formulas φ and ψ: φ → ψ,
φ ∧ ψ, φ ∨ ψ, and ¬φ are also formulas.

Temporal operators given the formulas φ and ψ: φUψ is
also a formula (strong until). The following abbrevi-
ations are used: Eventually (^φ = TRUE Uφ) and
Always (�φ = ¬^¬φ).

We use LTL finite-trace semantics similar to the one
defined in [17], commonly used in runtime verification.
An interpretation of an LTL formula is a finite word w =

x0x1 . . . xn over 2υ, where at some time point i ∈ N a propo-
sition φ is true iff (if and only if) φ ∈ xi. We express as
wi the suffix of w starting at i. The finite-trace semantics of
LTL is defined as:

Propositions For φ ∈ υ,w |= φ iff φ ∈ x0.

Boolean operators Given the formulas:

• w |= ¬φ iff not w |= φ

• w |= φ ∧ ψ iff w |= φ and w |= ψ

• w |= φ ∨ ψ iff w |= φ or w |= ψ

Temporal operators w |= φUψ iff there exists 0 ≤ i ≤ n
such that wi |= ψ and for all 0 ≤ j < i,w j |= φ.

4.1 Defining Composition Properties Us-
ing Temporal Logic

When the designer is defining how a service must inter-
act with its environment, it is interesting to specify:

Safety properties declaring what should not happen while
the service is interacting with the rest of the system. Hence,
no state of the execution path of the system should vio-
late the property. Following with our running example, the
user can specify on its client a safety property stating that
the check-in process should be performed only once at the
most, by writing the following formula:

�(vcheckin → ¬^vcheckin) (Check-in will happen no more than once)

Liveness properties stating what should eventually happen
while the service interacts with the rest of the system. As
a consequence, the property must hold at some point of the
execution path to be satisfied. In our example, an interesting
liveness property for the user is ensuring that the check-
in process is going to be performed at some point of the
execution:

^vcheckin (Check-in will eventually happen)

u:checkin ! vinstcvinsta vinstbvinsta = <u:checkin!(p,f); k:checkin?(f,p)>vinstb = <u:checkin ?(s); k:checkin !(s)> k:checkin ? u:checkin ?k:checkin !(USER, KIOSK)vinstc = <u:search!(s); s:search ?(s)>vinstd = <u:search?(r); s:search !(r)>vinste = <s:hascheckedin !(p,f); f:checkedin ?(p,f)>vinstf = <f:checkedin !(sid); s:hascheckedin ?(sid)>vinstg = <u:buy!(r); s:idbuy ?(p,f,r)>vinsth = <u:buy?(res); s:ack!>
u:search!s:search?(USER,SHOP,INFO.SYSTEM) vinstdu:search?s:search!vinstevinstfvinstgvinsth s:hascheckedin !f:checkedin ?f:checkedin !s:hascheckedin ?u:buy!s:idbuy ?u:buy?s:ack! vinstc

Figure 5. Execution trace of the airport example

4.2 Evaluating Properties at Run-time

Once we have defined the properties which should be
respected by the composition on each of the interacting ser-
vices, these must be evaluated on the set of potential execu-
tion paths of the system. Each one of those paths is formed
by two parts: (i) Transaction history path. Is the sequence
of all vectors executed before the current state in which the
particular service has been involved. (ii) One of the can-
didate branches explored in the search for stable states de-
scribed in Section 3.2. This search starts from the current
state of the execution and only vectors involving the service
which contains the property are taken into account.

Stable state search is performed on potential execution
traces formed by vector instances, whereas the execution
paths used for property evaluation are sequences of vectors
local to the service. Although both stable state reachability
and property satisfiability depend on the global behaviour
of the system, the latter must be performed from a point of
view local to the service, since properties are defined on its
protocol and are independent from the rest of the system. To
obtain both the transaction history path and potential local
execution paths for each of the services, we trace back the
correspondence between vector instances and local vector
definitions. Hence, vector instance vinsta from our example
in Section 3.1 would correspond to vcheckin from the point of
view of the user specification task, and vcheckinRequest in the
case of the check-in kiosk.

