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Abstract

An increasingly important requirement for software-
intensive systems is the ability to self-manage by adapting
their structure and behavior at run-time in an autonomous
way as a response to a variety of changes that may occur
to the system, its environment, or its goals. In particular,
self-adaptive (or autonomic) systems incorporate complex
software components that act as controllers of a target sys-
tem by executing actions through effectors, based on in-
formation monitored by probes. However, although these
controllers are becoming critical in many application do-
mains, it is still difficult to assess their robustness. The pro-
posed approach for evaluating the robustness of controllers
for self-adaptive software systems, is aimed at the effective
identification of design faults. To achieve this objective, our
proposal is based on a set of robustness tests that include
the provision of mutated inputs to the interfaces between the
controller and the target system (i.e., probes). The feasibil-
ity of the approach is evaluated in the context of Znn.com,
a case study implemented using the Rainbow framework for
architecture-based self-adaptation.

1. Introduction

What distinguishes a self-adaptive system from any other
system is its ability to continuously deliver its services de-
spite changes that may occur in the system, its environment
or its goals. A key component that enables self-adaptive
systems to handle changes at run-time is a controller that
relies on a feedback loop for managing adaptations [3] by
executing actions through effectors on the target system,
based on information monitored by probes. In the con-
text of complex software systems, these controllers consist
usually of four distinct operational stages, namely, monitor-
ing, analysis, planning and execution [13], that implement

the traditional sense-plan-act architectures. Although ma-
jor advances have been made, existing approaches in self-
adaptation do not systematically address the need to deter-
mine if a self-adaptive system can deliver a service that can
justifiably be trusted when facing changes (i.e., that it will
be resilient [16]). This lack of assurances is one issue that
has hampered the widespread adoption of self-adaptive sys-
tems. A major problem associated with the provision of evi-
dence is the combinatorial nature of the stateful aspects of a
controller and the changes that may affect the system being
controlled. Since the operational stages should be function-
ally independent from each other, a change might have a
different impact on the controller depending on the state in
which a controller is. Moreover, if the controller is expected
to act upon a change when it occurs, there is a wide range
of issues that needs to be considered when producing the
appropriate action, including the place in which the change
has occurred, the type and the frequency of the change, and
whether it can be anticipated [2]. These factors need to be
taken into account if assurances need to be provided about
the services to be delivered by the target system, hence tech-
niques need to be devised to uncover potential faults in the
controller.

This paper describes an approach for evaluating the ro-
bustness of controllers for self-adaptive systems by abstract-
ing away, in a first instance, from the state of the target
system being controlled. The rationale behind this is the
fact that the complexity associated with these controllers is
such that we need first to devise novel means for evaluat-
ing the core logic that enables adaptation, before delving
into the ensemble target system plus controller. Moreover,
if the robustness evaluation is performed on the ensemble,
some of the controller faults could be masked by the target
system, or their effects upon the system could be more dif-
ficult to analyse. Hence the decision to define an approach
that can be used in the robustness evaluation of different
controllers, assuming that the core logic of the different op-



erational stages is basically the same on the different con-
trollers [9]. In this way, we restrict the robustness tests
to the inputs of the controller, which are characterized by
the probes. Although the proposed approach abstracts away
from the target system, we need to consider the stateful as-
pects of the controller, which are related to the operational
stage of the controller.

This paper has two clear contributions, which can be
seen from different viewpoints.

• from the perspective of resilience, the paper presents
an approach for evaluating the robustness of con-
trollers for self-adaptive software systems by defining
a set of mutation rules that should be applied to the in-
puts of the controller, a tailored version of controller
failure modes, and an experimental setup and testing
procedure that is specific to self-adaptive systems.

• from the perspective of robustness evaluation, the pa-
per presents an approach that enables the evaluation
of controllers in different states by defining how the
controller interface should be tested according to the
target system changeload, and the operational stage of
the controller.

The feasibility of the proposed approach for evaluating
the robustness of controllers for self-adaptive software sys-
tems is evaluated in the context of Rainbow framework for
architecture-based self-adaptation using the Znn.com case
study [9]. Rainbow has been chosen for performing the
experiments since its software has been widely available,
its structure facilitates access to its internal components, its
design is amenable to the injection of faults, and the logs
Rainbow produces are suitable for analysing the effects of
the injected faults upon the controller. For evaluating the
robustness of Rainbow, all the faults are injected at its in-
terface (i.e., the probes that interface Rainbow with the sys-
tem) based on an identified set of mutation rules.

