

New Issues on Coordination and
Adaptation Techniques

Proceedings of the Second International Workshop
on Coordination and Adaptation Techniques for

Software Entities.
WCAT’05

July 25, 2005
Glasgow , Scotland

Held in conjunction with ECOOP 2005

Registered as

Technical Report TR ITI-05-07
Dpto. de Lenguajes y Ciencias de la Computación

 Universidad de Málaga

Technical Report TR-23/05
Escuela Politécnica

Dpto. de Informática
 Universidad de Extremadura

Technical Report 119-2005
LaMI - UMR 8042

 CNRS / University of Evry Val d'Essonne
Genopole

Steffen Becker, Carlos Canal, Juan M. Murillo,
Pascal Poizat and Massimo Tivoli (Eds.)

Technical Report TRCS 006/2005
Dipartimento di Informatica

 Facoltà di Scienze MM.FF.NN.
University of L'Aquila

Editors

Carlos Canal
University of Málaga. ETSI Informática
Campus de Teatinos. 29071 Málaga (Spain)
E-mail: canal@lcc.uma.es
Web: http://www.lcc.uma.es/~canal

I.S.B.N. 84-689-2747-3

Juan Manuel Murillo
University of Extremadura. Escuela Politécnica
Avda. de la Universidad, s/n. 10071 Cáceres (Spain)
E-mail: juanmamu@unex.es
Web: http://quercusseg.unex.es

Pascal Poizat
University of Evry. LaMI, Tour Evry 2
523 place des terrasses de l'Agora. 91000 Evry (France)
E-mail: poizat@lami.univ-evry.fr
Web: http://www.lami.univ-evry.fr/~poizat/

Printed in Spain
July 2005
Impression supported by CICYT under contract TIC 2002-04309-C02-01

Steffen Becker
University of Oldenburg. Software Engineering Group. OFFIS
Escherweg 2. 26121 Oldenburg (Germany)
E-mail: steffen.becker@informatik.uni-oldenburg.de
Web: http://se.informatik.uni-oldenburg.de/staff/Members/steffen

Massimo Tivoli
University of L’Aquila. Dipartimento di Informatica. Facoltà di Scienze
MM.FF.NN. Via Vetoio n.1. 67100 L’Aquila (Italy)
E-mail: tivoli@di.univaq.it
Web: http://www.di.univaq.it/tivoli

Preface

Coordination and Adaptation are two key issues when developing complex
distributed systems, constituted by a collection of interacting entities —either
considered as subsystems, modules, objects, components, or web services— that
collaborate to provide some functionality. Coordination focuses on the interaction
among computational entities. Adaptation focuses on the problems raised when the
interacting entities do not match properly.

Indeed, one of the most complex tasks when designing and constructing such
applications is not only to specify and analyze the coordinated interaction that occurs
among the computational entities but also to be able to enforce them out of a set of
already implemented behaviour patterns. This fact has favoured the development of a
specific field in Software Engineering devoted to the coordination of software. Such
discipline, covering Coordination Models and Languages, promotes the re-usability
both of the coordinated entities, and also of the coordination patterns.

The ability of reusing existing software has always been a major concern of
Software Engineering. In particular, the need of reusing and integrating
heterogeneous software parts is at the root of the so-called Component-Based
Software Development. The paradigm “write once, run forever” is currently supported
by several component-oriented platforms.

However, a serious limitation of available component-oriented platforms (with
regard to reusability) is that they do not provide suitable means to describe and reason
on the interacting behaviour of component-based systems. Indeed, while these
platforms provide convenient ways to describe the typed signatures of software
entities via interface description languages (IDLs), they offer a quite limited and low-
level support to describe their concurrent behaviour. As a consequence, when a
component is going to be reused, one can only be sure that it provides the required
signature based interface but nothing else can be inferred about the behaviour of the
component with regard to the interaction protocol required by the environment.

Not solely the reuse of components is important, but also the adaptation of
existing software for interaction with new systems is important for industrial projects.
Especially the afore mentioned web service technology is used regularly in this
context.

Additionally, there is the aim to built component-based systems to support a
specific level of quality. In order to be able to do so, the specifications need to include
Quality of Service oriented attributes. This feature, which is common for other
engineering disciplines, is still lacking for Component-Based Software Development.

To deal with those problems, a new discipline, Software Adaptation, is
emerging. Software Adaptation focuses on the problems related to reusing existing
software entities when constructing a new application. It is concerned with how the
functional and non functional properties of an existing software entity (class, object,
component, etc.) can be adapted to be used in a software system and, in turn, how to
predict properties of the composed system by only assuming a limited knowledge of
the single components computational behavior.

The need for adaptation can appear at any stage of the software life-cycle and
adaptation techniques for all the stages must be provided. Anyway such techniques

3

must be non-intrusive and based on formal executable specification languages such as
Behavioural IDL. Such languages and techniques should support automatic and
dynamic adaptation, that is, the adaptation of a component just in the moment in
which the component joins the context supported by automatic and transparent
procedures. For that purpose Software Adaptation promotes the use of software
adaptors-specific computational entities for solving these problems. The main goal of
software adaptors is to guarantee that software components will interact in the right
way not only at the signature level but also at the protocol, Quality of Service and
semantic levels.

