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ABSTRACT

Disasters often occur without warning and despite extensive preparation, disaster managers must take action to
respond to changes critical resource allocations to support existing health-care facilities and emergency triages. A
key challenge is to devise sound and verifiable resourcing plans within an evolving disaster scenario. Our main
contribution is the development of a conceptual self-adaptive system featuring a monitor-analyse-plan-execute
(MAPE) feedback loop to continually adapt resourcing within the disaster-affected region in response to changing
usage and requirements. We illustrate the system’s use on a case study based on Auckland city (New Zealand).
Uncertainty arising from partial knowledge of infrastructure conditions and outcomes of human participant’s actions
are modelled and automatically analysed using formal verification techniques. The analysis inform plans for routing
resources to where they are needed in the region. Our approach is shown to readily support multiple model and
verification techniques applicable to a range of disaster scenarios.
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INTRODUCTION

Disasters occur suddenly and often without warning. They have the potential to cause loss of human life, impact
health, and cause damage to land, buildings and transportation infrastructure. In response, disaster managers must
consider plans coordinating personnel and first-responders to distribute scarce resources with the disaster-affected
region. Resource allocation plans form the basis for disaster management, disaster medicine and more recently,
disaster healthcare (Madanian et al. 2020). During preparation phases of disaster management, sufficient resources
are allocated at every location in the region to satisfy resource demands. Finding a suitable allocation essentially
corresponds to a constraints solving problem U |=  , where resourcing demands are formalised as logical predicates
 and an allocation is modelled by the satisfying assignment function U (Johnson, Madanian, et al. 2020). However,
due to a disaster’s inherently uncertain and unpredictable nature, disaster managers must assume that the scenario
evolves: i.e., more resources are required at a location, initial resourcing is inadequate and new locations arise and
must be resourced. In response, plans must be continually devised to transport resources to the locations where they
are needed.
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To address this challenge, we propose the Self-Adaptive Critical Response (self-cr) System presented in Figure 1.
We illustrate how this adaptive system is used on a real-world case study based on the Auckland Central Business
District (CBD), represented by the street-level map in Figure 1.

Figure 1. MAPE Loop of the Self-Adaptive Critical Response System (self-cr).

The self-cr system comprises two main parts:

1. the managed system comprising a state representing the disaster-affected region and operations to modify the
state, reflecting actions performed in the disaster-affected region by disaster managers, and

2. themanaging system, comprised of a four phaseMonitor-Analyse-Plan-Execute (MAPE) feedback loop (Kephart
and Chess 2003), a paradigm commonly used to engineer self-adaptive software-intensive systems.

The self-cr system continually senses vital information from the Auckland region:

• changes related to resourcing in Auckland, detected by e.g. reporting and digital audits from health-care
professionals at clinics, hospitals or triage stations,

• reports on travel conditions throughout the region, from e.g. online traffic tracking services, social media
analysis and eye witness accounts.

The MAPE feedback loop processes sensor input and updates the graph structure in the managed system state:
locations are vertices, associated with staff and resources while routes between locations are edges, associated
with travel conditions. The updated state acts as input for the analysis phase. We use two formal verification
techniques to analyse the current state of the managed system. First, constraint solving is used to automatically
determine how many resources are needed and at which locations, based on the requirements developed during the
disaster preparedness phase. The results of this kind of analysis is useful for deciding on logistical operations for
transporting resources from locations with a surplus to those identified as having unsatisfactory amounts.

While it may be obvious to transport resources via the shortest route, infrastructure damage or other events may
make this impossible, or at least more prone to failure. The analysis phase therefore uses probabilistic model
checking (Kwiatkowska et al. 2011; Dehnert et al. 2017) as a means to analyse uncertainties within the region
relating to both traffic conditions and emergency worker staffing. Markov models synthesised from the region’s
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infrastructure network are automatically verified against probabilistic temporal logic formulae encoding the source
and destination of transportation through the region. Probabilistic model checking can automatically and continually
identify optimal routes based on current infrastructure conditions. Additional information on staffing, such as skills,
experience and which shifts they work on can be synthesised as Markov models to help choose candidate staff best
positioned to successfully perform the transportation and other operations.

Contributions

Our work identifies the need to devise verifiable plans that can react to uncertainty and changes in resource usage
and needs during critical response.

