
HaiQ: Synthesis of So�ware Design Spaces
with Structural and Probabilistic Guarantees

Javier Cámara
Department of Computer Science, University of York

javier.camaramoreno@york.ac.uk

ABSTRACT
Formal methods used to validate software designs, like Alloy, OCL,
and B, are powerful tools to analyze complex structures (e.g., archi-
tectures, object-relational mappings) captured as sets of relational
constraints. However, their applicability is limited when software
is subject to uncertainty (derived, e.g., from lack of control over
third-party components, interaction with physical elements). In
contrast, quantitative veri�cation has emerged as a powerful way of
providing quantitative guarantees about the performance, cost, and
reliability of systems operating under uncertainty. However, quanti-
tative veri�cation methods do not retain the �exibility of relational
modeling in describing structures, forcing engineers to trade struc-
tural exploration for analytic capabilities that concern probabilistic
and other quantitative guarantees. This paper contributes a method
(HaiQ) that enhances structural modeling/synthesis with quantita-
tive guarantees in the style provided by quantitative veri�cation. It
includes a language for describing structure and (stochastic) behav-
ior of systems, and a temporal logic that allows checking probability
and reward-based properties over sets of feasible design alternatives
implicitly described by the relational constraints in a HaiQ model.
We report the results of applying a prototype tool in two domains,
on which we show the feasibility of synthesizing structural designs
that optimize probabilistic and other quantitative guarantees.

CCS CONCEPTS
• Software and its engineering → Formal software veri�ca-
tion; Software design tradeo�s; • Theory of computation→ Ver-
i�cation by model checking.

KEYWORDS
Uncertainty, guarantees, quantitative veri�cation, relational model-
ing, probabilistic model checking, Alloy, PRISM, HaiQ, M-PCTL

ACM Reference Format:
Javier Cámara. 2020. HaiQ: Synthesis of Software Design Spaces with
Structural and Probabilistic Guarantees. In 8th International Conference
on Formal Methods in Software Engineering (FormaliSE ’20), October 7–8,
2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3372020.3391562

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7071-4/20/05.
https://doi.org/10.1145/3372020.3391562

1 INTRODUCTION
Modern software-intensive systems are commonly a�ected by un-
certainties derived, for instance, from the lack of control over third-
party components (e.g., residing in the cloud), humans in the loop,
and complex interactions between software and physical elements
in cyber-physical systems [25]. Designing such systems in a way
that provides guarantees that concern the satisfaction of functional
requirements while achieving an acceptable balance between mul-
tiple extra-functional properties is still an open problem because
designers typically rely on intuition to navigate these design spaces.
However, getting these wrong can lead to systems that fail to guar-
antee the qualities required by users.

This is a di�cult problem because system structure and stochas-
tic behavior, as well as their interplay can distinctly impact func-
tional and extra-functional requirement satisfaction when systems
are subject to uncertainties [11, 22, 49]. Currently, joint systematic
analysis of structural and quantitative/probabilistic guarantees of
systems is limited in existing methods. On the one hand, formal
methods used to validate software designs like Alloy [31], Z [50],
B [2], VDM [9] and OCL [51], share a common conceptual foun-
dation that enables designers to implicitly describe collections of
alternative structural designs (e.g., software architectures [43, 53],
database object-relational mappings [6], network and security mod-
els [5, 54]) as sets of relational constraints and exploring them
systematically, but they are not equipped for analyzing stochastic
behavior. On the other hand, quantitative veri�cation or probabilis-
tic model checking [13, 23, 38] can analyze quantitative guarantees
of systems (e.g., on performance, reliability) under uncertainty, but
use notations (e.g., PRISM [39], PEPA [27], cpGCL [34]) that do not
retain the �exibility in describing structures of relational methods.
Recent product line reliability analysis approaches [16, 17, 26, 41]
improve on �exibility by introducing systematic treatment of vari-
ability, but are not equipped to synthesize or explore complex struc-
tures, and lack languages tailored to check sophisticated properties
across design spaces (i.e., temporal logics employed like PCTL [38]
can capture properties only about a single model, not collections
of individual variants). Other works in quantitative optimization
of architectures [3, 6, 8, 10, 11, 21, 22, 29, 44, 45] can in some cases
synthesize complex structures [6, 21], but are not compatible with
formal veri�cation and can only provide estimates of probabilistic
properties that could di�er from actual guarantees (e.g., worst case)
available only via exhaustive state-space exploration.

This situation forces designers to trade systematic exploration
of alternative structural designs for analytic capabilities related to
probabilistic and other quantitative guarantees.

To improve on this situation, we investigate in this paper the
following research questions:

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Javier Cámara

(RQ1) How can we automate analysis of quantitative/probabilistic
guarantees across sets of structural variants of system designs?
(RQ2) If feasible, is such an approach general enough to be appli-
cable to di�erent domains and probabilistic formalisms/analyses?
(RQ3) What are the trade-o�s of employing this class of approach
with respect to existing probabilistic modeling/analysis techniques?

This paper explores these questions by contributing an approach
that integrates structural exploration with the analytic capabili-
ties of probabilistic model checking. The contribution is twofold.
First, we introduce HaiQ, a language to describe both structure
and behavior of systems, including probabilistic and other quan-
titative attributes (e.g., time, cost). Second, we introduce Manifold
Probabilistic Computation-Tree Logic (M-PCTL), an extension of
the probabilistic logic PCTL that allows quantifying probability
and reward-based properties over the set of alternative structural
designs implicitly described by a HaiQ model. The approach is
embodied in a tool that implements analysis both of average proba-
bilities/rewards (based on discrete-time Markov chains or DTMC)
and best/worst case probabilities/rewards (based on Markov deci-
sion processes or MDP). We applied the approach to problems in
service-based systems and distributed adaptive systems.

2 RELATEDWORK
Related approaches can be categorized into: (i) relational modeling
and structural veri�cation, (ii) probabilistic/quantitative veri�ca-
tion, and (iii) structural-quantitative optimization.
Relational Modeling and Structural Veri�cation (RMSV). Pioneering
formal methods like Z [50] have a very expressive notation that
limits automated theorem proving, which often requires guidance
from an experienced user. Alloy [31] can be considered a �rst-order
subset of Z with �nite models, which makes it automatically analyz-
able. Other techniques and languages like VDM [9] and OCL [51]
are also based on �rst-order logic and include tools that can sup-
port design-time analysis that allows exhaustive search over a �nite
space of cases, similarly to Alloy. All the aforementioned methods
have a strong focus on structure, and are limited in terms of an-
alyzing complex concurrent behaviors. In contrast, methods like
DynAlloy [24] and Event-B [1] include more sophisticated con-
structs to e�ciently analyze behaviors on top of structures. Despite
being able to analyze concurrent behaviors, these methods are not
equipped to capture probabilistic aspects of system behavior.

RMSVQ/PV

HaiQ

SQA Structural
Analysis

Probabilistic
Analysis

Formal Veri�cation

Figure 1: Relation between HaiQ and other works
Quantitative/probabilistic analysis and veri�cation (Q/PV).Modern
probabilistic model checkers like PRISM [39] and STORM [20]
capture models using textual languages like PRISM, PEPA or low-
level matrix-based descriptions. Stochastic variants of UPPAAL [19]
employ graphical speci�cation languages. Although these tools

e�ciently analyze probabilistic system behaviors, their speci�-
cation languages and analysis mechanisms do not separate pro-
cess instance attributes from process types, hampering reusabil-
ity. Möbius [18] overcomes this limitation by exploiting domain-
speci�c models. However, none of the tools described are equipped
for exploring collections of system variants. In contrast, product
line reliability analysis approaches [16, 17, 26, 41] can analyze col-
lections of system designs encoded in feature models individually
or collectively. A recent approach to continuous-time probabilistic
design synthesis [12] uses a template-based solution to analyze
alternative designs, but assumes an existing encoding of design
options in a set of discrete variables and does not systematically
enforce any structural constraints in the designs. Compared with
these approaches,HaiQ’s focus is not only on variability, but also on
structure, being able to synthesize design alternatives that satisfy
complex structural constraints. Moreover,HaiQ includes a temporal
logic (M-PCTL) that speci�cally targets analysis across collections
of alternatives and could also complement analysis in feature model-
based approaches, streamlining speci�cation of complex properties
to identify interesting regions of the solution space.

Structural quantitative analysis and optimization (SQA). There is
extensive related work on model-based performance prediction [7]
and optimization of quantitative aspects of structures (e.g., architec-
tures) [29] that typically use mechanisms like stochastic search and
Pareto analysis [3, 8, 10, 11, 22, 44, 45]. These and other approaches
in systems engineering (e.g., [42]) can optimize quantitative as-
pects of designs, but do not support structural synthesis. Other
approaches [6, 21] combine structural synthesis with simulation
and dynamic analysis to provide estimates of quantitative proper-
ties of design variants. These approaches share with ours the idea
of synthesizing a solution space from a set of constraints and ana-
lyzing individual solutions independently. However, they are not
compatible with formal veri�cation, and hence are not equipped to
provide quantitative guarantees, which rely on checking sophisti-
cated properties (typically encoded as temporal logic formulas) via
numerical methods and exhaustive state space exploration.

