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ABSTRACT
Self-adaptive (or autonomic) systems incorporate complex
software components that act as controllers of a target sys-
tem by executing actions through effectors, based on infor-
mation monitored by probes. Despite the growing impor-
tance and criticality of controllers in many application do-
mains, a central concern about them is the difficulty in as-
sessing their robustness when architecting self-adaptive sys-
tems. In previous work, we proposed an approach for evalu-
ating the robustness of controllers in self-adaptive systems.
In this practical experience report, we describe a comprehen-
sive evaluation of the robustness of a particular controller,
in our case Rainbow, in the context of two case studies: a
benchmark case study that reproduces the typical infras-
tructure for a news website, and an industrial middleware
for monitoring populated networks of devices. The aim of
this work is to assess to what extent the use of a different
target system has an impact on the robustness of the con-
troller, which has to be customized in different ways, and
may need to resort to the activation of different features,
depending on the particular target system. Our analysis
concludes that the customization of Rainbow (the controller)
has little impact on its robustness because of the way the
controller was designed and built, and this modularization
of non-functional requirements is indeed encouraging when
architecting self-adaptive systems.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging
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An increasingly important requirement for software-inten-
sive systems is the ability to self-manage by adapting their
structure and behavior at run-time in an autonomous way as
a response to a variety of changes that may occur to the sys-
tem, its environment, or its goals [6, 9]. In particular, self-
adaptive (or autonomic) systems incorporate complex soft-
ware components that act as controllers of a target system
by executing actions through effectors, based on informa-
tion monitored by probes. These controllers consist usually
of four distinct operational stages, namely, monitoring, anal-
ysis, planning and execution [12], that implement the tra-
ditional sense-plan-act architectures. Despite the growing
importance and criticality of controllers in many application
domains, existing approaches in self-adaptation do not sys-
tematically address the need to determine if a self-adaptive
system can deliver a service that can justifiably be trusted
when facing changes (i.e., that it will be resilient [14]). A
major problem associated with the provision of evidence is
the combinatorial nature of the stateful aspects of a con-
troller and the changes that may affect the system being
controlled. Moreover, if the controller is expected to act
upon a change when it occurs, there is a wide range of is-
sues that needs to be considered when producing the ap-
propriate action, including the place in which the change
has occurred, the type and the frequency of the change, and
whether it can be anticipated [1]. These factors need to be
taken into account if assurances need to be provided about
the services to be delivered by the target system.

In previous work, we proposed an approach for evaluat-
ing the robustness of controllers in self-adaptive systems,
aiming at the effective identification of design faults [5]. In
this paper, we assess the impact of the target system (i.e.,
the system under control) upon the perceived robustness of
the controller, which may need to be customized in differ-
ent ways and resort to the activation of different features,
depending on the particular target system. To achieve this,
we carry out a comprehensive evaluation of the robustness
of a controller, i.e., Rainbow [11], an architecture-based ap-
proach that enables self-adaptation, in two different case
studies: a full-fledged deployment of Znn.com, a benchmark
case study that reproduces the typical infrastructure for a
news website [11], and Data Acquisition and Control Ser-
vice (DCAS), an industrial middleware for the monitoring



of highly populated networks of devices [4]. As a result of
our analysis, we conclude that the customization of Rain-
bow has little impact on its robustness because of the way
the controller was designed and built. Based on this, we can
claim that, when architecting self-adaptive systems we are
able to make reasonable assumptions regarding the robust-
ness of the controller (at least in the case of Rainbow) since
its robustness is not altered depending on the target system.

In the rest of this paper, Section 2 provides an introduc-
tion to the Rainbow framework, and summarizes the two
case studies under consideration. In Section 3, we describe
the experimental approach followed for the robustness eval-
uation of a controller (i.e., Rainbow) for self-adaptive soft-
ware systems. Section 4 presents the experimental results
obtained from our study. Section 5 describes related work.
Section 6 presents some conclusions and future work.

2. BACKGROUND
In this section, we briefly describe the Rainbow frame-

work, and present the two case studies under consideration.

2.1 The Rainbow Framework
In this paper, we focus on Rainbow [11], an architecture-

based platform for self-adaptation, which provides a sub-
stantial base of reusable infrastructure through customiza-
tion, which aims at reducing the cost of self-adaptive system
development. Rainbow has distinctive features: an explicit
architecture model of the target system, a collection of adap-
tation strategies, and utility preferences to guide adaptation.