The rest of this paper is structured as follows. Section 2
provides some background on self-adaptive systems and re-
lated work in the area of robustness testing. Section 3 in-
troduces the Znn.com case study, which is used throughout
the paper for illustrating the proposed approach. Section 4
describes our approach that is focused specifically on evalu-
ating the robustness of controllers for self-adaptive systems.
Section 5 presents the experimental results obtained from
the evaluation of our approach. Finally, Section 6 concludes
the paper and indicates future research directions.

2. Background and Related Work

Over the past few years, run-time management of in-
creasingly complex software-intensive systems has become

a central concern in Software Engineering [5, 8]. Con-
cretely, a major issue in this area is related to achieving con-
formance to functional and non-functional requirements in
a dependable and cost-effective manner while changes may
affect the system, its environment, and system goals.

One of the proposals addressing this concern was IBM’s
Autonomic Computing initiative [13], which has introduced
a layer implementing what is known as the MAPE-K con-
trol loop to Monitor, Analyse, Plan, and Execute adapta-
tion (with a Knowledge base acting as a cornerstone of the
process) for purpose of managing a target system. Some
successful approaches that rely on this closed-loop con-
trol paradigm for self-adaptation exploit architectural mod-
els for reasoning about the target system under manage-
ment [9, 20]. In particular, Rainbow [9] provides a base of
reusable infrastructure that can be applied to a wide range
of systems through customisation. Section 4.4 provides fur-
ther information about Rainbow, which is used for the ex-
perimental validation of our approach.

2.1. Resilience Evaluation in Self-Adaptive
Systems

Though the field of self-adaptive software system is rel-
atively new, there are already contributions regarding the
provision of assurances, though the main focus of these
contributions has been towards the ensemble target system
plus controller regarding application. To the best of our
knowledge, nothing has been done regarding the evaluation
of controllers, though there is already some ground work
pointing in this direction [5, 8].

One of the areas that are related to that of resilience
evaluation is that of resilience benchmarking, which en-
compasses techniques from previous efforts in performance
benchmarking [10], dependability benchmarking [12], and
security benchmarking [18], due to its inherent relation to
performance, dependability and security. Comparing to es-
tablished benchmarks, a resilience benchmark may be spec-
ified following the same basic approach, but comprising a
wide-ranging changeload (which will include, but will be
not limited to, faults), as well as resilience metrics [1].

Other approaches deal with resilience evaluation
through quantitative analysis using probabilistic model-
checking [4], considering the system environment as the
only source of change and leaving out changes that are in-
ternal to the system. The cited approaches quantitatively
measure resilience in the self-adaptive system when facing
changes either internal or external to the system. However,
they do not deal with an additional source of problems from
the perspective of resilience, which are robustness issues
addressed by the techniques presented in the current paper.
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2.2. Robustness Testing

Robustness testing allows the characterisation of the be-
haviour of a system or component in presence of erroneous
input conditions. Robustness tests stimulate the system un-
der testing in a way that may trigger internal errors and this
allows developers to solve or wrap the identified problems.
This technique can be used to differentiate systems accord-
ing to the number and type of errors uncovered [19].

Ballista [14] uses a set of tests that combine acceptable
and exceptional values on calls to kernel functions of oper-
ating systems. The parameter values used in each invoca-
tion are randomly extracted from a set of predefined tests
and for each parameter a set of values of a certain data type
is associated. Each operating system is classified in terms
of its robustness and according to a predefined scale (the
CRASH scale) that distinguishes several failure modes.

MAFALDA (Microkernel Assessment by Fault injection
AnaLysis and Design Aid) [21] is a tool that enables the
characterisation of the behaviour of microkernels in the
presence of faults. Fault injection is performed at two lev-
els: in the parameters of system calls and in the memory
segments holding the target microkernel. However, only the
former is relevant when the goal is robustness testing.

In previous work, we defined an approach to assess the
behaviour of web services in the presence of tampered
SOAP messages [24]. The proposed approach consists of
a set of robustness tests based on invalid web services call
parameters. The web services are classified according to the
failures observed during the execution of the tests and using
an adaptation of the CRASH scale [15].

The aforementioned works implement robustness testing
approaches that do not consider the state of the system un-
der test. In [7] the impact of state on robustness testing
of a safety-critical operating system (OS) is investigated by
including the OS state in test cases definition. Although
system-specific, results show that the state can play an im-
portant role in testing, being able to cover more cases when
compared to the traditional approaches.