In summary, our approach supports streamlined analysis of prob-
abilistic guarantees in the presence of complex structural variability,
going beyond existing approaches in which limited structural vari-
ability is captured in templates and feature models (Figure 1).

3 OVERVIEW OF THE APPROACH
The complementary strengths of relational and quantitative veri�-
cation approaches can be appreciated in the client-server example
of Figure 2. The top part shows an Alloy speci�cation in which two
types or signatures (which represent groups of objects in Alloy) c
(clients) and s (servers), extend an abstract signature comp (com-
ponent), which includes a relation l (i.e., a component is linked to
others). A predicate clientserver includes the constraints that
describe how instances of c and s relate (in this case, clients can
only be linked to servers, and the relation is symmetric). This speci-
�cation implicitly describes the set of structures shown on the right
of the �gure for a scope of maximum one client and two servers.
Although this is a trivial example, real system designs include large
sets of components and complex structural constraints that result

HaiQ: Synthesis of So�ware Design Spaces
with Structural and Probabilistic Guarantees FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

abstract sig comp {l: some comp}
some sig c, s extends comp{}
pred clientserver {
disj[c.l,c] //only
disj[s.l,s] //c<->s
l = ~l } //symmetric

run clientserver for 1 c, 2 s

c0

s0

c0

s0 s1

l l l

dtmc
module c0
x: bool init false;
[r] (!x) -> 1:(x�=true);

endmodule
module s0
y: bool init false;
[r] (!y) -> 0.4:(y�=false)

+ 0.6:(y�=true);
endmodule

!x, !y

x, !y x, y

[r]
0.4

[r]
0.6

Figure 2: Client-server Alloy and PRISM speci�cations

in vast collections of possible system structures that can be au-
tomatically synthesized. Despite their structural �exibility, these
approaches are not equipped to analyze probabilistic behaviors.

In contrast, the bottom of the �gure shows a PRISM DTMC [38]
model with two processes or modules (client c0 and server s0) that
synchronize on a shared request action [r]. Boolean variables x
and y encode that the request has been correctly issued and re-
ceived, respectively. The request is always correctly sent by the
client (probability 1), whereas in the server, the action has two
possible outcomes speci�ed with di�erent probabilities (0.4/0.6).
Probabilistic model checkers are equipped with mechanisms to
compose in parallel the behavior of such stochastic processes (Fig-
ure 2 bottom right) and analyze probabilistic and other quantitative
guarantees captured in temporal logics like PCTL and CSL [38].
Despite this analytical advantage, in this kind of speci�cation,mod-
ules denote processes among which synchronization is “hardwired”
via shared action names (i.e., relations among processes are �xed
explicitly in models). This speci�cation style results in rigid struc-
tures, compared to the ones that we can specify in Alloy, meaning
that if a designer wants to explore quantitative guarantees in di�er-
ent combinations of a collection of processes arranged in di�erent
topologies, she has to generate and analyze di�erent alternatives
manually, or use ad-hoc solutions that do not provide any structural
guarantees about the resulting models. These ad-hoc approaches
are labor-intensive, error-prone, and simply infeasible when process
behaviors and structural system constraints are non-trivial.

HaiQ
Relational/
Probabilistic1
Behavioral1
Specification

Configurations

1.#Configuration1
Synthesis

2.#Configuration1
Behavior1
Generation

Configuration1
Behavior1Models

MPCTL1
Specifications

allP>0.8 [1F1success]1
maxRtime

=?[F1stop]

3.#Extended1
Probabilistic1

Model1
Checking

Boolean1
property1

satisfaction1
(True/False)

Quantitative1
Results1

(probabilities,1
rewards)

Configurations

Figure 3: Overview of the approach

To investigate automated joint analysis of structural guarantees,
(probabilistic) quantitative guarantees, and their interaction, our ap-
proach must: (i) provide simple language constructs, yet expressive
enough to capture structure, stochastic behavior, and their depen-
dencies in models, (ii) allow systematic checking of sophisticated
properties on such models, and (iii) be general enough to be applied
to di�erent domains and probabilistic analyses.

To address these requirements, we propose an approach that in-
cludes: (i) a high-level language (HaiQ) for modeling collections of
probabilistic models as relational/probabilistic behavioral speci�ca-
tions, and (ii) a language for specifying (and associated mechanisms
for checking) quantitative temporal properties (probability- and
reward-based) on collections of probabilistic models (manifold prob-
abilistic computation tree logic or M-PCTL).

We embody these languages and analysis mechanisms in a re-
lational probabilistic model checker that combines synthesis of
structural designs from relational constraints with model checking
of individual designs obtained from the structural speci�cation of
synthesized design variants (Figure 3). Our proposal includes three
stages: (i) Con�guration Synthesis, during which topological de-
scriptions of con�gurations are synthesized from the relational con-
straints of a HaiQ model, (ii) Con�guration Behavioral Model
Generation, which uses con�guration descriptions synthesized
in the previous stage as a blueprint to generate a probabilistic be-
havioral model for every con�guration (supported model types are
DTMC and MDP), (iii) Extended Probabilistic Model Check-
ing, which uses as input properties speci�ed in M-PCTL to pro-
vide quantitative results about the set of con�guration behavioral
models generated. Supported analyses include average probability-
based and reward-based guarantees for DTMC and worst/best case
probability-based and reward-based guarantees for MDP.

The HaiQ Modeling Language. HaiQ speci�cations juxtapose
static (or structural) relational descriptions with blocks of proba-
bilistic behavioral speci�cation that can exploit the information
about system structure encoded in relations.

To illustrate the main ideas behind the language, we focus on a
simple HaiQ speci�cation that builds on our introductory example
(Figure 4). Here, the possible structures of the system are similar to
the ones captured by the Alloy speci�cation in Figure 2. In contrast
with Alloy, HaiQ signatures include blocks of behavior speci�ca-
tions (between “</” and “/>”) that enclose guarded probabilistic
commands. This is because every signature in HaiQ is also a pro-
cess type. Let us emphasize that, in contrast with the languages
employed by probabilistic model checkers, behavioral descriptions
in HaiQ are at a higher level of abstraction and denote process types,
not process instances. This means that a HaiQ model implicitly de-
scribes a process type hierarchy associated with signatures in which
behaviors can be inherited and extended. In the example, this can
be observed in the command included in signature comp, which
is de�ned in a generic manner and inherited by signatures c and
s. In particular, the synchronization action r in the command is
pre�xed by the relation l de�ned in the static part of the speci�ca-
tion, indicating that the synchronization matches only processes that
correspond to signature instances in the relation (independently of the
topology under which they are instantiated), rather than being “hard-
wired” as we saw in the PRISM example in Figure 2. The top-right
of Figure 4 shows the two possible structure instantiations of the
speci�cation, in which process instances s0 and s1 synchronize
with c0 on actions generated based on the instantiation of relation
l. The corresponding probabilistic state machines that result from
the parallel composition of the behaviors of the c-s instances are
shown in the right-bottom.

The details of the modeling language are described in Section 4.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Javier Cámara

abstract sig comp {l: some comp}
</ var x: bool init false;

formula p;
[l:r] (!x) -> p : (x�=false)

+ 1-p : (x�=true); />
some sig c extends comp {}
</ formula p=0; />
some sig s extends comp {}
</ formula p=0.4; />
pred clientserver {
disj[c.l,c] //only
disj[s.l,s] //c<->s
l = ~l } //symmetric relation

run clientserver for 1 c, 2 s

1 client, 1 server 1 client, 2 servers

Structure c0 s0
[c0s0.r]

c0s0 s1
[c0s0.r] [c0s1.r]

State
Machine

!c0.x, !s0.x

c0.x, !s0.x

c0.x, s0.x

[c0s0.r]
0.4

[c0s0.r]
0.6

!c0.x, !s0.x, !s1.x

c0.x, !s0.x, !s1.x

c0.x, s0.x, !s1.x

c0.x, !s0.x, s1.x

[c0s0.r]
0.3

[c0s1.r]
0.3

[c0s0.r], [c0s1.r]
0.4

Figure 4: Client-server HaiQ speci�cation (left), implicit structure collection and corresponding state machines (right)

Manifold Probabilistic Computation Tree Logic (M-PCTL).
Ultimately, a HaiQ model de�nes a set of probabilistic state ma-
chines (DTMC or MDP), where each one results from the parallel
composition of processes instantiated in accordancewith each topol-
ogy that satis�es the model’s structural constraints. Formulas in
existing probabilistic temporal logics like PCTL capture properties
of a single probabilistic state machine. Hence, our work extends
existing languages to check properties across collections of proba-
bilistic state machines, rather than individual instances. M-PCTL
is an extension of PCTL including new operators and quanti�ers
that enable designers to check properties like “across all con�gura-
tions, the minimum probability that a service will never time out
is greater than 0.95”, and “there exists a robot con�guration that
requires less than 3.2 whr to achieve its goal.”