Our paper presents work in progress research with the following main contributions:

• Algebraic specification of the self-cr system, comprising a MAPE loop as a conceptual framework compatible
with a broad range of analysis and verification techniques

• Illustration of the self-cr system on a real-world case study based on the Auckland CBD

• A sketch of how the analysis phase can be instantiated with two verification techniques for constraint solving
and probabilistic model checking

The remainder of the paper is structured as follows. We give an algebraic specification of the managed system
comprising a state representing the region and operations mirroring actions performed by disaster managers. We
describe the MAPE loop in detail with an example in which plans must be devised to adapt resourcing according to
changes in needs and requirements. Focusing on the analysis phase, probabilistic model checking is introduced to
verify properties of Markov models representing the region’s transport infrastructure. By composing this model
with Markov models synthesised from a simple ontology modelling human decision-making, disaster managers are
able to plan optimal resource transportation.

RELATED WORK

The MAPE loop in the self-cr system is compatible with a range of analysis techniques. There has been a fuzzy
logic optimisation approach described in (Sarma et al. 2019) that uses transport costs as the single factor to be
optimised. Planning for resource use has started to use Artificial Intelligence techniques such as deep learning to
predict evacuation traffic (Aqib et al. 2020).

A formal model of a disaster management system with a focus on modelling wireless sensor and actor networks and
their activities using graph theory appears in (Zafar and Afzaal 2017). Modelled as a complex adaptive system
using agents, the focus of this system is to detect earthquakes in specific locations and propagating this information
throughout the network in a efficient manner. In contrast, the self-cr system focuses on assisting with the dynamic
and real-time decision-making required in post-disaster recovery efforts, such as resource distribution. Other works
focus on formally modelling specific aspects of a disaster management system using carefully selected models,
such as emotional agent behaviour (Kefalas et al. 2014) and disaster recovery plans ((Noel) Bryson et al. 2002).
Graph theory has also been more widely used in resource distribution and allocation (Johnson, Madanian, et al.
2020; Wagner and Neshat 2010; Kumar and Zaveri 2017), as well as in identifying infrastructure availability during
disasters (Hu and Janowicz 2015). In comparison to existing works, the self-cr system provides a generalised
self-adaptive approach configurable to a wide range of specific use-cases and analysis techniques for post-disaster
management.

DISASTER-AFFECTED REGION AS A MANAGED SYSTEM

The self-adaptive approach envisions management of a disaster-affected region as a managed system, as shown in
Fig. 1. The managed system is used by disaster managers to track first-aid provision and medical resources within
the region and respond to evolving demands by reallocating scarce resources. In a mathematical sense, the managed
system’s state is the triple f = (�,  , U) comprising a graph �, resource demands  and resource allocation U.

Let (C0C4 be the set of all states of the managed system.

The graph � = (+, �) is a pair such that + is a finite set of vertices representing locations in the region such as
hospitals, clinics and triage stations that are critical for resource allocation. Locations are interconnected via edge
pairs (D, E) from the finite set � , representing paths (e.g., a sequence of city streets) between two location vertices
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D, E ∈ + . Edges may be annotated with additional attributes, such as distance, state of the physical road, etc., via
mapping functions.

Resource demands are constraints  , formed from logical predicates. These predicates express how many of
each kind of resource is needed at locations in + . There are a finite number of resource types that we consider,
enumerated by the set ' = {A1, . . . , A=}.
To reason about the amount of resources of type A8 are at location E ∈ + , we form its resource allocation model; a
finite set /E = {A1E , . . . , A=E } of variable symbols from the countable set / .

Resource allocation for E ∈ + is specified by the function UE : /E → Z such that the equation UE (IE8) = = means
there are = ∈ Z of resource type A8 ∈ ' available at location E ∈ + . We collect the set of all resource allocation
functions for the region as U = UE∈+ : /E → Z. Thus, U is a record of the region’s current resource allocation.

This treatment of resource allocation allows for flexibility for expressing general constraints. For example, the
high-level requirement The total amount of allocated resources of type A8 must be between 10 and 50 throughout
the region is formalised by the logical predicate 10 ≤ ∑

E∈+ IE8 ≤ 50 over the resource allocation models of + .
Standard ordering relationships on the integers specify resourcing relative to locations. For example, Location D
must have more of resource A8 than E is specified by the predicate ID8 > IE8 .

We suppose the minimal demand for resourcing is specified by the logical predicate 34<0=3E such that /E ⊆
E0AB(34<0=3E ); e.g., the predicate 34<0=3E constraints every variable in /E , and possibly contains other variable
symbols. Let 34<0=3E ∈  for all E ∈ + .