Architecture models used in Rainbow employ a component-
and-connector style of architecture descriptions made in the
ACME ADL [10], which include relevant information about
how the different architecture elements are connected in the
system, as well as of their relevant properties. These models
enable high-level reasoning about the structure and state of
the system, in particular with the aim of determining the
best course of action for its adaptation.

The framework defined by Rainbow includes mechanisms
for (Figure 1): monitoring a target system and its environ-
ment (using the observations reported by probes for updat-
ing the architectural model of the target system), detecting
opportunities for improving the system’s quality of services
(QoS), deciding the best course of adaptation based on the
state of the system, and effecting the appropriate changes
through system-level effectors. Rainbow’s component-and-
connector architecture model of the target system is one of
the main elements used in its decision-making process.

The main components of the framework are:

• Architecture Evaluator: evaluates a set of con-
straints defined on the architecture model upon up-
date to ensure that the system is operating within an
acceptable range. If that is not the case (i.e., a con-
straint violation is detected), it triggers adaptation.

• Adaptation Manager: chooses a suitable adapta-
tion strategy based on current state of the system (re-
flected in the architectural model).

• Strategy Executor: executes the chosen strategy on
the running system via system-level effectors.

• Model Manager: updates the architecture model us-
ing the information observed in the system via probes.
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Figure 1: The Rainbow framework

2.2 ZNN.COM
Znn.com [7] is a case study portraying a representative

scenario for the application of self-adaptation in software
systems which has been extensively used to assess differ-
ent research works in the self-adaptive systems community.
Znn.com is able to reproduce the typical infrastructure for a
news website, and has a three-tier architecture consisting of
a set of servers that provide contents from backend databases
to clients via front-end presentation logic (Figure 2). The
system uses a load balancer to balance requests across a pool
of replicated servers, the size of which can be adjusted ac-
cording to service demand. A set of clients makes stateless
requests, and the servers deliver the requested contents.

c0

c1

c2

lbproxy

s0

s1

s2

s3

Figure 2: Znn.com system architecture

The main objective for Znn.com is to provide content to
customers within a reasonable response time, while keeping
the cost of the server pool within a certain operating budget.
It is considered that from time to time, due to highly popular
events, Znn.com experiences spikes in requests that it cannot
serve adequately, even at maximum pool size. To prevent
losing customers, the system can provide minimal textual
contents during such peak times, instead of not providing
service to some of its customers. Concretely, there are two
main quality objectives for the self-adaptation of the system:
(i) performance, which depends on request response time,
server load, and network bandwidth, and (ii) cost, which is
associated with the number of active servers.

In Znn.com, when response time becomes too high, Rain-
bow is able to increment server pool size if it is within budget
to improve performance; or switch servers to textual mode
(start serving text content) if cost is near budget limit.

2.3 Data Acquisition and Control Service (DCAS)
The Data Acquisition and Control Service (DCAS) [4]

from Critical Software, is a middleware that provides a reusable



infrastructure to manage the monitoring of highly populated
networks of devices. The middleware is integrated with
Critical’s Energy Management System (csEMS)1, a plat-
form that supports the operation of control centers for green
power producing companies (e.g., wind, solar, etc).
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Figure 3: Architecture of a DCAS-based system

The building blocks in a DCAS system (Figure 3) are:

• Devices are equipped with one or more sensors to
obtain data from the application domain (e.g., from
wind towers, solar panels, etc.). Each one of these
sensors has an associated data stream from which data
can be read. There may be different types of devices
connected to the network, each type with its particu-
lar characteristics (e.g., protocols, type of data, etc.).
Each type of device has an associated device profile
specifying the data polling rate and the expected value
ranges for the data being collected.

• Processor nodes pull data from the devices at a
given rate (configured in the device profile), and dis-
patch this data to the database server. Each processor
node includes a set of processes called Data Requester
Processor Pollers (DRPPs) responsible for retrieving
data from the devices. Communication between the
DRPPs and the devices is synchronous, so the DRPP
remains blocked until the device responds to a request
for data or a timeout expires. It is worth observing
that this is the main performance bottleneck of DCAS.

• Database server stores the data pulled from devices.

• Application server is connected to the database server
to obtain data, which can be presented to human op-
erators or processed by application software. However,
DCAS is application-agnostic, so the application server
is not discussed in the remainder of this paper.