In our client-server example, allP�0.6[F all c.x ^ some s.x] is a
property that can be interpreted as “for all con�gurations, the prob-
ability that all requests will be correctly sent by the client and
at least one of them will be correctly received by a server is at
least 0.6” In this case, the property check returns true, because
for the two possible con�gurations (with one and two servers),
the probabily that [F all c.x ^ some s.x] is satis�ed is exactly 0.6 in
both cases. Moreover, M-PCTL properties can also return (sets of)
structures that optimize or satisfy some quantitative property. For
instance, the property SmaxP [F all c.x ^ some s.x] returns a set
including a description of the one-server and the two-server con�g-
urations, since both of them have the same probability of satisfying
[F all c.x ^ some s.x] and hence maximize the value of the property
in this case because there are no other feasible solutions.

The syntax and semantics of M-PCTL are described in Section 5.

4 THE HAIQMODELING LANGUAGE
In this section, we formalize the modeling language and illustrate
its main features by modeling a simple network security scenario
introduced by Kwiatkowska et al [37]. The scenario models the
progression of a virus infecting a network formed by a grid of N⇥N
nodes. The virus remains at a node that is infected and repeat-
edly tries to infect any uninfected neighbors by �rst attacking the
neighbor’s �rewall and, if successful, trying to infect the node.

In the network there are ’low’ and ’high’ nodes divided by ’bar-
rier’ nodes that scan the tra�c between them. Initially, only one
corner ’low’ node is infected. A graphical representation of the
network when N=3 is given in Figure 5.

L31 L32 L33 Low nodes

L21 L22 L23 Barrier nodes

L11 L12 L13 High nodes

Infected

Figure 5: Network virus infection scenario

4.1 Language Features
4.1.1 Signatures as Structural and Behavioral Building Blocks. The
modeling language is tailored for the incremental construction
of structured probabilistic models. The basic unit of speci�cation
is the signature, which contains structural and behavioral code
fragments. The structural part of the language is a subset of the
static part of Alloy (c.f. [32], 2.1), in which every signature �eld is
a set that de�nes implicitly a binary relation between the instances
of signatures in which the �eld is declared and the elements in
the set. For example, the �eld conn declared in the �rst line of
the node de�niton listing encodes a relation capturing the fact
that a node can be connected to one or more neighboring nodes
(i.e., conn is implicitly encoding the arcs in the network graph
shown in Figure 5). Constraining �elds of signatures to this type of
relation su�ces to capture sophisticated topologies and limits the
complexity of speci�cations. Note that the declaration states that
signature node is abstract, so it can be extended by other signatures:
abstract sig node {conn: some node}
</ enum modes:{uninfected, breached, infected};

var s:[modes] init uninfected;
formula detect=node_detect;
[conn:attack] (s=uninfected) -> 1-detect : (s�=breached)
/* firewall attacked */ + detect : (s�=s);

[] (s=breached) -> 1-infect : (s�=uninfected)
+ infect : (s�=infected); //firewall breached

[conn:attack] (s=infected) -> true; //attack from infected node />

The second part of the signature encodes its behavior and is
surrounded by the process block delimiters “</” and “/>”. Process
blocks include a set of local variables that can be bounded integers
(including enumerated types, which are internally treated as sets of
integer constants) or booleans, as well as formulas that are used as
shorthand for complex expressions to avoid code duplications. In
the example, variable s speci�es the state of the node (uninfected,
breached, infected), and formula detect encodes the probability
that the virus is detected by the �rewall in the node. Constants
node_detect and infect are global constants that encode a default
probability value for �rewall detection and node infection.

Finally, the process block includes a set of probabilistic guarded
commands that describe the behavior of the signature. Each com-
mand describes the possible transitions of the process in states that

HaiQ: Synthesis of So�ware Design Spaces
with Structural and Probabilistic Guarantees FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

node A node B

(s=infected) -> true;
(s=uninfected) -> detect : (s’=s)

+ (1-detect) : (s’=breached)

(s=uninfected) -> detect : (s’=s)
+ (1-detect) : (s’=breached)

(s=infected) -> true;

[A.B.attack]

[A.B.attack]

Figure 6: Sample synchronization scheme between nodes

satisfy its guard (speci�ed before “->”), and a set of updates that
specify each one of the possible outcomes as sets of new values for
(primed or post-) state variables (e.g., s’=infected). Each update
is associated with a probability, and unspeci�ed state variables in
an update indicate no change in value. In the �rst command of the
example, the guard speci�es that when the node is not infected,
it can be attacked with two possible outcomes. With probability
detect, the �rewall will remain unbreached, and with probability
1-detect, the �rewall will be successfully breached by the attack.

Note that the pre�xing of the action by conn indicates that the
behavior speci�ed by this command is replicated for each of the
node instances in the relation. Hence, for an example system struc-
ture with a node instance A in which A.conn={B,C}, each com-
mand in the process block labeled as [conn:attack] is denoting
two alternative actions [A.B.attack] and [A.C.attack]1 that
can synchronize with actions of the same name in nodes B and C.

4.1.2 Synchronization. Di�erent signature processes in a speci�-
cation synchronize on shared action names. The third command of
the node behavior de�nition contains an action labeled attack pre-
�xed by conn, just like in the �rst command that we saw earlier. In
this case, the command models the transition in which the infected
node attacks a neighboring node with probability 1 (unspeci�ed
probability in a command defaults to 1). Consider an example of
two neighbor node instances A and B, in which A.conn={B} and
B.conn={A} (Figure 6). In the scheme, nodes synchronize on the
same action name [A.B.attack] both when the node attacks and
receives an attack from a neighboring node. However, the com-
mands synchronize pairwise because the guards in commands on
the same module are mutually exclusive. Hence, whenever node A
attacks, node B receives the attack, and vice versa.

4.1.3 Subtyping and Extension. Signatures can be extended to in-
corporate new structural and behavioral elements. Similarly to
Alloy, a signature that extends another one is considered its sub-
type. However, in this case subtyping also implies inheritance not
only of the structural elements of the extended signature, but also of
its behavioral de�nition. The following listing encodes the subtypes
of node for the network scenario:
sig barrierNode extends node {} </formula detect=barrier_detect;/>
sig highNode, lowNode extends node
one sig infectedNode extends lowNode </var s:[modes] init infected;/>

First, signature barrierNode extends signature node to cre-
ate a special type of node in which the attack detection proba-
bility is di�erent to the rest of the nodes (encoded in constant
barrier_detect). This is achieved by overriding the original de�-
nition of the formula detect in the abstract signature node.
1The syntax of these labels is used only for illustration purposes. Internally, the HaiQ
compiler generates a unique identi�er using a commutative function (the identi�er for
inputs (A,B) is the same as for (B,A)), resulting in a label that can be employed on both
endpoints of process synchronization (c.f. Section 4.2.2).

L31 L32 L33

L21 L22 L23

L11 L12 L13

L31 L32 L33

L21 L22 L23

L11 L12 L13

Figure 7: Alternative legal network con�gurations

In contrast, highNode and lowNode are subtypes of node that
preserve all its structural and behavioral elements intact because
we are only interested in formally distinguishing them as special
locations, but do not require to incorporate any special behaviors.

Finally, we incorporate infectedNode as a subtype of lowNode
to include an infected node in the scenario. This type is constrained
to a singleton (keyword one) and overrides the declaration of the
node state variable, which is now initialized as infected.

4.1.4 Topology. The possible topologies of design alternatives that
can be generated by a HaiQ model are de�ned implicitly by a set
of structural constraints expressed in relational logic sentences.

pred virus{ all n:node | node in n.*conn //network is connected
(no iden & conn) and (conn = ~conn) //no self-loops, symmetric conn
disj[lowNode.conn,highNode] } //disjoint low-high node connections

In the example, the �rst constraint imposes that all nodes must
be reachable in the network from any other node. The second
constraint speci�es that connections are symmetric and that no
node must be connected to itself, whereas the third one imposes
that low nodes and high nodes must never be directly connected.
Figure 7 shows two of the many legal con�gurations that can be
synthesized from the virus infection scenario model (apart from
the one shown in Figure 5) for a scope of N=3 by running: run virus

for exactly 3 lowNode, exactly 3 barrierNode, exactly 3 highNode.

4.1.5 Rewards. HaiQ can be used to reason, not just about the
probability that a collection of behaviors speci�ed by a model be-
haves in a certain fashion, but about a wider range of quantitative
measures relating to behaviour. This includes properties such as
“expected time” or “expected power consumption.”