An approach for robustness testing method of stateful
Web Services, modelled with Symbolic Transition Systems,
is presented in [23]. A test case generation method is pro-
posed using unusual values and replacement and additions
of operation names. States are transversed using different
operations and starting from a system specification which,
depending on the system being tested, may not always be
available. The authors assume that messages sent and re-
ceived are only SOAP messages and suggest that a web ser-
vice could be considered as a grey box from which any type
of message could be observed, increasing the potential of
the technique.

3. Case Study

To illustrate our approach for robustness testing, we use
the Znn.com case study [6], which is implemented using
Rainbow, and is able to reproduce the typical infrastructure
for a news website. It has a three-tier architecture consist-
ing of a set of servers that provide contents from backend
databases to clients via front-end presentation logic. Archi-
tecturally, it is a web-based client-server system that sat-
isfies an N-tier style, as illustrated in Figure 1. The sys-
tem uses a load balancer to balance requests across a pool
of replicated servers, the size of which can be adjusted ac-
cording to service demand. A set of client processes makes
stateless requests, and the servers deliver the requested con-
tents (i.e., text, images and videos).

c0

c1

c2

lbproxy

s0

s1

s2

s3

Figure 1. Znn.com system architecture

The main objective for Znn.com is to provide content to
customers within a reasonable response time, while keeping
the cost of the server pool within a certain operating budget.
It is considered that from time to time, due to highly pop-
ular events, Znn.com experiences spikes in requests that it
cannot serve adequately, even at maximum pool size. To
prevent losing customers, the system can provide minimal
textual contents during such peak times, instead of not pro-
viding service to some of its customers. Concretely, there
are two main quality objectives for the self-adaptation of
the system: (i) performance, which depends on request re-
sponse time, server load, and network bandwidth, and (ii)
cost, associated to the number of active servers.

In the case of Znn.com, Rainbow is capable of analysing
trade-offs among the different objectives, and execute dif-
ferent adaptations according to the particular run-time con-
ditions of the system. For instance, when response time
becomes too high, the system should increment server pool
size if it is within budget to improve its performance; oth-
erwise, servers should be switched to textual mode (start
serving minimal text content) if cost is near budget limit.

4. Approach

Our proposal for evaluating the robustness of a self-
adaptive software system considers the model depicted in
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Figure 2. The environment consists of all non-controllable
elements that determine the operating conditions of the sys-
tem (e.g., hardware, network, physical context, etc.). Re-
garding the system itself, we distinguish two main subsys-
tems: a target system, which interacts with the environment
by monitoring relevant variables associated with operating
conditions, and a controller that manages the target system,
driving adaptation whenever it is required. Concretely, the
controller carries out its function by: (i) monitoring the tar-
get system and environment through probes that provide in-
formation about the value of relevant variables, (ii) deciding
whether the current state demands adaptation, and if this is
the case, (iii) applying a sequence of control actions through
system-level effectors.

Self-Adaptive Software System

Controller

Environment
Non-controllable software, hardware, 

network, physical context

Target System

Effectors

Adapt

Probes

Monitor

MonitorAffect

M
o

n
it
o

r

Probes

Figure 2. Self-adaptive software system

In this paper, instead of looking into the robustness of
the entire system, we focus on the robustness of the con-
troller, i.e., we modify the probes’ inputs into the controller
with the intent of evaluating how robust is the controller re-
garding changes that may affect its interface. For this eval-
uation, the controller is considered to be stateful since for
the same input, the controller’s internal state may influence
its output. In order to tackle this issue, we consider input
mutation during the different operation stages of the con-
troller (i.e., analysis, planning, execution) to create an ap-
propriate context for evaluating its robustness. The key el-
ements of our approach are: changeload, which is a set of
representative change scenarios, where changes are based
on controller input mutations; failure mode classification,
that characterizes the run-time behaviour of the controller
while the target system is running in the presence of the
changeload; and robustness tests, the mutation rules that are
applied to the input probes into the controller.

In the following, in addition of describing the key ele-
ments of our approach, we also present how robustness tests
are performed at the controller interface by mutating the in-
puts provided by the probes. To exemplify the principles of
our approach, we have instantiated it into Rainbow [9].

4.1. Changeload Model

This section describes the proposed model for the
changeload, presenting the definitions adopted for the fun-
damental concepts that form the basis of its structure.