To evaluate the properties on the set of execution paths,
each LTL formula is translated into an automaton (see [17]
for details) which accepts a finite sequence of symbols (vec-
tor labels local to the service). Hence, if the automaton

reaches an acceptance state after having received a sequence
of vector labels as input (i.e., an execution path), the prop-
erty is satisfied. In particular, we use the evaluation of prop-
erties in different ways depending on what they specify:

Safety Properties For any safety property of the form �φ
(¬^¬φ), we build the automaton for ^¬φ. In such a way,
it is possible to prune the search conveniently whenever we
arrive to an acceptance state in the automaton (the safety
property has been violated).

Liveness Properties For any safety property of the form
^φ, we build its automaton, and only check if the property
is satisfied on the corresponding trace once we arrive to a
stable state found by our search algorithm presented in Sec-
tion 3. If the property is not satisfied, the algorithm keeps
searching for stable states where the property is satisfied.

Integrating property evaluation into our search algorithm
in the aforedescribed fashion saves further exploration for
stable states which, although reachable, would not satisfy
the properties of the system.

Example. Considering the system execution scenario de-
scribed in Section 3.3, we focus on the property included
in the client stating that check-in must happen only once
(�(vcheckin → ¬^vcheckin)). In this case, vector vcheckin corre-
sponds to vector instance vinsta. As it can be observed in Fig-
ure 6, the transaction history path consists on the sequence
vinsta,vinstb. Before executing another vector instance, our
search algorithm starts exploring alternative branches trying
to find stable states. As it can be observed, the application
of the same sequence of vector instances (vinsta,vinstb) would
lead to a stable state. However, the second application of
vinsta leads the automaton (^¬(vcheckin → ¬^vcheckin)) for

vinsta

vinstb
vinstc

vinstd

*vinsta
vinstb

vinstdvinstc vinstc vinste

Transaction
History Path

S1

S2

S3

!vinsta
vinsta

vinsta
!vinsta

1

Figure 6. Safety property violation example

the property to the acceptance state S3. At this point, the
property is violated and hence the search continues through
the alternative branch starting with vinstc.

5 Related Work

In this section, we will compare successively our ap-
proach with some proposals in related areas, namely soft-
ware adaptation, dynamic reconfiguration of software, and
self-adaptive systems.

Software adaptation is a promising topic in software
composition. Indeed, composition assumes that compo-
nents will successfully interact when combined, whereas
most of the components reused out of their original context
cannot be integrated as is, requiring some degree of adap-
tation. Many proposals [34, 21, 6, 7, 12] in this area focus
on the behavioural interoperability level, and advocate ab-
stract notations (e.g., correspondences between messages,
vector regular expressions, or LTL formulae) and state-of-
art algorithms to derive adaptor protocols. However, all
these approaches assume that all the components involved
in the system are known at design-time, and no new en-
tity can be added or removed dynamically. A recent work
aims at building adaptors incrementally [32]. The authors
present a description of open component systems. Thus,
software components distinguish in their description inter-
nal and external bindings, the latter ones being used for fur-
ther connections with components or services to be added in
the future. Moreover, they propose an incremental process
for the integration and adaptation of open software com-
ponents, enabling the construction of systems step-by-step
(by adding or removing components), and to reconfigure
them if necessary. Here, this incremental construction of
the system-to-be takes place at design-time or off-line.

Dynamic reconfiguration [31] is not a new topic and
many solutions have already been proposed dealing with
distributed systems and software architectures [25, 26],
graph transformation [1, 36] or metamodelling [23, 30]. For
instance, Kramer and Magee [26] studied how changes are
applied dynamically to system composed of components
and their interconnections. To preserve the integrity of the

system, they propose a notion of quiescent portions during
which changes can be performed. Analysis techniques (an-
imation and reachability) are used in this approach to check
that changes do not violate properties to be ensured by the
system. In our proposal, we do not allow the modification
of the components at hand, but permit to add and remove
them at run-time. In addition, we assume the architecture
not defined by the designer but inferred automatically from
the service interfaces. However, the notion of stable states
we defined in this paper is very similar to the quiescent por-
tions introduced in [26].