Tests and Operations

The managed system represented a dynamic and evolving disaster-affected region. As such, we will develop, through
case studies, algebraic operations of the form 5 : (C0C4 → (C0C4 such that f′ = 5 (f) is the updated state after a
change in the region, modelled by 5 .

When we collect the operations in Σ together with the states in (C0C4, we form an algebraic data type ( = (Σ, (C0C4)
of the managed system and refer to 5 as a Σ-operation.

AUCKLAND CBD CASE STUDY

The topmost portion of Figure 1 presents a map of Auckland’s Central Business District (CBD) overlaid with a
graph of seven city locations labelled a to g that are pertinent to disaster managers. The dashed location h will
be added as part of the next scenario. Locations are connected via shortest paths represented by bi-directional
edges, labelled with the distance between two locations. The graph � is part of the state tuple f = (�,  , U) that
represents the Auckland CBD.

Resource allocation demands in  are typically determined during the disaster preparedness stage. For example,
suppose vertex e is the location of a health-clinic, requiring i) built infrastructure ii) staffing medical personnel
and iii) medical supplies. In symbols, we set ' = {1D8;C, BC0 5 5 , <43820;}. Based on known population density
statistics at e, we might specify the conjunction

34<0=3e ≡ (1D8;Ce ≥ 20) ∧ (BC0 5 5e ≥ 5) ∧ (<43820;e ≥ 50) (1)

of logical predicates over model /e as resourcing demands. Prior to any disaster, we have satisfactory resource
availability throughout the region. This means the resource allocation function U assigns values to resources such
that the demand at each location is satisfied. For example, if Ue = {1D8;Ce := 20, BC0 5 5e := 6, <43820;e := 54}
then (1) is satisfiable. In symbols,

[[34<0=3e]] (Ue) ≡ [[(1D8;Ce ≥ 20) ∧ (BC0 5 5e ≥ 5) ∧ (<43820;e ≥ 50)]] (Ue)
≡ [[(20 ≥ 20) ∧ (6 ≥ 5) ∧ (54 ≥ 50)]]
≡ CAD4.

During disaster preparedness, resource demands are carefully considered and a suitable resource allocation
supplied. This essentially means computing an U satisfying  . This analysis can be automated using Satisfiability
Modulo Theories (SMT) software tools e.g., Z3 (Moura and Bjørner 2008) such that U = B<C ( ) if, and only if,
[[ ]] (U) ≡ CAD4. In case, we deem the state of the system to be in good health, since the resourcing allocated by U
to each location satisfies its demand. If  is not satisfied then resources are lacking at one or more locations, and
the state is bad.
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ADAPTING TO RESOURCE CHANGES

In this scenario, we suppose administrative staff at location e have performed an audit of their supplies and determine:
1D8;Ce := 20, BC0 5 5e := 5 and <43820;e := 20. While this location already falls below the necessary 50 units of
medical supplies according to (1), staff report larger than expected casualties. Therefore at least 70 units of medical
supplies are needed to satisfy demand. Furthermore, two more staff members are required to handle additional
casualties. This new information is processed by disaster managers to determine if current resourcing at e is
satisfactory. If not, a plan for self-adapting the managed system to bring necessary resources from other locations is
devised and carried out.

The following adaptation MAPE feedback phases occur:

Monitor

First, the result of the audit is modelled as an algebraic operation modifying the managed system state, currently
recorded as f ∈ (C0C4. Let 0D38C : (C0C4 ×+ × /= → (C0C4 be the Σ-operation

f′ = 0D38C (f, e, 1D8;Ce, BC0 5 5e, <43820;e, 20, 5, 20) (2)

updating the assignment in state f′ = (�,  , U′) such that

U′v =

{
{1D8;Cv := 20, BC0 5 5v := 5, <43820;v := 20} if v = e,
Uv otherwise.

(3)

All other elements of the state remain unmodified. The resulting f′ ∈ (C0C4 reflects the new observations concerning
resource amounts, obtained from the audit report.

Next, to accommodate an update to the resource demands at location e, we specify the Σ-operation D?30C4 :
(C0C4 ×+ × �4<0=3 → (C0C4 such that the equation

D?30C4(f, e, q) =  \ {34<0=3e} ∪ {q} (4)

replaces the minimal demand predicate 34<0=3e with the new predicate q in the set  . If 34<0=3e does not exist
in  , then q is added.