Definition 1 (Change Type) A change type is a tuple
(src,m, A) that characterises a change, where:

• src identifies the source probe type where a mutation
rule is applied,

• m identifies the mutation rule applied on probe input,

• A = 〈a1, . . . , an〉 (possibly empty) is a vector of at-
tributes that holds specific information about the mu-
tation rule.

Example 1 In Znn.com, consider the change “Set an in-
valid timestamp date on a response time probe (type Client-

ProxyProbeT)”. A possible change type definition for this
would be:

invalidDateCPP CT= ( ClientProxyProbeT, TSInvalidDate, 〈date〉)

Definition 2 (Change) Given a set of change types CT, a
change is a tuple (ct, srcinst,VA, ti, d) that corresponds to
an instantiation of a change type, where:

• ct = (src,m, A) ∈ CT determines the change type to be
instanced as a change,

• srcinst is the probe instance that is the source of
change (i.e., in which the input is mutated),

• VA = 〈vA1, . . . , vAn〉 is a vector of attribute values in-
stantiating the attributes in A,

• ti ∈ R+
0 determines the time instant in which the change

is triggered,

• d ∈ R+ is the duration associated with the change.

It is worth observing that while some specific changes
may be transient, impacting the controller’s input during a
particular amount of time, in the definition above duration
can be considered equal to∞ if the change is permanent.

Example 2 If we consider the change type described in Ex-
ample 1, a possible instantiation of it could be:

(invalidDateCPP CT,ClientProxyProbe1, 〈′2/29/1984′〉, 10, 2)

The systematic identification and classification of
change types is fundamental to support the definition of
change scenarios, which is discussed in the next paragraphs.

The main base concept in our changeload model is the
scenario. A scenario is a postulated sequence of events that
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captures the state of the system and its environment, sys-
tem goals 1, and changes affecting all the aforementioned
elements. It is defined in terms of state (system and envi-
ronment) and changes applied to that state.

Definition 3 (Scenario) A scenario is a tuple (wl, oc,C),
where:

• wl represents the workload, that is, the amount and
type of work assigned to the system (not necessarily
static),

• oc are the operational conditions of the system (includ-
ing software and hardware resources needed for the
system to perform its service),

• C is a set of changes applied to controller input in the
presence of the workload and operational conditions.

Based on the definition above, a change scenario is one
which includes a non-empty set of changes (C , ∅).

Definition 4 (Changeload) A changeload is a set of
change scenarios.

4.2. Controller Failure Modes

The robustness of a controller for a self-adaptive sys-
tem can be classified according to an adapted version of
the CRASH scale [15], which distinguishes the following
failure modes:

1. Catastrophic: the whole controller crashes or be-
comes corrupted (this might include the OS or machine
on which the controller is running). No output is pro-
duced.

2. Restart: the controllers execution hangs and may not
issue any output commands, or send always the same
command, within the worst case execution time asso-
ciated with the adaptation cycle. The controller needs
to be externally re-booted.

3. Abort: abnormal behavior in the controller occurs due
to an exception raised at run-time inside of the con-
troller.

4. Silent: the controller fails to acknowledge an error, for
instance by signalling an exception, which causes the
controller to continue operating improperly.

1For the sake of simplicity, in this paper we abstract away from system
goals, which are not required to deal with robustness evaluation of the
controller.

5. Hindering: the controller fails to return a correct error
code, which may hinder error recovery. The difference
between a silent failure and this case is that, here an er-
ror is acknowledged by the controller but the returned
error code is incorrect.

In particular, it is worth observing that the tailored ver-
sion of the CRASH scale for controllers in self-adaptive
software systems includes an specific adaptation which is
related with time (2).

4.3. Robustness Tests

The basis of the proposed approach for evaluating the
robustness of controllers for self-adaptive software systems
relies on stimulating the interface of the controller, which
consists of probes that monitor both the target system and
its environment (see Figure 2). For evaluating how robust is
the controller, regarding changes that my affect its interface,
the probes’ inputs into the controller are modified according
to a comprehensive set of mutation rules. Moreover, since
the inputs of these probes may affect the different stages of
a MAPE-K control loop, the evaluation needs to consider
the controller as stateful. Although for evaluating the ro-
bustness of a controller we are able to abstract away from
the application (target system), we nevertheless use the ap-
plication to drive the evaluation.