This is achieved by augmenting signatures with rewards, which
are real values associated with certain model states or transitions.
We include in our example a reward that enables us to quantify the
number of attack attempts carried out by the di�erent nodes:
abstract sig node {conn: some node}
</ ... reward attacks [conn:attack] true : 1; />

Every time a transition in which the action attack is executed
from a state in which the guard before the colon is satis�ed (in this
case, the guard true is satis�ed in all states), a reward of one unit
will be accrued for attacks. The pre�xing of the action by relation
conn results in reward cumulation for any of the instances of the
action executed among any arbitrary pair of nodes.

4.2 Formal Model
A HaiQ speci�cation is formally characterized as a tuple (�, C, �),
where � is a set of signatures that implicitly de�ne a hierarchy of
types (including their behavior), C is a set of structural constraints
expressed in �rst-order predicate logic that determines the allowed
topologies when instantiating the hierarchy de�ned by �, and the
total function � : � ! N is a scope that determines the maximum
allowable number of instances of every signature type in �.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Javier Cámara

De�nition 4.1 (Signature). A signature � is a tuple (� ",R, �):
• � " 2 � [{?} references the supertype signature that the current
signature extends (if any).
• R is a set of tuples (id,� 0) typed by sVarIds ⇥ �, where sVarIds
is the set of identi�ers that form a static variable namespace. Each
tuple in the set implicitly declares a relation between every instance
of � and a set of the instances of � 0 (possibly constrained by C).
• � is a behavior speci�cation.

De�nition 4.2 (Behavior speci�cation). A behavior speci�cation
is a tuple (V,K,L), where V is a set of local state variables, K is
a set of commands that describe the behavior of the signature, and
L is a set of reward functions for states and transitions.

We de�ne the extension function for a signature set elementX 2
{R, � .V, � .K, � .L} as ext(� ,X) , ext(� .� ".X)]� .X if � .� " , ?,
and ext(� ,X) , � .X otherwise. We obtain a “�at” set of expanded
signature types (denoted �f) by applying the function f lat(�) ,
(?, ext(� ,R), (ext(� , � .V), ext(� , � .K), ext(� , � .L))) to all signa-
tures in �. For convenience, we use the shorthand �f for f lat(�).

De�nition 4.3 (Command). A command is a tuple (�, r ,�,U), s.t.:
• � 2 actIds [{?} is a label drawn from an action namespace. If
� = ?, the command encodes an internal action.
• r 2 �f .R [{?} is a relation that constrains synchronization on
action � to instances in r . If r = ?, the scope of the command
labeled by � is global and the action can therefore synchronize with
any other process that includes a command with the same label.
• � is a guard built over variables in �f .V . • U is a set of proba-
bilistic updates. Each update is a pair (�,u), where � 2 [0, 1] is a
probability andu is a set of assignments of fresh values to local state
variables (�,�) (� 2 �f .V , and � is a value typed by �’s datatype).

All commands [r : �] � ! �1 : u1 + . . . + �n : un must satisfy
the invariants

Õ
i :{1...n } �i = 1, and � = ?) r = ?.

4.2.1 Configurations. The speci�cation (�, C, �) implicitly de�nes
a set of con�gurations or structures. Each con�guration is composed
by a set of isignature instances, connected in a topology that satis-
�es C. A signature instance � is just a labeled process with fresh
variables that corresponds to the behavior de�nition of �f .

De�nition 4.4 (Instance). An instance of a signature � is a pair
(l, �), where l 2 procIds is a label drawn from a process namespace,
and � = �f .�� is a process speci�cation with fresh variables. We
denote the type of an instance n of signature � by t�pe(n) , �f .

The set of nodes in a con�guration take values in the possible
�-signature instances, denoted by I�.

De�nition 4.5 (Con�guration). A con�guration is a graph G =
(N, E) satisfying the constraints imposed by C and � , where N ✓
I� is a set of nodes, and E is a set of labeled arcs typed by sVarIds⇥
I� ⇥ I� that capture relations between instances.

4.2.2 From Configurations to Stochastic Behavior Models. A HaiQ
speci�cation implicitly describes a collection of probabilstic models
M. Each model inM is obtained as the parallel composition of the
signature behaviors in one possible instantiation of � that satis�es
the constraints imposed by C and � .

Algorithm 1 describes the generation of a probabilistic state ma-
chine from a con�guration c . The algorithm starts by extending

every process n in the con�guration to produce the wiring for com-
munication with the rest of the processes. The new set of commands
for each process K� is initialized in line 3 with the commands that
do not contain any references to relations (i.e., both commands
for internal actions and global events). Then, the algorithm sub-
stitutes every command k that refers to a relation (k .r , ?) by a
set of commands K⇤, where every command contains the resolved
reference to every element of the relation (lines 4-8). Resolution
of references is done via function uid in line 7, which generates a
unique label id for a pair of labels. The operation is commutative, so
that synchronization on the generated id is possible on both ends
of the communication (n and n0). Finally, the algorithm returns the
probabilistic state machine that corresponds to the standard parallel
composition [47] of the extended processes for the instances in the
con�guration.

Algorithm 1 Con�guration Stochastic State Machine Generation
1: N� := ;
2: for all n : c .N do
3: K� := {k : t�pe(n).� .K | k .r = ?}
4: for all k : t�pe(n).� .K\K� do
5: K⇤ := ;
6: for all {n0 : c .N | 9(x , n, n0) 2 c .E, x 2 sV ar Ids } do
7: K⇤ := K⇤ [{(uid (n .l , n0 .l), ?, k .�, k .U)}
8: end for
9: K� := K� [K⇤
10: end for
11: N� := N� [{(n .l , (n .V, K� , n .L))}
12: end for
13: return k

n:N�
n .�

5 M-PCTL
Probabilistic Computation Tree Logic (PCTL) [30] is used to quan-
tify properties related to probabilities and rewards in single system
speci�cations described as a probabilistic state machine (e.g., DTMC,
MDP, probabilistic timed automata or PTA). This section introduces
Manifold PCTL, which in contrast targets quanti�cation across col-
lections of design alternatives that correspond, in this case, to the
state machines generated from the set of structures that satisfy the
constraints of a HaiQ speci�cation (c.f. Section 4.2).

In the remainder of this section, we �rst overview a version of
PCTL extended with a reward quanti�er targeted at checking prop-
erties over DTMC and MDP extended with reward structures [4],
and then we build on it to introduce M-PCTL.

5.0.1 PCTL. In the syntax de�nition below, � and � are respec-
tively, formulas interpreted over states and paths of a probabilistic
state machineM extended with rewards, i.e., (M , �). Properties in
PCTL are speci�ed exclusively as state formulas. Path formulas
have an auxiliary role on probability and reward quanti�ers P/R:
� ::= true| a | ¬� | � ^ � | P⇠pb [�] | Rr⇠rb [�] � ::= X� | � U �,
where a is an atomic proposition, ⇠2 {<, , �, >},pb 2 [0, 1], rb 2
R+0 , and r 2 �.

Intuitively, P⇠pb [�] is satis�ed in a state s of M if the proba-
bility of choosing a path starting in s that satis�es � (denoted as
Prs (�) 2) is within the range determined by ⇠pb, where pb is a prob-
ability bound. Quanti�cation of properties based on Rr⇠rb works
analogously, but considering rewards, instead of probabilities. The
2See [38] for details. In the following, we write Prs (�) as Pr (�) for simplicity.

HaiQ: Synthesis of So�ware Design Spaces
with Structural and Probabilistic Guarantees FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

intuitive meaning of path operators X andU is analogous to the ones
in other standard temporal logics. Additional boolean and temporal
operators are derived in the standard way (e.g., F� ⌘ true U �).

5.0.2 M-PCTL. The main idea behind M-PCTL is to extend check-
ing of probability- and reward-based properties to collections of
models. Hence, quanti�cation occurs over a pair (M, �), where M
is a set of models, and � is a set of reward functions.

M-PCTL includes three types of formula. Similarly to PCTL, it
includes path (�) formulas (which are the same as in PCTL) and
state (�) formulas, but also an additional type of set formula (�) that
returns the collection of models that satisfy a particular quantitative
constraint. The syntax of M-PCTL is:

� ::= true| a | ¬� | � ^ � |
someP⇠pb [�] | allP⇠pb [�] | maxP⇠pb [�] | minP⇠pb [�] |
someRr⇠rb [�] | allR

r
⇠rb [�] | maxRr⇠rb [�] | minRr⇠pb [�]

� ::= U | �–
� | �—

� | �C | SallP⇠pb [�] |
SmaxP[�] | SminP[�] |SallRr⇠rb [�] | SmaxRr [�] | SminRr [�]

Concerning state formula quanti�ers, allP and someP determine if
the evaluation of Pr (�) on all or some model in M satis�es ⇠ pb,
whereas maxP determines if the maximum probability evaluated
across elements of M satis�es ⇠ pb. We de�ne their semantics as:

nsomeP⇠pb [�]o ⌘ 9M 2 M : PrM (�) ⇠ pb

nallP⇠pb [�]o ⌘ 8M 2 M : PrM (�) ⇠ pb

nmaxP⇠pb [�]o ⌘ max
M 2M

PrM (�) ⇠ pb,

where PrM (�) denotes the evaluation of the probability Pr (�) on
modelM . The analogous reward-based quanti�ers someRr , allRr ,
maxRr , and minRr , are de�ned over the expected reward measure
of PCTL, instead of the probabilistic one Pr (c.f. [38]). The use of
maxP/minP and maxR/minR quanti�ers without a bound implies
the quanti�cation of the actual maximum/minimum probability or
reward for the path formula �, e.g.:

nmaxP[�]o ⌘ max
M 2M

PrM (�).