The main objective of DCAS is collecting data from the con-
nected devices at a rate as close as possible to the one con-
figured in their device profiles, while making an efficient use
of the computational resources in the processor nodes. This
is achieved by two adaptation mechanisms: (i) rescheduling,
which decreases the priority of devices which fail to respond
in a timely manner, so that they are polled less often (thus
reducing the average time that DRPPs remain blocked wait-
ing for device data), and (ii) scale up, which (de)activates
DRPPs as required to exploit as much as possible the re-
sources of processor nodes.

3. EXPERIMENTAL APPROACH
This section provides an overview of the approach used for

evaluating the robustness of a controller in a self-adaptive
software system, followed by a description of the design and
setup for the experiments performed.
1
http://solutions.criticalsoftware.com/products services/csems/

3.1 Controller Robustness Evaluation
Our proposal for evaluating the robustness of a self-adaptive

software system considers the model depicted in Figure 4.
The environment consists of all non-controllable elements
that determine the operating conditions of the system (e.g.,
hardware, network, etc.). Regarding the system itself, we
distinguish two main subsystems: a target system, which
interacts with the environment by monitoring relevant vari-
ables associated with operating conditions, and a controller
that manages the target system, driving adaptation when-
ever it is required. Concretely, the controller carries out
its function by: (i) monitoring the target system and envi-
ronment through probes that provide information about the
value of relevant variables, (ii) deciding whether the current
state demands adaptation, and if required, (iii) applying a
sequence of control actions through system-level effectors.

Self-Adaptive Software System
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network, physical context
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Figure 4: Self-adaptive software system

In a nutshell, the intent of the approach is evaluating how
robust is the controller regarding changes that may affect
its interface by modifying the probes’ inputs into the con-
troller. We consider that the controller has a stateful nature,
since for the same input, the controller’s internal state may
influence its output. This is accounted for by considering in-
put mutation during the different operational stages of the
controller (i.e., analysis, planning, execution) to create an
appropriate context for evaluating its robustness.

In the remaining part of this subsection, we provide an
overview of the key elements of our approach.

3.1.1 Changeload
The changeload is a set of representative change scenar-

ios [3], where changes are based on controller input muta-
tions according to a set of predefined mutation rules (Ta-
ble 1). Mutation rules have been defined based on previous
works on robustness testing [13, 19, 21], and explore limit
conditions that are typically the source of robustness prob-
lems. Moreover, mutation rules affect the different parts
of the input provided to the controller by a probe, which
typically consists of: (i) an identifier of the variable be-
ing monitored, (ii) the actual value for the variable, and
(iii) a timestamp that provides a temporal context for the
variable being monitored. To build the changeload, we:
(i) identify the workload and operational conditions of the
system necessary to drive the controller through its differ-
ent stages, (ii) identify the set of probes used during each
controller stage, (iii) identify the set of applicable muta-
tion rules for each probe based on the characteristics of the



probe, data type, and value range for the variable it up-
dates, and (iv) combine the workload, operation conditions,
and mutation rules to obtain change scenarios. For every
tested probe and for each applicable mutation rule, we need
to consider three different change scenarios related to the
analysis, planning, and execution controller stages.

3.1.2 Failure mode classification
Characterizes the run-time behavior of the controller while

the target system is running in the presence of the changeload.
Specifically, the robustness of a controller for a self-adaptive
system can be classified according to an adapted version of
the CRASH scale [13] including the following failure modes:

• Catastrophic: the whole controller crashes or becomes
corrupted (this might include the OS or machine on
which the controller runs). No output is produced.

• Restart: the controller execution hangs and may not
issue any output commands, or send always the same
command, within the worst case execution time asso-
ciated with the adaptation cycle. The controller needs
to be externally re-booted.

• Abort: abnormal behavior in the controller occurs due
to a run-time exception inside of the controller.

• Silent: the controller fails to acknowledge an error, for
instance by signalling an exception, which causes the
controller to continue operating improperly.

• Hindering: the controller fails to return a correct error
code, which may hinder error recovery. This differs
from a silent failure, since the error is acknowledged by
the controller but the returned error code is incorrect.