4.3.1 Mutation Rules

The set of robustness tests performed is automatically gen-
erated by applying a set of predefined mutation rules to the
messages sent by probes, which characterizes the monitor-
ing stage of the controller. Although concrete message for-
mats and additional elements may exist depending on the
case, the basic input supplied by probes to the controller
typically consists of three basic elements: (i) an identifier
of the variable being monitored, (ii) the actual value for the
variable, and (iii) a timestamp that provides a temporal con-
text for the variable being monitored. For example, in the
case of Rainbow, the kind of input received by the controller
consists of simple messages encoded as text strings with the
following format:

[ timestamp ] variable name : variable value

Based on this general description of probe input, we pro-
pose a set of rules (Table 1), which have been defined based
on previous works on robustness testing [15, 22, 24], and
explore limit conditions that are typically the source of ro-
bustness problems.

4.3.2 Probe Usage Categories

The effect of applying mutation rules on the outputs gener-
ated by the probes may manifest in different ways (or not
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Type Rule Name Description

M
es

sa
ge

MsgNull Replace by null value

MsgEmpty Replace by empty string

MsgPredefined Replace by predefined string

MsgNonPrintable Replace by string with non-printable char-
acters

MsgAddNonPrintable Add non-printable characters to the string

MsgOverflow Add characters to overflow max string size

Ti
m

es
ta

m
p

TSEmpty Replace by empty timestamp

TSRemove Remove timestamp from response

TSInvalidFormat Replace by timestamp with invalid format

TSDateMaxRange Replace date in timestamp by maximum
valid

TSDateMinRange Replace date in timestamp by minimum
valid

TSDateMaxRangePlusOne Replace date in timestamp by maximum
valid plus one

TSDateMinRangeMinusOne Replace date in timestamp by minimum
valid minus one

TSDateAdd100 Add 100 years to date in timestamp

TSDateSubtract100 Subtract 100 years from date in timestamp

TSInvalidDate Replace date in timestamp by invalid date
(e.g., 2/29/1985)

V
ar

ia
bl

e
N

am
e

VNRemove Remove variable name

VNSwap Replace by different valid variable name of
same type

VNSwapType Replace by different valid variable name of
different type

VNInvalidFormat Replace by variable name with invalid for-
mat

VNNotExist Replace by non-existing variable name

V
ar

ia
bl

e
V

al
ue

VVRemove Remove variable value

VVInvalidFormat Replace value by one with invalid format

Number

VVNumAbsoluteMinusOne Replace by -1

VVNumAbsoluteOne Replace by 1

VVNumAbsoluteZero Replace by 0

VVNumAddOne Add 1

VVNumSubtractOne Subtract 1

VVNumMax Replace by maximum number valid for
type

VVNumMin Replace by minimum number valid for
type

VVNumMaxPlusOne Replace by maximum number valid for
type plus one

VVNumMinMinusOne Replace by minimum number valid for
type minus one

VVNumMaxRange Replace by maximum number valid for
variable

VVNumMinRange Replace by minimum number valid for
variable

VVNumMaxRangePlusOne Replace by maximum number valid for
variable plus one

VVNumMinRangeMinusOne Replace by minimum number valid for
variable minus one

Boolean

VVBoolPredefined Replace by predefined value

Table 1. Mutation rules for probes

manifest at all) in the controller, depending on its internal
state. This results from the stateful nature of the controller,
which may use different inputs and in a different way, de-
pending on its operation stage (i.e., analysis, planning, or
execution). Changes in the internal operation stage of the
controller are also induced by input obtained from probes.

Table 2 distinguishes different probe categories, accord-
ing to their use in the different operation stages of the con-
troller. Different robustness issues may arise in the con-
troller, depending on the particular stage/probe in which
mutation rules are applied, even if the set of mutations rules
applied are the same. The same probe can belong to dif-
ferent usage categories and be used during different stages
in the controller. We consider the controller to be a gray
box, while its different operation stages are black boxes on
which probe mutation is applied. For the time being, we
assume that each of these black boxes are stateless, even if
that is not the case as far as the target system is concerned.
The different stages in the controller are sequential, while
monitoring is transversal to all of them.

4.4. Testing Procedure

As discussed previously, inputs to the Rainbow con-
troller are delivered with the use of probes, which provide
important system and environment information such as ex-
perienced response time, network latency, or server load.
Robustness testing focuses on the controller’s input points
(i.e., the probe information). Therefore, a complete robust-
ness experiment must include a set of tests that focuses
precisely on the information provided by each of the input
probes.