In this scenario, we have q ≡ (1D8;Ce ≥ 20) ∧ (BC0 5 5e ≥ 5) ∧ (<43820;e ≥ 70).

Analysis

In this phase, we analyse the system state to determine its health. First, we compute the resources necessary for
location e based on new demands. Hence, we evaluate UB = B<C (34<0=3e) using an SMT solver to compute the
supply assignment UB = {1D8;CB := 20, BC0 5 5B := 5, <43820;B := 70}. Lifting standard arithmetic operations to
assignments yields the pointwise operation Us − U′e e.g.,

1D8;CB − 1D8;C ′e = 20 − 20 = 0
BC0 5 5B − BC0 5 5 ′e = 5 − 5 = 0

<43820;B − <43820; ′e = 70 − 20 = 50.

From the analysis, we determine that 50 units of medical supplies must be delivered to location e to meet the current
demands.

Plan

In this phase, we devise an adaptation plan with the goal of adapting the managed system back towards a good state.
Formally, an adaptation plan % is a finite sequence 5 ∗ of Σ-operations applied in sequence to the current state f of
the system. The empty sequence of Σ-operations means no adaptation is necessary.

These operations are meant to correspond to, and model, actual real-world disaster-relief commands performed
by disaster managers. In this scenario, the disaster managers must transport 50 medical aid resources from other
locations in region to location e. To model the transport of resources from source to destination, we define the
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Σ-operation CA0=B?>AC : (C0C4 × + → + × ' × Z→ (C0C4 such that amount = of resource A is transported from
source location u to destination v. In symbols,

CA0=B?>AC (f, u, v, A, =) = 0D38C (0D38C (f, u, A, UD (A) − =), v, A, Uv + =) (5)

if there are enough resources at location v; e.g., | Uv (A) − = |≥ 0. Otherwise, the state f remains unmodified.
While the analysis phase revealed the system was in a bad state, it is up to the planning phase to devise a plan to
return the system to a good state. To this end, we first query the graph � to identify locations with a surplus of
medical supplies. From these locations, we might select two locations: d and f with 20 and 30 units respectively
who are geographically closer than other candidate locations, based on shortest paths information stored by the
graph edges.
Thus, the adaptation plan % to resolve resource demand at location e comprises the sequence of two CA0=B?>AC
operations:

1. CA0=B?>AC (f, d, e, <43820;, 20) using shortest path (d) → (g) → (e) and

2. CA0=B?>AC (f, f, e, <43820;, 30) using shortest path (f) → (e).

Execute

The execute phase is required to actuate the adaptation plan in the region, and is represented by the dashed line from
the system to the physical environment in Figure 1. From the perspective of the managed system, simply executing
the CA0=B?>AC operation updates the current state and resources are at the correct location. However, in the physical
environment of the disaster-affected region, resource transport is much more complex. It requires coordination of
vehicles, infrastructure availability and personnel to support the operations. In this scenario, we only considered the
shortest path between locations, assuming roadways are undamaged and available throughout the region.

ADAPTING RESOURCING FOR A NEW TRIAGING STATION

In this scenario, we suppose it becomes necessary to form a new emergency triaging station. To update the state
f = (�,  , U) we add a new location h t0 �, represented by the dashed node in Figure 1. The new location is
connected to existing vertices d and f, represented by dashed bi-directional edges. In symbols, we update the graph
such that: � ′ = (+ ′, � ′), where

+ ′ = + ∪ {h}
� ′ = � ∪ {(h, d), (d, h)} ∪ {(h, g), (g, h)}

where the added edges are labelled with corresponding shortest-path distances. Let f′ = (� ′,  , U) be the updated
state of the managed system.
The first-responders report they require built infrastructure for at least 10 beds, two more staff and 40 units of
medical aid. We formalise these requirements as the following logical predicate

34<0=3h ≡ (1D8;Ch ≥ 10) ∧ (BC0 5 5h ≥ 5) ∧ (<43820;h ≥ 40) (6)

over resources in '. Updating the (currently nonexistent) resource demands for h in state f′ , we set f′′ =
D?30C4(f′, h, 34<0=3h).
Currently, there is only makeshift built infrastructure and three first-responders staff with a limited supply of 5 units
of medical aid at h. Formally, Uh = {1D8;Ch := 0, BC0 5 5h := 2, <43820;h := 5}.
The remainingMAPE loop phases are similar to the previous scenario. We utilise SMT solving UB = B<C (34<0=3h)
to obtain resourcing requirements at location h. By calculating outstanding resource requirements UB−Uh determines
the need for 10 built infrastructure, 3 staff and 35 units of medical aid to be transported.