In set formulas,U denotes the universe of models inM, whereas
�C is the standard complement operator of set algebra. Set sub-
traction is derived as �1\�2 ⌘ �1 \ �C2 . The semantics of the main
quanti�ers in set formulas is:

nSallP⇠pb [�]o ⌘ {M : M | PrM (�) ⇠ pb}
nSmaxP[�]o ⌘ argmax

M 2M
PrM (�)

In the virus scenario example, we can write for instance a prop-
erty to check which network structures have a probability below
0.4 of having all high nodes infected after 50 time units:

resilient ⌘ SallP0.4 [F<=50 all highNode.s = infected]
The checking of formulas that employ probability and reward

quanti�ers in M-PCTL can also be constrained to subsets of M by
employing a scope operator h�i as a pre�x for formulas, e.g.:

nh�i someP⇠pb [�]o ⌘ 9M 2 n�o : PrM (�) ⇠ pb.
Hence, the use of a quanti�er without the scope operator in a

state formula � is equivalent to hU i �.
The use of the scope operator enables composition of formulas

to check complex properties on the space of design alternatives,
e.g., hresilienti maxRa�acks[F all highNode.s = infected].

The property above determines the expected maximum number
of attacks required by the virus to infect all high nodes across all
possible network structures that satisfy the resilient property.
Best/Worst case scenario. The quanti�ers P/R described above
are based on the average probabilistic and reward measures of
PCTL [38]. However, PCTL can also be used to analyze maxi-
mum/minimum probabilities/rewards over probabilistic formalisms
that feature nondeterminism like MDP or PTA using the quanti-
�ers Pmax/Pmin and Rrmax/Rrmin[40]. We de�ne analogous versions
of all probability and reward-based quanti�ers for M-PCTL to en-
able best and worst case scenario analyses. For instance, property
SminPmax[Ft all highNode.s = infected] can be considered as the
best con�guration in terms of worst case scenario in the network
virus infection example, i.e., the con�guration that minimizes the
maximum probability of high node infection across all feasible
con�gurations.

6 EVALUATION
In this section, we evaluate our approach in case studies from dif-
ferent domains to determine its applicability. We embodied our
approach in the HaiQ analyzer [14], a prototype tool that imple-
ments the generation of design collections fromHaiQ speci�cations
as described in Section 4.2, as well as checking of M-PCTL proper-
ties on them. The tool is implemented in Java, and its backend uses
Alloy and PRISM’s APIs for synthesizing con�gurations and model
checking properties on their behavior models, respectively.

We describe the application of the tool to our running example, a
service-based system and a distributed self-protecting system. The
scenarios were chosen because they instantiate di�erent types of
structure (architecture, network) and sources of uncertainty. We
�nish this section with a discussion of our results.

6.1 Case Studies
6.1.1 Virus Network Infection. Figure 8 shows both worst case and
average case scenario probabilistic guarantees (resulting fromMDP-
based and DTMC-based analysis, respectively) of the best and worst
legal network con�gurations in our running example (in black and
red, respectively). Dashed lines represent average case, and solid
lines represent worst-case scenarios.

The plot on the left shows the probability over time that all high
nodes in the network will become infected. The average case DTMC
analysis is much more optimistic than the actual worst case, which
gives a more realistic approximation of the minimum infection
probability that the system can guarantee. Note that probabilistic
estimates in average case analysis can be approximated with some
degree of precision using statistical model checking and monte
carlo trace-based simulation methods, whereas worst case analysis
requires a technique like probabilistic model checking that performs
exhaustive state space exploration.

The plot on the right shows a di�erent property in which the
probability analyzed is that of having some high node infected,
instead of all of them. If we focus for instance on the best con-
�gurations in terms of worst case scenario guarantees, the prop-
erty minPmax[Ft some highNode.s = infected] (solid black) min-
imizes across all legal con�gurations, the maximum probability
within the con�guration of having some high node infected after t
seconds (we assume a time discretization parameter of one second).

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Javier Cámara

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

t(s)

Pr
ob
ab
ili
ty

minPmax[Ft all highNode.s = infected]
maxPmax[Ft all highNode.s = infected]
minP[Ft all highNode.s = infected]
maxP[Ft all highNode.s = infected]

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

t(s)

Pr
ob
ab
ili
ty

minPmax[Ft some highNode.s = infected]
maxPmax[F t some highNode.s = infected]
minP[Ft some highNode.s = infected]
maxP[Ft some highNode.s = infected]

Figure 8: Network virus infection results

6.1.2 Tele-Assistance System (TAS). The goal of the TAS exemplar
system [52] is tracking a patient’s vital parameters to adapt drug
type or dose when needed, and taking actions in case of emergency.
TAS combines three service types in awork�ow.When TAS receives
a request that includes the vital parameters of a patient, its Medical
Service analyzes the data and replies with instructions to: (i) change
the patient’s drug type, (ii) change the drug dose, or (iii) trigger an
alarm for �rst responders in case of emergency. When changing
the drug type or dose, TAS noti�es a local pharmacy using a Drug
Service, whereas �rst responders are noti�ed via an Alarm Service.

The following excerpt shows the TAS work�ow modeled as a
signature in which static �elds correspond to service bindings, and
its behavior speci�cation de�nes a set of local variables that keep
track of the work�ow status:
one sig TASWorkflow {MSBindings: some MedicalAnalysisService, ...}
</ enum tasks:{notSelected, getVitalParams, buttonMsg};

enum analysisResultTypes:{none, patientOK, ..., sendAlarm};
var task:[tasks] init notSelected; ...
var MSInvoked, ..., workflowOK, workflowDone : bool init false;
[pickTask] (task=notSelected) -> //PickTask

0.5: (task�=getVitalParams) + 0.5: (task�=buttonMsg);
[] (task=buttonMsg) & (!MSInvoked) ->

(MSInvoked�=true) & (analysisResult�=sendAlarm);
[MSBindings:analyzeData] (task=getVitalParams) & (!MSInvoked) ->

(MSInvoked�=true); //PickTask selected getVitalParams
[MSBindings:analysisResultPatientOK] (MSInvoked) ->

(analysisResult�=patientOK) & (workflowOK�=true)
& (workflowDone�=true); ...

[MSBindings:analysisResultSendAlarm] (MSInvoked) ->
(analysisResult�=sendAlarm); ...

[MSBindings:timeout] (timeouts=0) & (MSInvoked) ->
(workflowDone�=true); ... />

Calls to service operations are pre�xed by the service binding
relation (e.g., analyzeData is pre�xed by MSBinding), so that the
actual binding between the work�ow and the services will be auto-
matically created by the tool when con�gurations are generated.

The functionality of each service type in TAS is provided by third
parties with di�erent levels of performance, reliability, and cost.
The metrics employed for the quality attributes are the percentage
of service failures for reliability, and service response time for
performance. Service providers can be created as abstract signatures
that encode these attributes as formulas, and include a constraint
to include a binding on the service side to the work�ow:
abstract sig ServiceProvider {WorkflowBinding: one TASWorkflow}
fact {all sp:ServiceProvider, w:TASWorkflow |

sp in w.ServiceBindings <=> w=sp.WorkflowBinding}
</ formula failure_rate, response_time, cost; />

0.980.990.99
1

20

30

8

10

Reliability (%) Re
spo

nse
tim

e (m
s.)

Co
st
(u
sd
)

0.980.990.9911

15

20

25

30

35

Reliability (%)

Re
sp
on

se
tim

e
(m

s.)

Figure 9: TAS analysis results

Service providers are subtyped by the types of service involved
in the composition. Service invocation includes two probabilistic
outcomes that model the possibility of service failure:
abstract sig MedicalAnalysisService extends ServiceProvider {}
</ var serviceOK: bool init false;

var ready : bool init true;
[WorkflowBinding:analyzeData] (ready) ->

failure_rate: (serviceOK�=false) & (ready�=false)
+ 1-failure_rate: (serviceOK�=true) & (ready�=false);

[WorkflowBinding:analysisResultPatientOK](!ready) & (serviceOK) ->
(serviceOK�=false) & (ready�=true); ...

reward costRew [WorkflowBinding:analyzeData] true : cost;
reward timeRew [WorkflowBinding:analysisResultPatientOK]

true : response_time; />

Every concrete service extends a service type encoded with a set
of attribute values. The use of the quanti�er lone indicates that the
use of every instance is optional, giving �exibility to use alternative
services of the same type in the composition:
lone sig MS1 extends MedicalAnalysisService{}
</ formula failure_rate=0.06, response_time=22, cost=9.8; />

Finding an adequate design for the system entails understanding
the tradeo� space by �nding the set of system con�gurations that
satisfy: (i) structural constraints, e.g., the Drug Service must not be
connected to an Alarm Service, (ii) behavioral correctness proper-
ties (e.g., the system is eventually going to provide a response –
either by dispatching an ambulance or notifying a change to the
pharmacy), and (iii) quality requirements, which can be formulated
as a combination of quantitative constraints and optimizations, e.g.:
(R1) The average failure rate must not exceed fr %, (R2) The aver-
age response time must not exceed rt ms, and (R3) Subject to R1
and R2, the cost should be minimized.