Figure 3 represents the complete experimental procedure
and, as we can see in the figure, each experiment includes
several tests, each one focusing on a given probe. For each
probe (which, at runtime is continuously delivering infor-
mation to the controller under test) we apply a single change
for each probe data sample. However, we apply (in the sub-
sequent probe data samples) the same change for a given
period of time, which potentially gives us the possibility of
further disturbing the system under test.

Each robustness test focuses on a single mutation rule
type, and having identified the three major controller oper-
ational stages (analysis, planning, execution), we must exe-
cute the tests with the controller in each of these stages, as it
allows us to cover more cases and potentially disclose more
robustness problems. Therefore, in each test, we must drive
the system from an initial state to a target state by submit-
ting the system to a changeload for a given amount of time
(t1 in Figure 3). This target state is the one in which the sys-
tem should be in order to start testing, and can correspond
to any entry point to any of the three controller stages previ-
ously mentioned. With the controller in the target state, we
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Probe Usage Category Controller Stage Input Usage Example Rainbow/Znn.com

Analysis The controller analyzes the current state of the target
system for detecting anomalies, and triggering adap-
tation if needed.

Anomaly detection. Rainbow checks whether the current response time
(through response time probes) in Znn.com is above
the maximum acceptable response time threshold.

Planning The controller determines if any adaptation plans can
be applied to the system, and selects the best alterna-
tive.

Adaptation plan selection. If the maximum response time is above threshold,
Rainbow detects anomaly and determines the best
adaptation strategy (based on response time and net-
work latency probes).

Execution The controller executes the selected course of action. Control action selection. Rainbow executes the selected adaptation strategy for
reducing response time (monitors response time and
network latency probes).

Table 2. Probe categories

t1#–"Rampup"(changeload"execu2on)"
t2"–"Fault"injec2on"(while"s2ll"on"the"target"state."What"is"the"limit"for"fault"
injec2on"if"there"is"no"state"transi2on?"Number"of"faults,"2me,?)"
t3"B""Keep"2me"(2me"to"reach"the"end"of"a"cycle"(may"not"be"reached,"will"
need"to"be"fit"in"the"failure"modes)"
t4"–"Observa2on"period"

Target#state:#The"ini2al"state"for"tes2ng"
Target#state:"The"state"we"want"to"drive"the"
system"to"start"tes2ng"
Final#state:#Should"be"the"endBofBcycle"state,"
but"is"eventually"unknown"
state"in"the"diagram"is"related"to"the"state"of"
the"experiment"–"in"our"case"we"can"only"
observer"in"which"stage"the"controller"is"

t3"

t4"

t2"t1"

"Probe"3"Probe"0" "Probe"1" "Probe"2" "Probe"n"
!Time"

Complete"experiment"

Change"0" Change"1" Change"2" Change"m"

it"is"not"a"blackBbox,"it"is"greyBbox;"
the"final"state"is"the"end"of"the"cycle,"end"of"execu2on"and"we"can"observe"the"consequences;"
several"faults"of"a"single"type""
single"fault"versus"mul2ple"faults"of"the"same"type"
determine"the"number"of"faults"through"experimenta2on"(representa2veness),"period"should"be"based"
on"the"controller"response"2me"or"cycle"–"length"of"the"experiment""
(worst"case"execu2on"2me"from"the"srategy)"

Ini2al"
state"

Target"
state"

Final"
state"

Figure 3. Robustness testing procedure

can start applying the changes (of the same type) during a
t2 amount of time (see Figure 3) and while the controller is
on the target state. This period of time should be set to the
typical time required to transition from the target controller
state for the test to the next state. After this probe muta-
tion period there is a t3 period which is the time required
for the system to reach a final state, which marks the end
of the current test, and corresponds to the completion of the
controller’s execution stage. At most, t3 should be set to
the worst case execution duration found in the adaptation
strategies specification. The t4 period (composed by t3 and
t2) is an observation period that can be used to register any
deviations from expected controller behaviour.

5. Experimental Evaluation

The aim of our experiments is assessing the validity
of our approach to evaluate controller robustness in self-
adaptive systems. In particular, we evaluate the robustness

of Rainbow’s controller (i.e., Rainbow master) on an imple-
mentation of the Znn.com case study described in Section 3.

5.1. The Rainbow Framework

In this paper, we focus on Rainbow [9], an architecture-
based platform for self-adaptation, which provides a sub-
stantial base of reusable infrastructure through customiza-
tion, which aims to reduce the cost of self-adaptive sys-
tem development. Rainbow has distinctive features: an ex-
plicit architecture model of the target system, a collection of
adaptation strategies, and utility preferences to guide adap-
tation.