ANALYSING PROBABILISTIC MODELS OF INFRASTRUCTURE AVAILABILITY

Transportation route decisions are often made with a high level of uncertainty arising from infrastructure conditions
in the affected region. The previous scenarios did not consider this when devising adaptation plans. While
CA0=B?>AC (f, D, E, A, =) might be performed optimally in terms of geographically shortest path between D and E,
the route may have a low likelihood of success due to dangerous circumstances or from road damage.
To provide disaster managers the means to evaluate alternative routes based on likelihood of success, we synthesis
the Markov model < that represents all paths through the graph � of the disaster-affected region. The analysis
phase performs probabilistic model checking of a temporal logic formula q on < to compute an optimal path for
reaching E from D.
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Model Synthesis

We synthesis a Markov Decision Process (MDP) model < from the Auckland CBD graph� to analyse the maximum
probability of the CA0=B?>AC (f, d, e, <43820;, 20) operation succeeding.

The model is expressed in Prism’s high-level modelling language (Kwiatkowska et al. 2011) and a fragment of
the model is listed in Figure 2. In Prism, a model is composed of interacting modules. The transport module
contains state variable s that varies between values 0 and 8. In particular, 0 through to 6 encode locations a to g=6
in � and are specified by constants in the model fragment in Figure 2. The initial state is d=3, corresponding to the
transport’s source location and the other states encode locations from the graph. The two states succ and fail
model the success or failure of the CA0=B?>AC operation respectively.

The models’ behaviour is specified by transitions labeled with probability distributions that decide the next state.
Probabilities encode the likelihood of successfully traversing between connected locations. Probabilities are
computed via the monitor phase of the MAPE loop and must be continually updated using observations from variety
of sensors, on-site personnel reporting, or from social media analysis such as in (Paterson et al. 2019).

To determine the next state, first an available transition from the current state is non-deterministically selected. Then
the next state is randomly chosen based on corresponding distribution. For example, the three transitions

[da] (s = d) -> pda:(s’=a) + (1-pda):(s’=fail);

[dc] (s = d) -> pdc:(s’=c) + (1-pdc):(s’=fail);

[dg] (s = d) -> pdg:(s’=g) + (1-pdg):(s’=fail);

model the choice of available directions from location d to a, c and g in the graph. Each have a guard predicate
(s=d) over the state variable B. If we decide to select the last transition labelled [dg] then the updates s’=g and
s’=fail specify new state based on the distribution with probability pdg the transport will successfully traverse to
location g. Otherwise the model will traverse to the 5 08; state with probability 1-pdg.

When the CA0=B?>AC (f, d, e, 20) is performed, model< is synthesised and the following adaptationMAPE feedback
phases occur.

Model Analysis Using Probabilistic Model Checking

The synthesised Markov model < acts as input to a probabilistic model checker which computes the probability of
the model satisfying a probabilistic temporal logic formula q. Let ?<2 : " × %→ [0, 1] be a probabilistic model
checker such that ?<2(<, q) = ? if, and only if, the probability of q |= < is ?. Probabilistic model checking has
mature, well established software tools (Kwiatkowska et al. 2011; Dehnert et al. 2017) to automatically analyse a
wide range of Markov models.

In this scenario, we are interested in selecting a route with the maximum probability of reaching the BD22 state,
from initial state d. To analyse the synthesised Markov model, we specify the probabilistic temporal logic formula
q ≡ Pmax=?[F(s=succ)]. which essentially queries the model to answer what is the maximum probability that we
Finally reach a state from the initial state s=d such that s = succ is true? In symbols, we equate

0.8633 = ?<2(<, Pmax[F (s=succ)])
= maximum probability of CA0=B?>AC (f, d, e, A, 20) succeeding in state f.

Continual model analysis incorporates new observations such as previously unknown road damage to update the
path d to e while resources are still en-route. For example, suppose analysis of ?<2 is performed after transition
(d) → (g) is completed. The transition (g) → (e) has availability reduced to 0.1, as extensive damaged has
occurred on the route. Reanalysis of the model < with updated probability transitions yields the alternative path
(6) → ( 5 ) → (4) which, although it is not the shortest path, it does have an increased probability of success.