3.1.3 Robustness tests
Robustness tests mutate the input of the different probes

(Figure 5). For each probe (which, at run-time is contin-
uously delivering information to the tested controller) we
apply a single change for each data sample provided by the
probe. However, we apply (in the subsequent probe data
samples) the same change for a given period of time, which
gives us the possibility of further disturbing the system.
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t2"–"Fault"injec2on"(while"s2ll"on"the"target"state."What"is"the"limit"for"fault"
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Figure 5: Robustness testing procedure

Each robustness test focuses on a single type of mutation
rule, and is executed for each of the operational stages in the
controller (analysis, planning, execution), since it enables us
to cover more cases and potentially disclose more robustness

Table 1: Mutation rules for probes
Rule Name Description

A
.

M
e
ss

a
g
e

1. MsgNull Replace by null value
2. MsgEmpty Replace by empty string
3. MsgPredefined Replace by predefined string
4. MsgNonPrintable Replace by string of non-

printable characters
5. MsgAddNonPrintable Add non-printable characters
6. MsgOverflow Add characters to overflow max

string size

B
.

T
im

e
st

a
m

p

1. TSEmpty Replace by empty timestamp
2. TSRemove Remove timestamp
3. TSInvalidFormat Replace by timestamp with in-

valid format
4. TSDateMaxRange Replace date by maximum valid
5. TSDateMinRange Replace date by minimum valid
6. TSDateMaxRangePlusOne Replace date by maximum valid

plus one
7. TSDateMinRangeMinusOne Replace date by minimum valid

minus one
8. TSDateAdd100 Add 100 years to date
9. TSDateSubtract100 Subtract 100 years from date
10. TSInvalidDate Replace by invalid date

C
.

V
a
r.

N
a
m

e 1. VNRemove Remove variable name
2. VNSwap Replace by different valid vari-

able name of same type
3. VNSwapType Replace by different valid var.

name of different type
4. VNInvalidFormat Replace by var. name with in-

valid format
5. VNNotExist Replace by inexistent var. name

D
.

V
a
r.

V
a
lu

e

1. VVRemove Remove variable value

2. VVInvalidFormat Replace by invalid format value
Number

3. VVNumAbsoluteMinusOne Replace by -1
4. VVNumAbsoluteOne Replace by 1
5. VVNumAbsoluteZero Replace by 0
6. VVNumAddOne Add 1
7. VVNumSubtractOne Subtract 1
8. VVNumMax Replace by maximum type value
9. VVNumMin Replace by minimum type value
10. VVNumMaxPlusOne Replace by maximum number

valid for type plus one
11. VVNumMinMinusOne Replace by minimum number

valid for type minus one
12. VVNumMaxRange Replace by maximum number

valid for variable
13. VVNumMinRange Replace by minimum number

valid for variable
14. VVNumMaxRangePlusOne Replace by maximum number

valid for variable plus one
15. VVNumMinRangeMinusOne Replace by minimum number

valid for variable minus one
Boolean

16. VVBoolPredefined Replace by predefined value

problems. Hence, in each test we drive the system from an
initial state to a target state by delivering a workload to the
system for a given amount of time (ramp-up period in Figure
5). This target state is the one in which the system should
be in order to start testing, and can correspond to any entry
point to any of the three controller stages previously men-
tioned. With the controller in the target stage, we start
applying the changes (of the same type) during a change
period in which the controller is on the target stage. This
time period should be set to the typical time required for
a transition to occur between the target controller stage to
the next stage. After this probe mutation period there is a
keep time which is the time required for the system to reach
a final state, ending the test, and coinciding with the com-
pletion of the controller’s execution stage. The keep time
should at most be set to the worst case execution duration
found in the specification of the adaptation to be executed.
The observation period (change period+keep time) is used
to register any deviations from expected controller behavior.

3.2 Experiment Design
To build the changeload used for our experiments, we



identified the: workload and operating conditions, set of
probes used during the different stages of the controller, and
set of changes (based on mutation rules) applied to the set
of probes identified in each case.

3.2.1 Workload and operating conditions

• Znn.com. Workload and conditions characteristic of
a slashdot-type effect, based on a sample collected by
Juric 2, previously used for an evaluation of the effec-
tiveness of Rainbow in Znn.com [7]. Scenarios have
been scaled down to a duration of 5 minutes, which
is enough to drive the controller through its different
operational stages and apply the robustness tests.