The framework defined by Rainbow includes mecha-
nisms for (Figure 4): monitoring a target system and its en-
vironment (using the observations for updating the architec-
tural model of the target system), detecting opportunities for
improving the system’s quality of services (QoS), deciding
the best course of adaptation based on the state of the sys-
tem, and effecting the most appropriate changes. Rainbow’s
component-and-connector architectural model of the target
system is one of the main elements used in its decision-
making process, using it to update monitored system in-
formation and reason about appropriate adaptation mech-
anisms for a particular situation.

The main components of the framework are:

• Architecture Evaluator: evaluates the model upon
update to ensure that the system is operating within
an acceptable range. If the evaluator determines that
the system is not operating within the accepted range,
it triggers the adaptation.

• Adaptation Manager: chooses a suitable strategy
based on current state of the system (reflected in the
architectural model).

• Strategy Executor: executes the strategy chosen by
the adaptation manager on the running system via
system-level effectors.

• Model Manager: updates the architecture model us-
ing the information observed in the system via probes.
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5.2. Experimental Setup
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Figure 5. Znn.com experimental setup

For our experimental setup, we deployed Rainbow and
the corresponding implementation of Znn.com across seven
different machines (Figure 5): znns0-3 are the four content
servers running Apache v2.2.16, znndb is a common backend
database running mySql v14.14d5.1.61, from which the differ-
ent servers extract the contents, and znnproxy is the proxy
machine that runs the load balancing software (Apache run-
ning mod proxy balancer v2.1). The controller is deployed in a
separate machine (znnmaster). All machines run Debian Linux

v6.0.4, and have 512MB of memory. Moreover, an addi-
tional machine znnclient running JMeter v2.5.1 generates the
traffic during the execution of the system.

To build the changeload used for our experiments, we
identified the:

1. Workload and operating conditions for our change sce-
narios characteristic of a slashdot-type effect, based on
a sample collected by Juric [11], previously used for a
general evaluation of the effectiveness of Rainbow in
Znn.com [6]. In this case, scenarios have been scaled
down to a duration of five minutes, which is enough

to drive the controller through its different operational
stages and apply the robustness tests.

2. Set of probes used during the analysis, planning, and
execution stages of the controller. For the sake of sim-
plicity, in this particular case we chose to deploy a con-
figuration of Znn.com that only uses the response time
probe (type ClientProxyProbeT) . Still, this probe is used
through the three operational stages, and since our goal
is not to carry out a complete evaluation of Rainbow,
this is enough to demonstrate the approach.

3. Set of changes to be applied on our set of probes. We
identified 32 mutation rules listed in Table 1 that are
applicable to the response time probe (response time is
a float with domain [0-Float.MAX VALUE]).

5.3. Experimental Results and Discussion

Each change scenario of the changeload results from
combining the workload and operating conditions with a
single change type based on an applicable mutation rule.
In our changeload, each mutation rule gives way to three
change scenarios (i.e., applied during the analysis, planning,
and execution stages, respectively), which are triggered in
the time instant in which the controller enters the corre-
sponding stage, and their duration is permanent. Overall,

Failure Mode (A=Abort, S=Silent)

Mutation Rule Analysis Planning Execution

A S A S A S

MsgNull 1 1 1 1 1 1

MsgEmpty 1 1 1

MsgPredefined 1 1 1

MsgNonPrintable 1 1 1

MsgAddNonPrintable 1 1 1

TSEmpty 1 1 1

TSRemove 1 1 1

VNRemove 1 1 1

VVRemove 1 1 1

VVInvalidFormat 1 1 1

VVNumAbsoluteMinusOne 1 1 1

VVNumMax 1 1 1

VVNumMin 1 1 1

VVNumMaxPlusOne 1 1 1

VVNumMinMinusOne 1 1 1

VVNumMinRangeMinusOne 1 1 1

TOTAL 1 16 1 16 1 16

Table 3. Robustness issues uncovered by the
experiments
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we run 96 robustness tests using our experimental setup (32
applicable mutation rules × 3 controller operational stages).