We can automatically search the design space to �nd the best
legal con�gurations with respect to these requirements by checking
the composite M-PCTL property constrained_mincost:

reliable ⌘ SallPfr[F some TASWorkflow.workFlowOK]
performant ⌘ SallRtimeRew

rt [F some TASWorkflow.workFlowDone]
mincost ⌘ minRcostRew[F some TASWorkflow.workFlowDone]

constrained_mincost ⌘ hreliable \ performanti mincost

The formulas labeled as reliable and performant obtain the set of
con�gurations that satisfy the reliability and performance require-
ments R1 and R2, respectively. Then, we can quantify the minimum
cost entailed by these joint requirements by scoping the quanti�-
cation of the third property mincost to the subset of designs that
satisfy the �rst two properties. For obtaining the con�guration(s)
that minimize cost for the speci�ed performance and reliability
levels, we substitute the quanti�er in mincost by SminR.

Figure 9 shows analysis results. The plot on the left shows the
minimized cost of con�gurations for di�erent levels of constraints
on response time and reliability. It was computed by checking
property constrained_mincost in the region of the state space in

HaiQ: Synthesis of So�ware Design Spaces
with Structural and Probabilistic Guarantees FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

which fr 2 [0.98, 1] and rt 2 [15, 35]. As expected, higher response
times and lower reliability correspond to lower costs, whereas peaks
in cost are reached with lowest failure rates and response times.

The plot on the right is a map that shows which con�gurations
best satisfy design criteria. Out of the set of 90 con�gurations that
can be generated for TAS, only 24 satisfy the criteria in some subre-
gion of the state space. If we consider that designers are interested
e.g., in systems with response times 26ms, and with a reliability
of �99%, we can determine which are the con�gurations that best
satisfy constraints by checking the version of constrained_mincost
in which the quanti�er for mincost is SminR, with rt = 26 and
fr = 0.01 (highlighted in red in the �gure).

Designers can take these results and make informed design deci-
sions based, for instance, on the available budget for the project and
legal constraints on the level of reliability and timeliness demanded
of systems for �rst-aid response.

6.1.3 Distributed Self-Protecting System. Some large-scale systems
are composed of federated entities that use self-adaptation to im-
prove their behavior with respect to de�ned quality standards. For
example, Net�ix’s software infrastructure includes deployments in
multiple regions controlled by a local manager (Scryer) to provision
the resources required for maintaining resilience against changing
customer tra�c [33, 46].

We apply our approach on a model of a Collective Adaptive
System (CAS) with similar cooperative systems that defend against
an external attack (e.g., DoS). We analyze the resilience that results
from the selection of di�erent communication topologies to dissem-
inate security information for preemptive adaptation, quanti�ed as
the probability that all members of the CAS survive the attack.

In the scenario [28], an external attacker uses a de�ned amount
of available resources to attempt to breach members of the CAS
(e.g., by placing a high number of requests). Each CAS member has
the ability to detect the attack, defend itself against it by employing
a �xed set of defense resources, and has the ability to notify other
members of the CAS of the attack. Once a CAS member is noti�ed,
it will adapt and become invulnerable to the attempted breach.

some sig sam {conn: some sam, attackVector: one attacker}
</ enum modes:{normal, attackDetected, compromised, adapted};

var status:[modes] init normal; ... formula detect;
[attackVector:attack] (resources>0) & (status=normal) -> //attacked

detect: (status�=attackDetected) & (resources�=deplete);
+ 1-detect: (status�=normal) & (resources�=deplete);

[conn:alert] (status=attackDetected) -> true; //notify attack
[] (resources>0) & (status=attackDetected) ->

(status�=adapted); //adapt if attack detected (or notified)
[conn:alert] (resources>0) & (status=normal) -> //receive alert

CHANNEL_RELIABILITY: (status�=attackDetected)
+ 1-CHANNEL_RELIABILITY: (status�=normal);

[] (resources=0) -> (status�=compromised); />

The excerpt above shows the basic encoding of a local self-
adaptive manager (signature sam). Environmental and system con-
ditions, such as the reliability of communication channels and the
sensitivity of detection mechanisms, can play an important role in
the emergent behavior of the CAS and are explicitly captured by
parameters that a�ect the outcome of certain actions (e.g., constant
CHANNEL_RELIABILITY limits the ability of a local manager to be
noti�ed of an attack by other managers, whereas formula detect
encodes the probability that a sam will detect the attack).

We can create models with di�erent communication topologies
by encoding a basic set of constraints that impose a connected
network without self-loops and with symmetric relations:
(all s:sam | sam in s.*conn) and (no iden & conn) and (conn = ~conn)

And then add extra constraints like the ones shown on the right
of Figure 10 for each one of the topologies to encode.

We can reason about the resilience of the CAS by encoding a
property that determines the topologies with the highest chance of
attack survival: resilience ⌘ maxP[F all sam.status = adapted].

0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

CHANNEL_RELIABILITY

Pr
ob
ab
ili
ty

of
CA

S
su
rv
iv
al Star

Ring
Ring (WC)
Optimal
Full

Full Star

all s:sam | all
s’:sam-s | s in

s’.conn

one s:sam | s in
sam.conn and

#(sam-s).conn=1
Ring Optimal

all s:sam | #s.conn=2 -

Figure 10: CAS topologies and resilience results
The left-hand side of Figure 10 shows the resilience of the di�er-

ent topologies for values of channel reliability in the set {0.2, 0.4,
0.6, 0.8, 1}. As expected, all topologies present increased chances of
survival with higher channel reliability, saving the star topology, for
which resilience is always zero for the amount of sam and attacker
resources employed for the experiments (the central node is a weak
link that hampers inter-node communication if compromised). To
obtain the optimal resilience (and its corresponding topology) for
our scenario, we check the M-PCTL resilience property, and an
analogous property that employs the SmaxP quanti�er on a model
that does not include any extra constraints.

6.2 Discussion
Basing on our results, in this section we discuss the research ques-
tions posed in the introduction and threats to validity.

6.2.1 (RQ1) Feasibility. We have shown that raising the level of
abstraction at which probabilistic models are described and queried
can e�ectively enable joint analysis of structural and quantitative
guarantees of design spaces. In terms of modeling, this is achieved by
incorporating language constructs that allow structural relations
to be referenced from elements of (probabilistic) behavioral speci-
�cations. In terms of analysis, incorporating novel quanti�ers to
check properties on collections of models in probabilistic temporal
logics enables streamlined speci�cation of sophisticated properties
to study guarantees across the solution space.

6.2.2 (RQ2) Generality. Our results show that our approach is ap-
plicable to systems in di�erent domains, in which uncertainty is in-
troduced by disparate sources. Our approach is particularly suited
to problems in which structure/topology is relevant and multiple in-
stances of similar, but di�erent, components that exhibit probabilistic
behavior (i.e., with di�erent parameters or slight variations in behav-
ior) interact in complex ways. Moreover, we have shown that the
approach can be applied to di�erent analyses (average and best/-
worst case probabilities and rewards) and probabilistic formalisms
(MDP and DTMC). This is e�ectively enabled by the fact that HaiQ

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Javier Cámara

operates one level higher in the abstraction ladder, with respect
to existing description languages in probabilistic model checking,
and that the target language (PRISM) in which con�guration be-
havioral models are generated (Step 2 in Figure 3, implementing
Algorithm 1) supports alternative underlying semantics for MDP
and DTMC (c.f. [47]). Similarly, M-PCTL extends PCTL, which can
be naturally used to check properties both in DTMC and MDP.