• DCAS. Workload and conditions in a typical deploy-
ment of a DCAS-based system. Scenarios have a du-
ration of 5 minutes, which is enough to drive the con-
troller through its different operational stages and ap-
ply the robustness tests. All experiments incorpo-
rate a workload that includes 100 data streams with a
data polling rate of 1 second. Each experiment drives
the controller towards the triggering of adaptation to
improve performance, and conforms to the following
pattern: (a) 50s of normal activity to let the system
achieve a steady state; (b) 200s of disturbance, during
which we induce low responsiveness in data streams
(adding a 2-second delay in the response time of 25%
of the data streams); and (c) 50s of normal activity.

3.2.2 Sets of probes
The three last columns of Table 2 indicate the set of probes

used during the analysis (A), planning (P), and execution
(E) stages of the controller for each case study. Probes were
identified by inspecting architecture models and adaptation
strategies. Specifically, the use of a probe during the analysis
stage can be determined by checking whether the constraints
specified for the architecture model are defined over variables
updated by a given probe. Moreover, an analogous process
is followed to identify probes used during the planning stage,
which update information in variables used to specify appli-
cability conditions of adaptation strategies. Finally, probes
used during execution are identified by inspecting the pred-
icates included in the code of the adaptation strategies.

3.2.3 Sets of changes to be applied on probes
Table 2 also indicates the set of non-applicable mutation

rules to each of the probes in the two case studies, which
are determined by the type of probe implemented, as well
as by the data type and value range of the variables they up-
date. Regarding probe implementation type, all the studied
probes are implemented in Java, except for the ServerLoad
and ServerFidelity probe types in Znn.com, which are im-
plemented in Perl. In both cases, the length of strings is
unrestrained, therefore mutation rule MsgOverflow (A6) is
not applicable. In Perl probes, the null datatype does not
exist, hence mutation MsgNull (A1) cannot be used. Regard-
ing data types, all of the studied probes update numerical
variables, disallowing the applicability of rule VVBoolPrede-
fined (D16). The only exception is the ServerLoad probe type
in Znn.com, which is not associated with a simple datatype
and reports a message with a custom format in the variable

2
http://www.astro.princeton.edu/universe/slashdotting/

value, preventing the use of mutation rules D3-16. Finally,
the variables updated by some of the probes do not have a
value range explicitly defined. In probe types RPS, Queue-
Size, ActivePollers, EllapsedTime and ClientProxy there is an
implicit lower bound of zero, due to the semantics of the
information in the variable (e.g., negative times make no
sense), but there is no upper bound, discarding the use of
rules D12 and D14 that involve the maximum value in range.
In QueueStatus and ServerLoad probes there are not even im-
plicit upper or lower bounds for the value range, therefore
in these cases rules D13 and D15 are also unapplicable.

3.3 Experimental Setup

3.3.1 Znn.com
We deployed Rainbow and the corresponding implementa-

tion of Znn.com across seven different machines (Figure 6):
znns0-3 are the four content servers running Apache v2.2.16,
znndb is a common backend database running mySql v14.1,
from which the different servers extract the contents, and
znnproxy is the proxy machine that runs the load balanc-
ing software (Apache running mod proxy balancer v2.1). The
controller is deployed in a separate machine (znnmaster). All
machines run Debian Linux v6.0.4, and have 512MB of RAM.
An additional machine znnclient running JMeter v2.5.1 gen-
erates the traffic during the execution of the system.

znns1

znnproxyznnclient

znns0

znns3

znns2

znndb

znnmaster

ClientProxyProbe

ServerFidelityProbe

ServerLoadProbe

Figure 6: Znn.com experimental setup

3.3.2 DCAS
We deployed Rainbow and DCAS across four machines

(Figure 7): dcas-db acts as the backend database running
on Oracle 10.2.0, dcas-main acts as a processor node, run-
ning DCAS, and (dcas-devs) is used to simulate the response
of network devices from which DCAS retrieves information.
Moreover, the controller (Rainbow’s master) is deployed in
a separate machine (dcas-master). All machines run on Win-
dows XP Pro SP3 (DCAS is deployed as a Windows service),
and an Intel Core i3 processor, with 1GB of RAM.

dcas-maindcas-db dcas-devs

dcas-master

ElapsedTimeProbe
QueueSizeProbe

QueueStatusProbe
ActivePollersProbe

RPSProbe

Figure 7: DCAS experimental setup



Table 2: Probe use per controller stage and applicable mutation rules for DCAS and ZNN
Probe Type Description Non-applicable mutation rules A P E