SELF-ADAPTIVE SYSTEMS WITH HUMANS IN THE LOOP

So far, we have focused on the ways model synthesis and analysis can be automated to devise plans. In this section,
we focus on the role humans have in the different parts of the self-cr system adaptation MAPE loop. For example,
humans act as sophisticated sensors that supply information by e.g., interacting with eHealth application to carry out
digital auditing or interacting with social media platforms (Paterson et al. 2019). Ultimately, it is the human disaster
managers decision-makers that approve planning for emergency workers who become actuation agents, conducting
actions that are difficult to automate (e.g., physically process and transport resources between locations).
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//transport operation model from location d to e
mdp
const int a=0;,...,const int g=6;const int succ = 7;const int fail = 8;
const double pcb = 0.9;
const double pce = 0.8;
const double pdc = 0.78;
const double pdg = 0.89;
const double pge = 0.97;
...
module transport

s : [0..8] init d;
[ab] (s = a) -> pab:(s’=b) + (1-pab):(s’=fail);
[ac] (s = a) -> pac:(s’=c) + (1-pac):(s’=fail);
[ad] (s = a) -> pad:(s’=d) + (1-pad):(s’=fail);
...
[da] (s = d) -> pda:(s’=a) + (1-pda):(s’=fail);
[dc] (s = d) -> pdc:(s’=c) + (1-pdc):(s’=fail);
[dg] (s = d) -> pdg:(s’=g) + (1-pdg):(s’=fail);
...
[gd] (s = g) -> pgd:(s’=d) + (1-pgd):(s’=fail);
[ge] (s = g) -> pge:(s’=e) + (1-pge):(s’=fail);
[gf] (s = g) -> pgf:(s’=f) + (1-pgf):(s’=fail);
[succ] (s = e) -> 1.0:(s’=succ);
[succ] (s=succ) -> 1.0:(s’=succ);
[fail] (s=fail) -> 1.0:(s’=fail);

endmodule

Figure 2. Synthesised MDP fragment modelling Auckland CBD infrastructure availability.

Humans play a critical role in the success of any action forming a crisis response. However, the MAPE loop
planning phase devises plans in terms of geospatial data and infrastructure availability. We describe the actuation
role of humans within the self-cr system. In this sense, there is a growing need to model the impact of human
participants on mission goals.
To model human involvement in the self-cr systemMAPE loop, we use the Opportunity-Willingness-Capability
(OWC) ontology (Eskins and Sanders 2011). The OWC ontology is a readily applicable and generic framework,
used in cyber security applications and for analysing human in the loop of self-adaptive systems (Cámara, Garlan,
et al. 2017; Cámara, Moreno, et al. 2015; Li et al. 2020). OWC models effects of human decisions on a socio-cyber
physical system (SCPS), composed of interacting humans, physical and digital components. The disaster-affected
region is a SCPS composed of

• human participants: disaster managers, casualties, first-responders and emergency workers

• physical locations, roads and resources, and

• eHealth digital systems and smart technologies prevalent in modern cities.

Using our current elementary models, plans devised by the MAPE loop are simply a sequence of operations
performed by one or more human participants using the system components. However, in principle, plans often
comprise complexities featuring multiple actions taking place in parallel at different locations

Personnel Profiles of Human Participants

To analyse effects of human decisions on the state of the disaster-affected region, we need to include updated
information about the system’s human participants, such as their skills and competencies, experience and location.
We consider in particular, emergency workers who are dispatched to the disaster-affected region as first responders.
Mathematically, we extend states in (C0C4 to tuples of the form f = (�,  , U, %) where % = ⋃

E∈+ %E . The set
%E contains ? ∈ %E representing the personnel profile of a human participant at location E, comprising subsets of
metadata tags in the sets (', �', �- describing
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• (' ⊆ {VEHICLE-ACCESS, MEDIC, ENGINEER}, identifying skills and responsibilities that correspond to the
human participant’s disaster relief role

• �' ⊆ {READY, ACTIVE, RELIEVE} identifying the human participant’s duty roster status: ready to be
deployed, active on location, and waiting to be relieved and

• �- ⊆ {HIGH, MED, LOW}, identifying levels of experience and competencies.

Opportunity-Willingness-Capability

Given the operation CA0=B?>AC (d, e, <43820;, 20), we are interested if it is successful or not. If successful, we
expect the resulting system state f′ to represent the achievement of 20 medical supplies transported from location d
to location e. Otherwise, the operation has not been performed properly.