Self-adaptation is an emerging and very promising topic
for systems running in dynamically changing environments.
Several recent proposals tackle different issues in this area,
such as software architecture self-adaptation [35], service
replacement at run-time [22], or adaptive systems mod-
elling issues [18]. In [35] for instance, the authors propose
using planning techniques to build new configurations of a
system. Reactive plans are generated with a planning tool
from high-level goals given by the user. Each plan defines
a set of conditional rules that indicate what components are
required to execute the plan. Our solution based on vectors
and temporal formulas can be considered as an alternative
to use planning techniques. The main difference is that this
approach requires pre-defined global goal given by a de-
signer whereas in our proposal such goals are dynamically
provided by the user.

6 Concluding Remarks

In this paper, we have presented our proposal to self-
adaptation of services specified with rich interfaces (proto-
cols, vectors, and possibly some temporal formulas). The
high expressiveness of service interfaces allow to com-
pletely automate the reconfiguration of the system at run-
time (removal or arrival of new services). We have ex-
plained how the different steps of our approach are applied,
and how correctness of the execution is ensured by using
stable states and run-time evaluation of service properties.
We have illustrated these ideas on a real-world example.

As far as future works are concerned, our main goal is
to include in our ITACA toolbox6 [9] our model of service
interfaces extended with vectors and temporal formulas, and
implement an extension of our dynamic execution engine to
ensure user defined properties on the composition.

Acknowledgements. This work has been partially sup-
ported by the project TIN2008-05932 funded by the Span-
ish Ministry of Innovation and Science (MICINN), and
project P06-TIC-02250 funded by the Junta de Andalucı́a.

6ITACA is a toolbox under implementation at the University of
Málaga dedicated to the automatic composition and adaptation of ser-
vices accessed through their behavioural interfaces. Accessible at
http://itaca.gisum.uma.es

References

[1] N. Aguirre and T. Maibaum. A Logical Basis for the Speci-
fication of Reconfigurable Component-Based Systems. In
Proc. of FASE’03, volume 2621 of LNCS, pages 37–51.
Springer, 2003.

[2] L. Alfaro and T. Henzinger. Interface Automata. In Proc. of
ESEC/FSE’01, pages 109–120. ACM Press, 2001.

[3] T. Andrews et al. Business Process Execution Language for
Web Services (WSBPEL). BEA Systems, IBM, Microsoft,
SAP AG, and Siebel Systems, Feb. 2005.

[4] F. Arbab., F. S. de Boer, M. M. Bonsangue, and J. V.
Guillen Scholten. A Channel-based Coordination Model for
Components. In Proc. of FOCLASA’02, volume 68(3) of
ENTCS, 2002.

[5] A. Arnold. Finite Transition Systems. International Series in
Computer Science. Prentice-Hall, 1994.

[6] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to
Component Adaptation. Journal of Systems and Software,
74(1):45–54, 2005.

[7] A. Brogi, C. Canal, and E. Pimentel. Component Adaptation
Through Flexible Subservicing. Sci. Comput. Programming,
63(1):39–56, 2006.

[8] J. Cámara, C. Canal, and G. Salaün. Multiple concern adap-
tation for run-time composition in context-aware systems.
Electr. Notes Theor. Comput. Sci, 215:111–130, 2008.

[9] J. Cámara, J. A. Martı́, G. Salaün, M. Ouederni, C. Canal,
and E. Pimentel. ITACA: An Integrated Toolbox for the Au-
tomatic Composition and Adaptation of Web Services. In
Proc. of ICSE’09, 2009. To appear.

[10] J. Cámara, G. Salaün, and C. Canal. Composition and
run-time adaptation of mismatching behavioural interfaces.
Journal of Universal Computer Science, 14(13):2182–2211,
2008.

[11] C. Canal, J. Murillo, and P. Poizat. Software Adaptation.
L’Objet, 12(1), 2006. Special Issue on WCAT’04.

[12] C. Canal, P. Poizat, and G. Salaün. Synchronizing Be-
havioural Mismatch in Software Composition. In Proc. of
FMOODS’06, LNCS 4037. Springer.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. The MIT Press, Cambridge, Massachusetts, 1999.

[14] E. A. Emerson. Temporal and Modal Logic. In Handbook
of Theoretical Computer Science, Volume B: Formal Models
and Sematics (B), pages 995–1072. 1990.

[15] H. Foster, S. Uchitel, and J. Kramer. LTSA-WS: A Tool for
Model-based Verification of Web Service Compositions and
Choreography. In Proc. of ICSE’06, pages 771–774. ACM
Press, 2006.