D
C
A
S

RPS Measures performance (processed data requests per second inserted in database). A6,D12,D14,D16 x x
QueueSize Data request queue size in processor node. A6,D12,D14,D16 x x x
QueueStatus Data request queue growth rate in processor node. A6,D12-16 x
ActivePollers Number of active Data Requester Processor Pollers in processor node. A6,D12,D14,D16 x
ElapsedTime Measures device response time when polled for data. A6,D12,D14,D16 x x

Z
N

N ClientProxy Measures experienced response time in proxy. A6,D12,D14,D16 x x x
ServerLoad Measures the load of a given server. A1,A6,D3-16 x x
ServerFidelity Reports the fidelity level of the contents in a server. A1,A6,D16 x x

4. EXPERIMENTAL RESULTS
This section presents and discusses the outcome of the

experiments carried out on the two case studies.

4.1 Experimental Results for Znn.com
Table 3 details the experimental results obtained for the

Znn.com case study. For this case study, 108 out of the 209
conducted tests uncovered robustness issues (51.6%). None
of these robustness issues included catastrophic, restart, or
hindering cases. Specifically, only 2.7% of the issues un-
covered correspond to abort failures, which only occur on
tests based on the mutation MsgNull (in this case, in the
ClientProxy probe type, which is the only one implemented
in Java). Specifically, this abort case consists of the same
unhandled java.lang.NullPointerException in each of the three
stages of the controller during the parsing of probe response
with a regular expression matcher. The remaining 97.3%
of the cases are different silent failures, which mostly corre-
spond to incorrect updates (or the lack thereof) of property
values in the architecture model of the target system which
are not acknowledged by the controller. In probes imple-
mented in Perl (ServerLoad and ServerFidelity), when incor-
rect input is received by the controller, the update is ignored
in all cases, and the property in the model is not updated.
In contrast, in the Java probe (ClientProxy), properties are
updated with clearly incorrect values (such as negative val-
ues in the case of ClientProxy with mutations VVNumAbso-
luteMinusOne or VVNumMin), or not updated in some other
cases (e.g., mutations MsgNonPrintable or VNRemove).

4.2 Experimental Results for DCAS
Table 4 details the experimental results obtained for DCAS.

To begin with, 160 out of the 295 conducted tests uncov-
ered robustness issues (54.2%). Out of all the failures, only
5.3% correspond to abort, whereas the remaining 94.7% are
silent failures. Regarding abort failures, only tests based on
the mutation MsgNull caused this type of failure by raising
the unhandled java.lang.NullPointerException in the different
probes tested, which are all implemented in Java. In the case
of silent failures, all probes present failure patterns similar to
the one described for the Java probe ClientProxy in Znn.com.
In general, there are either incorrect or no property updates
in architecture model properties in the presence of excep-
tional input provided by the probe. However, there are
some slight differences in patterns, such as in the RPS probe,
which presents additional failures in the presence of muta-
tions VVNumMax and VVNumMin, due to the data type of
the variable it updates (floating point vs. integers in the rest
of the probes). Specifically, the values of Float.MAX VALUE
and Float.MIN VALUE are transliterated into the probe re-
sponse message in exponential notation, causing the incor-
rect parsing of the message upon reception in the controller.

The other probe that presents a slightly different failure pat-
tern is QueueStatus, which is not affected by mutations that
modify the value of the variable with negative numbers (e.g.,
VVNumAbsoluteMinusOne or VVNumMin).

4.3 Discussion
Our approach for robustness testing was able to discover

a relevant number of failures in both case studies (& 50%
of tests uncovered at least one robustness issue). However,
none of these failures fell into the categories of catastrophic,
reboot, or hindering 3. Moreover, most failures identified in
both case studies (> 90%) correspond to silent failures and
follow similar patterns across the different probes. Specifi-
cally, mutations that pertain the overall probe response mes-
sage, as well as variable name and value (first, third, and
fourth groups in Tables 3 and 4, respectively) present the
highest concentration of silent failures. In contrast, silent
failures concerning timestamps occur only when it is re-
moved (mutations TSEmpty and TSRemove). This is a con-
sequence of the way in which Rainbow parses messages from
probes, checking only the presence of a timestamp in the
message without further syntactic nor semantic checks.