To perform this Σ-operation successfully, the current state f of the disaster-affected region must satisfy an
intersection of predicates on the states in (C0C4.

This section defines three functions that categorise states in (C0C4 by factors relating to a given human participant
?’s opportunity, willingness and capability to perform the operation on the state f ∈ (C0C4 and follows (Eskins and
Sanders 2011) closely.

Opportunity

Opportunity formalises prerequisites to be satisfied for CA0=B?>AC to be performed. They are essentially formalised
as a predicate on f and codified in (5). To meet the conditions to attempt the operation, the human participant ?
must i) be physically present at source location d ii) have access to a suitable vehicle, iii) have access to enough
medical aid resources to transport. Let CA0=B?>AC> : (C0C4 × %→ B be defined by the following conjunction of
three predicates on the input state f such that

CA0=B?>AC> (f, ?) = (? ∈ %d) ∧ (VEHICLE-ACCESS ∈ '�) ∧ (| Ud (<43820;) − 20 |≥ 0). (7)

Willingness

Willingness capturing the desire of the human participant ? to perform the CA0=B?>AC operation.

For example, CA0=B?>ACF : (C0C4 × %→ [0, 1] assigns values to tags in the duty roster �' of participant ? such
that

CA0=B?>ACF (f, ?) =


0.99 READY ∈ �',
0.85 ACTIVE ∈ �',
0.1 RELIEVE ∈ �'.

(8)

Essentially, we have related willingness to fatigue, as indicated to ?’s current duty roster status. Determining
such probabilities can be achieved using a range of run-time monitoring techniques that include, among others,
brain-computer interaction. For more details about how such techniques have been employed in combination with
OWC in the context of self-adaptive systems, please refer to (Lloyd et al. 2017).

Capability

Capability formalises the idea that given the first two predicates of opportunity and willingness that participant ? can
succeed in completing an operation only some of the time. Therefore capability is expressed in terms of elements of
the current state that specify participants ?’s level of experience, based on previous success of performing similar
operations. We define the function CA0=B?>AC2 : (C0C4 × %→ [0, 1] such that

CA0=B?>AC2 (f, ?) =


0.90 HIGH ∈ �-,
0.50 MED ∈ �-,
0.35 LOW ∈ �-.

(9)

This assignment of values to tags in �- formalise the intuitive idea that higher experience in performing an
operation often results in success, whereas inexperience may lead to an increased probability of failure.

To summarise, the tuple CA0=B?>AC>F2 = (CA0=B?>AC>, CA0=B?>ACF , CA0=B?>AC2) provides a formal means to
categorise states elements and identify key variables affecting operation performance. These properties are
particularly useful for simulating a range of potential first-responder deployment configurations (e.g., which
participant should go where) and can inform necessary training and professional development programs for staff in
future scenarios.
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OWC in localised Staff and Resource Allocation

The OWC ontology can be used to plan localised disasters, such as a fire service dealing with a large building fire.
Such an event requires rapid fire response and subsequent adaptation as the situation evolves over the course of the
response. It also requires the allocation of available personnel to specific fronts the fire is being fought on. In a
recent fire at the SkyCity Convention Centre in Auckland1, it was found that the dynamic nature of fighting a large
fire over several days often makes it difficult to ensure the right allocation of personnel to fronts. For instance, some
personnel may need to stay at a front for longer than desired due to non-availability of adequate replacements. In
some other cases, personnel waiting in a “holding area" may not be clearly identified and hence cannot be assigned
to fronts in a timely manner.

//constants extracted from current state and personnel profile of participant [
const int dMedical = 33;//medical unit count at location d
const bool p_dLocation = true;//is p at location d?
const bool p_vehicle = true;//does p have vehicle?
const bool p_active = true;//is p on active duty
const double pActive = 0.85;//probability associated with Active tag
const double pHigh = 0.90; //probability associated with high experience

module transport_o
opp : [0..1] init 0;
[] (opp = 0)&p_dLocation&p_vehicle&p_active&dMedical>=20 -> (opp’=1);
[] (opp = 1) -> true;

endmodule

module transport_w
will : [0..2] init 0;
[] (will = 0) -> pActive:(will’=1) + (1-pActive):(will’=2);
[] (will = 1) -> true;
[] (will = 2) -> true;

endmodule

module transport_c
cap : [0..2] init 0;
[] (cap = 0)&(opp=1)&(will=1) -> pHigh:(cap’=1) + (1-pHigh):(cap’=2);
[] (cap = 1) -> true;
[] (cap = 2) -> true;

endmodule

Figure 3. Synthesised Markov Model fragment for OWC analysis of personnel profile.