[16] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL
Web Services. In Proc. of WWW’04, pages 621–630. ACM
Press, 2004.

[17] D. Giannakopoulou and K. Havelund. Automata-based ver-
ification of temporal properties on running programs. In
Proceedings of the 16th IEEE International Conference on
Automated Software Engineering (ASE’01), pages 412–416.
IEEE Computer Society, 2001.

[18] H. Goldsby, P. Sawyer, N. Bencomo, B. H. C. Cheng, and
D. Hughes. Goal-Based Modeling of Dynamically Adaptive
System Requirements. In Proc. of ECBS’08, pages 36–45.
IEEE Computer Society, 2008.

[19] S. Haddad and P. Poizat. Transactional Reduction of Com-
ponent Compositions. In Proc. of FORTE’07, volume 4574
of LNCS, pages 341–357. Springer, 2007.

[20] M. Hennessy and H. Lin. Symbolic Bisimulations. Theor.
Comput. Sci., 138(2):353–389, 1995.

[21] P. Inverardi and M. Tivoli. Deadlock Free Software Archi-
tectures for COM/DCOM Applications. Journal of Systems
and Software, 65(3):173–183, 2003.

[22] F. Irmert, T. Fischer, and K. Meyer-Wegener. Runtime
Adaptation in a Service-Oriented Component Model. In
Proc. of SEAMS’08 (held with ICSE’08). ACM Press, 2008.

[23] A. Ketfi and N. Belkhatir. A Metamodel-Based Approach
for the Dynamic Reconfiguration of Component-Based Soft-
ware. In Proc. of ICSR’04, volume 3107 of LNCS, pages
264–273. Springer, 2004.

[24] D. E. Knuth. The Art of Computer Programming, Volume II:
Seminumerical Algorithms. Addison-Wesley, 1969.

[25] J. Kramer and J. Magee. The Evolving Philosophers Prob-
lem: Dynamic Change Management. IEEE Transactions on
Software Engineering, 16(11):1293–1306, 1990.

[26] J. Kramer and J. Magee. Analysing Dynamic Change in
Distributed Software Architectures. IEE Proceedings - Soft-
ware, 145(5):146–154, 1998.

[27] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour
Analysis of Software Architectures, pages 35–49. Kluwer
Academic Publishers, 1999.

[28] J. Martı́n and E. Pimentel. Automatic Generation of Adap-
tation Contracts. In Proc. of FOCLASA’08, ENTCS, 2008.
To appear.

[29] R. Mateescu, P. Poizat, and G. Salaün. Behavioral Adapta-
tion of Component Compositions based on Process Algebra
Encodings. In Proc. of ASE’07. IEEE Computer Society,
2007.

[30] J. Matevska-Meyer, W. Hasselbring, and R. Reussner. Soft-
ware Architecture Description Supporting Component De-
ployment and System Runtime Reconfiguration. In Proc. of
WCOP’04, 2004.

[31] N. Medvidovic. ADLs and Dynamic Architecture Changes.
In SIGSOFT 96 Workshop, pages 24–27. ACM Press, 1996.

[32] P. Poizat and G. Salaün. Adaptation of Open Component-
based Systems. In Proc. of FMOODS’07, volume 4468 of
LNCS. Springer, 2007.

[33] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and
Reasoning on Web Services using Process Algebra. Inter-
national Journal of Business Process Integration and Man-
agement, 1(2):116–128, 2006.

[34] H. W. Schmidt and R. H. Reussner. Generating Adapters for
Concurrent Component Protocol Synchronization. In Proc.
of FMOODS’02. Kluwer.

[35] D. Sykes, W. Heaven, J. Magee, and J. Kramer. Plan-
Directed Architectural Change for Autonomous Systems. In
Proc. of SAVCBS’07 (held with FSE’07). ACM Press, 2007.

[36] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A Graph
Based Architectural (Re)configuration Language. In Proc.
of ESEC / SIGSOFT FSE 2001, pages 21–32. ACM Press,
2001.

[37] D. M. Yellin and R. E. Strom. Protocol Specifications and
Components Adaptors. ACM Transactions on Programming
Languages and Systems, 19(2):292–333, 1997.