Despite the similar failure patterns across probes, we have
observed that there are slight differences related with their
type of implementation: (i) all abort failures are given when
mutating Java probes, and (ii) silent failures when mutating
Perl probes always stop the updates of properties in the
architecture model, in contrast with Java probes, in which
incorrect updates of properties can also appear.

Moreover, regardless of the similar failure patterns for the
same probe across different controller stages, the specific
failure instances discovered in the different controller stages
are different. An instance of this is the mutation of Java
probes with the MsgNull, which results in the properties of
the architecture model being updated with null values in
tests conducted during the analysis stage, whereas in the
planning and execution stages the last valid value on the
model freezes when the mutation is applied on the probe.

Finally, the similarity of the failure patterns observed in
the two case studies, in which the customization of Rainbow
was carried out by two independent teams, indicates that the
customization of Rainbow for different target systems has
little impact in the robustness of the resulting controller.
This is a consequence of Rainbow’s architecture, in which
the model manager component acts as a safeguard for the
rest of the components that handle the different stages of the
feedback control loop. Concretely, these other components
use the information as updated in the architecture model,
in contrast with using input directly supplied by probes.

3Despite this, these failure modes portray relevant behaviors
that might be uncovered when testing other controllers.



Table 3: Experimental results for Znn.com
Failures (A=Abort, S=Silent)

Analysis Planning Execution
ClientProxy ServerLoad ClientProxy ServerFidelity ClientProxy ServerFidelity ServerLoad

Mutation Rule A S A S A S A S A S A S A S
A1. MsgNull 1 1 1 1 1 1 1
A2. MsgEmpty 1 1 1 1 1 1 1
A3. MsgPredefined 1 1 1 1 1 1 1
A4. MsgNonPrintable 1 1 1 1 1 1 1
A5. MsgAddNonPrintable 1 1 1 1 1 1 1

B1. TSEmpty 1 1 1 1 1 1 1
B2. TSRemove 1 1 1 1 1 1 1

C1. VNRemove 1 1 1 1 1 1 1
C2. VNSwap 1 1 1 1
C4. VNInvalidFormat 1 1 1 1
C5. VNNotExist 1 1 1 1

D1. VVRemove 1 1 1 1 1 1 1
D2. VVInvalidFormat 1 1 1 1 1 1 1
D3. VVNumAbsoluteMinusOne 1 1 1 1 1
D8. VVNumMax 1 1 1
D9. VVNumMin 1 1 1 1 1
D10. VVNumMaxPlusOne 1 1 1 1 1
D11. VVNumMinMinusOne 1 1 1 1 1
D15. VVNumMinRangeMinusOne 1 1 1 1 1

TOTAL/PROBE 1 16 0 12 1 16 0 18 1 16 0 18 0 12
TOTAL/STAGE A: 1, S: 28 A: 1, S: 34 A: 1, S: 46

Table 4: Experimental results for DCAS
Failures (A=Abort, S=Silent)

Analysis Planning Execution
RPS QueueSize ElapsedTime RPS QueueSize ElapsedTime ActivePollers QueueSize QueueStatus

Mutation Rule A S A S A S A S A S A S A S A S A S
A1. MsgNull 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A2. MsgEmpty 1 1 1 1 1 1 1 1 1
A3. MsgPredefined 1 1 1 1 1 1 1 1 1
A4. MsgNonPrintable 1 1 1 1 1 1 1 1 1
A5. MsgAddNonPrintable 1 1 1 1 1 1 1 1 1

B1. TSEmpty 1 1 1 1 1 1 1 1 1
B2. TSRemove 1 1 1 1 1 1 1 1 1

C1. VNRemove 1 1 1 1 1 1 1 1 1
C2. VNSwap 1 1 1 1 1 1
C4. VNInvalidFormat 1 1 1 1 1 1 1 1 1
C5. VNNotExist 1 1 1 1 1 1 1 1 1

D1. VVRemove 1 1 1 1 1 1 1 1 1
D2. VVInvalidFormat 1 1 1 1 1 1 1 1 1
D3. VVNumAbsoluteMinusOne 1 1 1 1 1 1 1 1
D8. VVNumMax 1 1
D9. VVNumMin 1 1 1 1 1 1 1 1
D10. VVNumMaxPlusOne 1 1 1 1 1 1 1 1
D11. VVNumMinMinusOne 1 1
D15. VVNumMinRangeMinusOne 1 1 1 1 1 1 1 1

TOTAL/PROBE 1 18 1 16 1 17 1 18 1 17 17 1 17 1 17 1 13
TOTAL/STAGE A: 3, S: 51 A: 4, S: 69 A: 2, S: 40

5. RELATED WORK
Robustness testing consists in stimulating a system with

erroneous input conditions to trigger internal errors. This
enables testers to differentiate systems according to the num-
ber and type of errors uncovered, providing developers with
information to solve the identified problems [17].