6.2.3 (RQ3) Tradeo�s. With respect to alternative approaches to
analyze probabilistic behavior, HaiQ comes with tradeo�s in terms
of e�ort, reusability, computational cost, and analytical capabilities:
E�ort. InHaiQ, structure and probabilistic behavior are expressed in
a compact manner, and their combined analysis is streamlined. This
contrasts with ad-hoc solutions that demand developing speci�c
infrastructure and are error-prone. The analysis of a CAS scenario
similar to the one in Section 6.1.3 [28] required combining the
PRISM preprocessor [48] with scripts that demanded topologies to
be encoded as matrixes in separate text �les, leading to multiple trial
and error rounds (due to errors in matrix encodings, script tuning).
For TAS, the problem has also been solved employing a custom tem-
plate engine and a python script that generates probabilistic models
based on analysis of Alloy speci�cations [15]. These solutions re-
quired weeks of work, contrasting with a single-day speci�cation
e�ort (at most) required to solve the problem with HaiQ in both cases.
Other approaches that do not include structural synthesis (e.g., di-
rect speci�cation in a model checker) require encoding explicitly
all elements of every design alternative (e.g., topology), making it
more error-prone and orders of magnitude more demanding than
HaiQ in terms of speci�cation e�ort for non-trivial problems.
Reusability. Compared to the ad-hoc solutions developed for the
case studies presented, which required speci�c infrastructure,HaiQ
provides an infrastructure that can be reused across a range of dif-
ferent domains. Furthermore, speci�cations in HaiQ are also more
reusable than those of existing probabilistic model checkers, in which
behavior types and communication topology are intertwined with
the speci�c instances of processes. In contrast, behavioral type hi-
erarchies can be reused as “libraries” across the same problem class
in HaiQ, since the speci�cs of instances are encoded separately.
Computational cost and analytical capabilities. Prototype analysis
performance behaves di�erently, depending on the problem type.
In TAS, checking the compositional property constrained_mincost
entailed exploring 90 con�gurations for an overall time of 6s ('2%
was used for con�guration synthesis).3 Checking the resilience
property for a �xed topology in CAS took 40s in the worst case.
However, checking for the optimal con�guration took exploring 254
con�gurations ('1hr, '0.01% used for synthesis). These numbers
are explained by the low complexity of synthesis (few structural
constraints to consider) relative to the possibly large number of
con�guration behaviors that must be checked individually. In any
case, HaiQ itself introduces a negligible overhead in analysis, and is
as e�cient as the underlying veri�cation technology that it employs
(backend engines capable of PCTL checking on PRISM models like
STORM [20] work out of the box).

6.2.4 Threats to Validity. The approach is inspired by a speci�c
style of relational description (Alloy) and behavioral formalisms
3Experiments were run on MacOS10.1.5, Java 1.8.0_111, 2.8GHz Core i7, 16GB RAM.

(DTMC and MDP). However, the constructs employed to formal-
ize structures are fairly standard and synthesis of con�gurations
is adaptable to other languages/models (e.g., OCL). Concerning
behavior descriptions, the fact that the approach was successfully
instantiated for di�erent probabilistic formalisms and analyses hints
at feasibility of adapting the approach to other formalisms such
as continuous-time Markov chains (CTMC) for �ner-grained time
analysis. Focusing on internal validity, the degree of formal assur-
ance on con�gurations provided by the approach is computationally
expensive, and entails risks on the cost both of con�guration syn-
thesis and behavior analysis (derived from exploring potentially
large state spaces of individual con�guration behavior). These risks
can be mitigated by exploiting the hierarchical relations that are
naturally present in software designs, in which components interact
in a structured way [36]. Hence, synthesis of di�erent subsystems
with local constraints can be done independently and then com-
posed, reducing the cost of con�guration synthesis. This mitigation
also allows parallelism in the analysis to be exploited, in which the
behavior of con�gurations of subsystems can be independently ana-
lyzed in parallel [35]. Another risk derived from structural synthesis
is that Alloy can generate additional isomorphic con�gurations that
can add unnecessary computation time in some situations, although
this does not a�ect the soundness of the results.

7 CONCLUSIONS AND FUTUREWORK
This paper introduces what is, to the best of our knowledge, the
�rst approach that combines the advantages of relational modeling,
structural synthesis, and quantitative veri�cation. Our experience
applying it in di�erent domains shows that: (RQ1) raising the level
of abstraction by (i) incorporating modeling constructs that allow
structural relations to be referenced from elements of (probabilistic)
behavioral speci�cations and (ii) incorporating novel quanti�ers
to check properties across collections of models in probabilistic
temporal logics, enables automated joint reasoning about structural
and (probabilistic) quantitative guarantees across spaces of alter-
native system designs, (RQ2) our approach is general enough to
be applied to di�erent probabilistic formalisms (DTMC and MDP),
types of analyses (average and best/worst probability- and reward-
based analysis), and domains where uncertainty is introduced by
disparate sources, and (RQ3) the approach brings new analytical
capabilities to the validation of designs of software systems that
operate under uncertainty, compared to existing quantitative ver-
i�cation approaches (e.g., automated identi�cation of structural
variants that optimize probability/reward-based guarantees). With
respect to (RQ3), our experience indicates reduction of speci�cation
e�ort and improved reusability with respect to existing probabilis-
tic model checking techniques (c.f. Section 6.2.3), although we still
have to conduct an extensive study before we can consolidate our
claims about these added bene�ts of the approach. We will perform
this study as one of our next steps.

Our approach is currently limited to analyzing behaviors within
speci�c con�gurations, but is not able to reason about behaviors
that imply structural changes. Future work will extend our ap-
proach to reason about such behaviors. Moreover, we will explore
hierarchical speci�cation [36] and compositional veri�cation [35]
techniques (c.f., Section 6.2.4) to improve modularity and scalability.

HaiQ: Synthesis of So�ware Design Spaces
with Structural and Probabilistic Guarantees FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

REFERENCES
[1] Jean-Raymond Abrial. 2010. Modeling in Event-B - System and Software Engineer-

ing. Cambridge University Press.
[2] Jean-Raymond Abrial, Matthew K. O. Lee, David Neilson, P. N. Scharbach, and

IbHolm Sørensen. 1991. The B-Method. InVDM ’91 - Formal Software Development
(LNCS), Vol. 552. Springer, 398–405.

[3] A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya. 2009. ArcheOpterix: An
extendable tool for architecture optimization of AADL models. In Model-Based
Methodologies for Pervasive and Embedded Software, 2009. MOMPES ’09. ICSE
Workshop on. 61–71.

[4] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. 2003. Discrete-Time
Rewards Model-Checked. In Formal Modeling and Analysis of Timed Systems: First
International Workshop, FORMATS (LNCS), Vol. 2791. Springer, 88–104.

[5] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek. 2015. COVERT:
Compositional Analysis of Android Inter-App Permission Leakage. IEEE Trans.
Software Eng. 41, 9 (2015), 866–886.

[6] Hamid Bagheri, Chong Tang, and Kevin J. Sullivan. 2014. TradeMaker: auto-
mated dynamic analysis of synthesized tradespaces. In 36th Int. Conf. on Software
Engineering. ACM, 106–116.

[7] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.
2004. Model-Based Performance Prediction in Software Development: A Survey.
IEEE Trans. Software Eng. 30, 5 (2004), 295–310.

[8] Ste�en Becker, Heiko Koziolek, and Ralf H. Reussner. 2009. The Palladio com-
ponent model for model-driven performance prediction. Journal of Systems and
Software 82, 1 (2009), 3–22.

[9] Dines Bjørner. 1978. The Vienna development method (VDM): Software speci�-
cation & program synthesis. In Mathematical Studies of Information Processing,
Proceedings of the International Conference (LNCS), Vol. 75. Springer, 326–359.

[10] Egor Bondarev, Michel R. V. Chaudron, and Erwin A. de Kock. 2007. Exploring
Performance Trade-o�s of a JPEG Decoder Using the Deepcompass Framework.
In 6th WS on Software and Performance (WOSP). ACM, 153–163.

[11] Franz Brosch, Heiko Koziolek, Barbora Buhnova, and Ralf H. Reussner. 2012.
Architecture-Based Reliability Prediction with the Palladio Component Model.
IEEE Trans. Software Eng. 38, 6 (2012), 1319–1339.

[12] Radu Calinescu, Milan Ceska, Simos Gerasimou, Marta Kwiatkowska, and Nicola
Paoletti. 2017. Designing Robust Software Systems through Parametric Markov
Chain Synthesis. In 2017 IEEE International Conference on Software Architecture,
ICSA 2017, Gothenburg, Sweden, April 3-7, 2017. IEEE, 131–140.

[13] Radu Calinescu, Carlo Ghezzi, Marta Z. Kwiatkowska, and Ra�aela Mirandola.
2012. Self-adaptive software needs quantitative veri�cation at runtime. Commun.
ACM 55, 9 (2012), 69–77.

[14] Javier Cámara. 2020. HaiQ website. (2020). Accessed Apr. 1st, 2020 from
http://www.haiqmodelchecker.org.

[15] Javier Cámara, David Garlan, and Bradley R. Schmerl. 2017. Synthesis and
Quantitative Veri�cation of Tradeo� Spaces for Families of Software Systems.
In Software Architecture - 11th European Conference, ECSA (LNCS), Vol. 10475.
Springer, 3–21.

[16] Thiago Castro, André Lanna, Vander Alves, Leopoldo Teixeira, Sven Apel, and
Pierre-Yves Schobbens. 2018. All roads lead to Rome: Commuting strategies for
product-line reliability analysis. Sci. Comput. Program. 152 (2018), 116–160.