Table 3 details the experimental results obtained from
the tests that apply the change scenarios based on each of
the identified applicable mutation rules at each one of the
controller stages. To begin with, 48 out of the 96 con-
ducted tests uncovered robustness issues (50%). Moreover,
one of the first observations that can be made is that no
catastrophic, restart, nor hindering failures have been iden-
tified during the tests. Although no catastrophic, restart,
or hindering failures have been identified during our tests,
these failure modes are still needed, as they portray rele-
vant behaviours of the controller. Regarding abort failures,
only tests based on the mutation MsgNull have uncovered a
single failure in each one of the controller stages. Con-
cretely, this consisted in the raising of the same unhandled
java.lang.NullPointerException in each controller stage. In par-
ticular, the exception was produced during the parsing of
the probe’s response with a regular expression matcher. It
is worth mentioning that additional unhandled exceptions
have been detected during the course of the experiments.
However, these have not been considered in the results ta-
ble, since they have been originated outside of the controller
(concretely, on the response time probe itself).

Silent failures are by far the most frequent failure type
discovered during the tests. As it can be observed, muta-
tions that pertain the overall probe response message and
the variable value (first and fourth group in Table 3, respec-
tively) present the highest concentration of silent failures.
In contrast, mutations that concern timestamps and variable
names present silent failures only in cases in which the con-
crete element is removed (mutations TSEmpty, TSRemove and
VNRemove). This is a consequence of the way in which the
Rainbow master processes inputs from the probes. Mes-
sages sent from the probes are parsed in such a way that
only the presence of a variable name and a timestamp in
the message is assessed, but their concrete values are not
checked syntactically nor semantically. However, this does
not prevent the correct update of values in the architectural
model of the system inside of the controller, which uses a
unique probe identifier to update the value in the correct
place in spite of incorrect variable names or timestamps in
probe input. Moreover, all the observed silent failures cor-
respond to incorrect updates of values in the architectural
model which are not acknowledged by the controller in any
way. However, it is worth mentioning that the issues dis-
covered in the different controller stages are different. In
particular, while the response time value is updated with null

values in tests conducted during the analysis stage, in the
planning and execution stages, the last valid value on the
model becomes frozen when the mutation rule is applied on
the probe, and this can lead to completely different effects
when considering the ensemble controller plus system.

Summarizing, although in general terms Rainbow master
is fairly robust, experimental results have shown that our ap-
proach has been able to uncover a relevant set of robustness
issues in the controller. Although in this particular case the
identified pattern of robustness issues at the different stages
of the controller differs only to a limited extent, this can be
attributed to the particular architecture of Rainbow, which
uses its model manager as a safeguard for the logic in the
rest of the components used throughout the different oper-
ational stages. Moreover, the obtained results align with
previous research, which has shown that robustness testing
may disclose a small number of different issues, despite of
their potentially high relevancy to the particular system be-
ing tested [17].

6. Conclusions

In this paper, we have presented a novel approach
that enables the stateful evaluation of controllers for self-
adaptive software systems. This has been achieved by
defining how the controller’s interface should be tested ac-
cording to the target system’s changeload and the opera-
tional stage of the controller. Results were characterised
using an adapted version of the CRASH scale, and the ap-
proach was validated in the context of Rainbow framework
for architecture-based self-adaptation and the Znn.com case
study. Experimental results have shown that our approach
is able to uncover a relevant set of faults in the controller
that might hinder the resilience of the self-adaptive system.

The main limitation uncovered in our approach has been
the inability of simulating some of the failure modes of the
CRASH scale. This might be related to the architectural ro-
bustness of the controller, the restricted observability of the
controller’s internal behaviour (we rely mainly on the logs
being generated by Rainbow rather than on tailored error
detectors), the non-removal of the faults associated with the
errors detected (which might prevent exercising other parts
of the code), and the simplicity of the case study (which
prevents exercising the entire functionality of Rainbow).

As for future work, in addition of solving the above men-
tioned limitations, there are several lines of research that
could be exploited based on the groundwork setup by this
paper. First, we need to employ different controllers and
additional case studies for assessing our approach in terms
of its efficiency in uncovering faults in the controller of a
self-adaptive software system. Second, while the focus of
this paper was the evaluation of the controller, there is the
need for considering the self-adaptive system in its entirety,
and this would inevitably lead to new challenges, such as,
the necessity to consider the full state of the target system
when evaluating the robustness of the entire system, i.e.,
the controller plus the target system. Finally, in the long
term, since the structure of a self-adaptive software system
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is expected to evolve during run-time, one should be able
to perform the type of evaluation described in this paper at
run-time rather than development-time.
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