Ballista [13] uses a set of tests that combine acceptable
and exceptional values on calls to kernel functions of oper-
ating systems. The parameter values used in each invocation
are randomly extracted from a set of predefined tests. Each
operating system is classified in terms of its robustness and
according to a predefined scale (the CRASH scale [13]) that
distinguishes several failure modes.

MAFALDA (Microkernel Assessment by Fault injection
AnaLysis and Design Aid) [19] is a tool that enables the
characterization of the behavior of microkernels in the pres-
ence of faults injected in the parameters of system calls.

Robustness testing techniques have been applied also at
the middleware layer and targeting different types of sys-
tems. Robustness testing of high availability middleware is
discussed in [16]. The paper presents a testing framework
that integrates previous testing techniques (e.g., scenario-

based testing and test result classification). The case study
conducted on OpenAIS (an open implementation of the Ap-
plication Interface Specification -AIS-) showed that simple
techniques can identify robustness problems.

Ballista was also adapted to middleware systems. Con-
cretely, [18] studies the robustness of various CORBA ORB
implementations. The failure modes were adapted to better
characterize the CORBA context and the authors were able
to reveal several issues in the middleware.

In [15], an experimental approach for the robustness eval-
uation of three JMS middleware providers is presented. The
study exposes serious problems, highlighting the importance
of applying robustness testing to real-world systems.

The abovementioned works implement robustness testing
approaches that do not consider the state of the system un-
der test. In [8] the impact of state on robustness testing
of a safety-critical operating system (OS) is investigated by
including the OS state in test cases definition. Although
system-specific, results show that the state can play an im-
portant role in testing since they are able to cover more cases
when compared to the traditional approaches.

In [5] we present an approach to evaluate the robustness of



controllers for self-adaptive software systems, aiming at the
identification of design faults. The approach is based on ro-
bustness tests that provide mutated inputs to the interfaces
between controller and target system (i.e., probes).

6. CONCLUSIONS
In this paper, we have reported on our experience evalu-

ating the robustness of controllers for self-adaptive software
systems. For that, we have applied the Rainbow framework,
which is an architecture-based approach for supporting self-
adaptation both to a benchmark case study that reproduces
the typical infrastructure for a news website, and an indus-
trial middleware for monitoring device networks.

The similarity in the failure patterns observed in our re-
sults enabled us to conclude that the customization of the
Rainbow framework for different target systems has little
impact in the robustness of the resulting controller. This
is a result of the architecture of Rainbow, where the model
manager component acts as a safeguard for the rest of the
components that handle the different stages of the feedback
control loop. Specifically, these other components make use
of the information as updated in the architecture model, in
contrast with using input directly supplied by probes.

These results indicate that some assumptions regarding
the robustness of the resulting controller can be made when
developing self-adaptive systems through the customization
of a reusable framework, such as Rainbow. It is worth ob-
serving that this claim is only validated by our results in
the context of Rainbow and that its generalization would
require experimentation with further self-adaptive systems
including different types of controllers. However, although
there have been some recent works in reusable frameworks
that aim at obtaining controllers through customization in
self-adaptive software systems [20, 2], none of them are ma-
ture nor widely available. To the best of our knowledge,
Rainbow is the only of such frameworks evaluated in the
context of different real-world case studies [7, 4].

Regarding future work, we aim at developing a framework
for resilience evaluation of self-adaptive software systems by
applying our technique for evaluating the robustness of con-
trollers, basing upon previous work on resilience evaluation
presented in [3]. This will enable us to explore how ro-
bustness issues in the controller influence the resilience of
the overall self-adaptive system.A second direction consists
in extending our robustness evaluation approach into the
internal components of the controller that implement the
MAPE-K loop. The idea is to test the interfaces between
its components, in contrast with just focusing on the inter-
face between the controller and the target system.
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