OWC Markov Model Synthesis and Analysis

Analysing models of humans-in-the-loop during the analysis phase of the MAPE loop can positively impact
on the overall success of the adaptive plan chosen by disaster managers. To automate analysis, Markov
models are synthesised from the current state f and the human participant ?’s personnel profile: ? :=
({VEHICLE-ACCESS}, {ACTIVE}, {HIGH}) and current position at location d.
Each function in the CA0=B?>AC>F2 tuple is modelled by a Markov model, presented in Figure 3 in Prism’s high-level
language. Each module is small with two or three states and all with initial state 0. The modules reference Boolean,
integer and double constant parameters that are instantiated from the current system state f and profile ?. In
particular,

• transport_o transitions to state 1 from the initial state whenever predicates formalised in (7) are satisfied,

• transport_w transitions to state 1 according to the corresponding ACTIVE probability distribution value
instantiated as pActive = 0.85, specified by (8). Otherwise the transition to state 2 is triggered to represent
that the operation fails to be performed, and

1www.stuff.co.nz/national/300125069/skycity-convention-centre-fire-fire-and-emergency-could-not-have-prevented-damage
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• transport_c transitions to state 1 whenever ? has the opportunity and willingness to perform the operation.
The operation succeeds according to the probability distribution value instantiated as pHigh = 0.90,
specified by (9). Otherwise the transition to state 2 is triggered to represent that the operation fails to be
performed.

Now, by composing these three modules with the transport Prism model listed in Figure 2, we can select a route
with the maximum probability of reaching the BD22 state and that the human participant ? has the opportunity,
willingness and capability to transport resources from d to e. We formalise this property by the probabilistic
temporal logic formula

0.66042 = ?<2(<, Pmax=?[F((s=succ)&(opp=1)&(cap=1)&(will=1))])
= maximum probability ? performs CA0=B?>AC (f, d, e, A, 20) successfully in state f.

CONCLUDING REMARKS

In this paper, we formalised a conceptual framework in which the disaster-affected region is managed by a
self-adaptive system feedback MAPE loop. A key technical challenge for analysing disaster models is their
changeability. Disasters evolve and their models must also change to reflect what is happening in the real world,
as micro-events may make previous analysis results outdated and model reverification necessary. Our approach
is not dissimilar to managing digital computing systems and therefore draws on its extensive body of theoretical
results from runtime verification (Weyns 2020). The aim is to minimise the amount of costly reverification and
reuse previous results whenever possible, often by isolating reverification to parts of the model affected by change
(Johnson, Calinescu, et al. 2013), thus reducing the amount of analysis needed.

Another important aspect to consider is uncertainties related to impact of changes in a system (Perez-Palacin and
Mirandola 2014). Sensitivity analysis (Goseva-Popstojanova and Kamavaram 2004) is particularly important for
disaster management applications as small disruptions could have serious consequences for planning outcomes. For
example, unavailability of a single critical route through a city can seriously disrupt resource allocation planning.

Our work in this paper has focused on the analysis phase to determine what resources are required and where.
We extended logical analysis via probabilistic model checking to determine optimal routes through the region,
based on current road conditions and profiles of human participants. Indeed, while the current paper features a
simple ontology mapping personnel profiles to task performance, our overall aim is to validate compatibility of
first-responder groups’ plans during the response to a disaster to support parallel planning operations. In addition,
we can also consider analysis techniques such as fuzzy set representation to study several alternatives in resource
allocation and transportation planning (Zheng and Ling 2013; Zhang et al. 2019).

Our research programme aims to develop a generic and re-usable self-adaptive system framework, where phases are
extendable using standardised interfaces to support

• multiple sensory inputs from digital and human sources, such as wearable sensors for first-responders

• multi-stage analysis and automated planning across several formal verification techniques, extending our
current results

• integration of deep-learning and AI techniques to better understand the efficacy of plans and support
decentralised planning

The theoretical framework will form the basis of software tools amenable for developing a number of simulation-
based applications to test and validate planning, such as analysing critical sections of the graph to help understand
disaster plan vulnerabilities. We aim to develop formalised disaster plans that are testable and repeatable across a
range of what-if disaster scenarios. This may allow planners to identify critical resource placements and information
needs by running simulations that change these parameters.
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