[17] Philipp Chrszon, Clemens Dubsla�, Sascha Klüppelholz, and Christel Baier. 2017.
ProFeat: feature-oriented engineering for family-based probabilistic model check-
ing. Formal Aspects of Computing (2017).

[18] Tod Courtney, Shravan Gaonkar, Ken Keefe, Eric Rozier, and William H. Sanders.
2009. Möbius 2.3: An extensible tool for dependability, security, and perfor-
mance evaluation of large and complex system models. In Proceedings of the 2009
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2009,
Estoril, Lisbon, Portugal, June 29 - July 2, 2009. IEEE CS, 353–358.

[19] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marius Mikučionis,
and Jakob Haahr Taankvist. 2015. Uppaal Stratego. In Tools and Algorithms
for the Construction and Analysis of Systems. LNCS, Vol. 9035. Springer Berlin
Heidelberg, 206–211.

[20] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, andMatthias Volk. 2017.
A storm is Coming: A Modern Probabilistic Model Checker. CoRR abs/1702.04311
(2017). arXiv:1702.04311 http://arxiv.org/abs/1702.04311

[21] Vishal Dwivedi, David Garlan, Jürgen Pfe�er, and Bradley Schmerl. 2014. Model-
Based Assistance for Making Time/Fidelity Trade-O�s in Component Composi-
tions. In 11th International Conference on Information Technology: NewGenerations,
ITNG 2014. IEEE CS.

[22] Naeem Esfahani, Sam Malek, and Kaveh Razavi. 2013. GuideArch: guiding the
exploration of architectural solution space under uncertainty. In 35th International
Conference on Software Engineering, ICSE. IEEE CS, 43–52.

[23] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. 2011. Run-time e�cient
probabilistic model checking. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE. ACM, 341–350.

[24] Marcelo F. Frias, Juan P. Galeotti, Carlos López Pombo, and Nazareno Aguirre.
2005. DynAlloy: upgrading alloy with actions. In 27th International Conference
on Software Engineering (ICSE). ACM, 442–451.

[25] David Garlan. 2010. Software engineering in an uncertain world. In Proceedings of
the Workshop on Future of Software Engineering Research, FoSER 2010, at the 18th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 125–128.

[26] Carlo Ghezzi and Amir Molzam Shari�oo. 2013. Model-based veri�cation of
quantitative non-functional properties for software product lines. Information &
Software Technology 55, 3 (2013), 508–524.

[27] Stephen Gilmore and Jane Hillston. 1994. The PEPA Workbench: A Tool to
Support a Process Algebra-based Approach to Performance Modelling. In Com-
puter Performance Evaluation, Modeling Techniques and Tools, 7th International
Conference (LNCS), Vol. 794. Springer, 353–368.

[28] Thomas J. Glazier, Javier Cámara, Bradley R. Schmerl, and David Garlan. 2015.
Analyzing Resilience Properties of Di�erent Topologies of Collective Adaptive
Systems. In IEEE International Conference on Self-Adaptive and Self-Organizing
Systems Workshops, SASO Workshops. IEEE CS, 55–60.

[29] Lars Grunske and Aldeida Aleti. 2013. Quality optimisation of software archi-
tectures and design speci�cations. Journal of Systems and Software 86, 10 (2013),
2465–2466.

[30] Hans Hansson and Bengt Jonsson. 1994. A logic for reasoning about time and
reliability. Formal Aspects of Computing 6, 5 (1994), 512–535.

[31] Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol. 11, 2 (2002), 256–290.

[32] Daniel Jackson. 2006. Software Abstractions - Logic, Language, and Analysis. MIT
Press.

[33] Daniel Jacobson, Danny Yuan, and Neeraj Joshi. 2013. Scryer: Net�ix’s Predic-
tive Auto Scaling Engine. http://techblog.net�ix.com/2013/11/scryer-net�ixs-
predictive-auto-scaling.html. (Dec. 2013). [Online; accessed 8-2017].

[34] He Jifeng, K. Seidel, and A. McIver. 1997. Probabilistic models for the guarded
command language. Science of Computer Programming 28, 2 (1997), 171 – 192.
Formal Speci�cations: Foundations, Methods, Tools and Applications.

[35] Kenneth Johnson, Radu Calinescu, and Shinji Kikuchi. 2013. An Incremental
Veri�cation Framework for Component-based Software Systems. In Proceedings
of the 16th International ACM Sigsoft Symposium on Component-based Software
Engineering (CBSE ’13). ACM.

[36] Eunsuk Kang, Aleksandar Milicevic, and Daniel Jackson. 2016. Multi-
representational security analysis. In Proc. of the 24th Symposium on Foundations
of Software Engineering, FSE.

[37] M. Kwiatkowska, G. Norman, D. Parker, and M.G. Vigliotti. 2009. Probabilistic
Mobile Ambients. Theoretical Computer Science 410, 12–13 (2009), 1272–1303.

[38] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2007. Stochastic Model
Checking. In Formal Methods for Performance Evaluation, 7th International School
on Formal Methods for the Design of Computer, Communication, and Software
Systems, SFM (LNCS), Vol. 4486. Springer, 220–270.

[39] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0:
Veri�cation of Probabilistic Real-Time Systems. In Computer Aided Veri�cation -
23rd International Conference, CAV, Vol. 6806. Springer, 585–591.

[40] Marta Z. Kwiatkowska and David Parker. 2013. Automated Veri�cation and Strat-
egy Synthesis for Probabilistic Systems. In Automated Technology for Veri�cation
and Analysis - 11th International Symposium, ATVA 2013, Hanoi, Vietnam, October
15-18, 2013. Proceedings (Lecture Notes in Computer Science), Dang Van Hung and
Mizuhito Ogawa (Eds.), Vol. 8172. Springer, 5–22.

[41] André Lanna, Thiago Castro, Vander Alves, Genaína Nunes Rodrigues, Pierre-
Yves Schobbens, and Sven Apel. 2018. Feature-family-based reliability analysis
of software product lines. Information & Software Technology 94 (2018), 59–81.

[42] Alex D. MacCalman, Paul T. Beery, and Eugene P. Paulo. 2016. A Systems
Design Exploration Approach That Illuminates Tradespaces Using Statistical
Experimental Designs. Syst. Eng. 19, 5 (2016), 409–421.

[43] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2013. Synthesis of
component and connector models from crosscutting structural views. In European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE’13. ACM, 444–454.

[44] Anne Martens, Heiko Koziolek, Ste�en Becker, and Ralf Reussner. 2010. Automat-
ically Improve Software Architecture Models for Performance, Reliability, and
Cost Using Evolutionary Algorithms. In Int. Conf. on Performance Engineering
(WOSP/SIPEW). ACM, 105–116.

[45] Indika Meedeniya, Irene Moser, Aldeida Aleti, and Lars Grunske. 2011.
Architecture-based reliability evaluation under uncertainty. In 7th International
Conference on the Quality of Software Architectures, QoSA 2011 and 2nd Interna-
tional Symposium on Architecting Critical Systems, ISARCS. ACM, 85–94.

[46] Ruslan Meshenberg, Naresh Gopalani, and Luke Kosewski. 2013. Active-Active
for Multi-Regional Resiliency. http://techblog.net�ix.com/2013/12/active-active-
for-multi-regional.html. (Dec. 2013). [Online; accessed 8-2017].

[47] Dave Parker. 2002. The PRISM Language - Semantics. (2002). Accessed on Jan.
22nd, 2020 from www.prismmodelchecker.org/doc/semantics.pdf.

[48] Dave Parker. 2002. The PRISM Preprocessor. (2002). Accessed Jan. 22nd, 2020
from http://www.prismmodelchecker.org/prismpp/.

[49] Diego Perez-Palacin and Ra�aela Mirandola. 2014. Uncertainties in the Modeling
of Self-adaptive Systems: A Taxonomy and an Example of Availability Evaluation.

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Javier Cámara

In Proceedings of the 5th ACM/SPEC International Conference on Performance
Engineering (ICPE ’14). ACM, 3–14.

[50] J. Michael Spivey. 1992. Z Notation - a reference manual (2. ed.). Prentice Hall.
[51] Jos Warmer and Anneke Kleppe. 2003. The Object Constraint Language: Getting

Your Models Ready for MDA. Addison-Wesley.
[52] DannyWeyns and Radu Calinescu. 2015. Tele Assistance: A Self-Adaptive Service-

Based System Exemplar. In 10th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems, SEAMS 2015. IEEE CS, 88–92.
[53] S. Wong, J. Sun, I. Warren, and J. Sun. 2008. A Scalable Approach to Multi-style

Architectural Modeling and Veri�cation. In 13th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS 2008). 25–34.

[54] Pamela Zave. 2005. A Formal Model of Addressing for Interoperating Networks.
In FM 2005: Formal Methods, International Symposium of Formal Methods Europe
(LNCS), Vol. 3582. Springer, 318–333.