These are the proceedings of the 2nd International Workshop on Coordination
and Adaptation Issues for Software Entities (WCAT'05), affiliated with the 19th
European Conference on Object-Oriented Programming (ECOOP'2005), held in
Glasgow (United Kingdom) on July 25, 2005. These proceedings contain the 12
position papers selected for participating in the workshop.

The topics of interest of WCAT'05 covered a broad number of fields where
coordination and adaptation have an impact: models, requirements identification,
interface specification, software architecture, extra-functional properties,
documentation, automatic generation, frameworks, middleware and tools, and
experience reports.

The WCAT workshops series tries to provide a venue where researchers and
practitioners on these topics can meet, exchange ideas and problems, identify some of
the key issues related to coordination and adaptation, and explore together and
disseminate possible solutions.

Workshop Format

To establish a first contact, all participants will make a short presentation of their
positions (five minutes maximum, in order to save time for discussions during the
day). Presentations will be followed by a round of questions and discussion on
participants' positions.
From these presentations, a list of open issues in the field must be identified and
grouped. This will make clear which are participants' interests and will also serve to
establish the goals of the workshop. Then, participants will be divided into smaller
groups (about 4-5 persons each), attending to their interests, each one related to a
topic on software coordination and adaptation. The task of each group will be to
discuss about the assigned topic, to detect problems and its real causes and to point
out solutions. Finally a plenary session will be held, in which each group will present
their conclusions to the rest of the participants, followed by some discussion.

Steffen Becker
Carlos Canal

Juan Manuel Murillo
Pascal Poizat

Massimo Tivoli

Workshop Organizers

4

Author Index

Arbab, Farhad, 39
Barais, Olivier, 71
Barrio-Solórzano, Manuel, 25
Becker, Steffen, 9
Bernard, Guy, 47
Cámara, Javier, 17
Canal, Carlos, 17
Conan, Denis, 47
Coupaye, Thierry, 71
Cubo, Javier, 17
Cuesta, Carlos E., 25
Davy, Alan, 31
Diakov, Nikolay, 39
Duchien, Laurence, 71
Fuente, Pablo de la, 25
Fuentes, Lidia, 79

Jennings, Brendan, 31
Kouici, Nabil, 47
Levy, Nicole, 99
Moreno, Natalie, 55
Murillo, Juan Manuel, 63
Navasa, Amparo, 63
Pérez, Miguel Angel, 63
Pessemier, Nicolas, 71
Romay, María del Pilar, 25
Romero, José Raúl, 55
Sánchez, Pablo, 79
Seinturier, Lionel, 71
Traverson, Bruno, 99
Vallecillo, Antonio, 55
Wells, George, 87
Yahiaoui, Nesrine, 99

5

Contents

Using Generated Design Patterns to Support QoS Prediction of
Software Component Adaptation 9

S. Becker

Issues in the formalization of Web Service Orchestrations 17

J. Cámara, C. Canal, J. Cubo

Meta-Level Architectural Connectors for Coordination 25
C.E. Cuesta, M.P. Romay, P. Fuente,M. Barrio-Solorzano

Coordinating Adaptation of Composite Services 31
A. Davy , B. Jennings

Adaptation of Software Entities for Synchronous Exogenous
Coordination. An Initial Approach 39

N. Diakov, F. Arbab,

An experience on adaptation in the context of mobile computing 47
N.l. Kouici, D. Conan, G. Bernard

Software Adaptation in the Context of MDA 55
N. Moreno, R. Romero, A. Vallecillo

Using interaction patterns for making adaptors among software
Components 63

M.A. Pérez Toledano, A. Navasa, J.M. Murillo

A Three Level Framework for Adapting Component-Based
Application 71

N. Pessemier, O. Barais, L. Seinturier, T. Coupaye, L. Duchien

AO approaches for component adaptation 79
P. Sánchez, L. Fuentes

Coordination Languages: Back to the Future with Linda 87
G. Wells

Managing Components Adaptation Using Aspect Oriented
Techniques 99

N. Yahiaoui, B. Traverson, N. Levy

7

����� �����	
�� ������ 	

����
� ������
 ���

�����
��� �� ���
�	�� ��������
 ��	�
	
���

������ �����	

���������	
����������
�����������

�������� 	
��
����
� ����� �
�������� �� ����
����

������ 	�������� �� ��� !�! ����
����� ��"�
�

��������� �
 ����� �� ��� ��"��
�
� ����� �������� �
��
����
� �
��

�������� �� ���� �� ��
����� ��� �#��� �� �������� ��"��
�
� ���������
$

%��������
 �� ���� �
 �&����
� �����"� �� ������ �
�������������� �����

��"� ������
 ���
� �
��������� �$�$� �� �
������� �&����
� ������ �����"�

�
��
�� �������� �������������$ �
 '(�	� �
� �� ��� ��"� �� �� �������

��� ���������� �� ��� ����"���� �����" ���" ��� ����� �����$ %��������

�� � ������� ���� �� ��"�������
 �
� ��
 �� ������� ��
��)��
��� �
 �

������� ���$ *�� ��������
 �� ��� ���������
 "������ ��
 �� �
������� ��

�&������
� �������
�� +
������� ����� ��� �������$ *��� ���+ "��������

��� ��� �� ������� ��
������� ����� ��"����
������ ������� ���������

"�����$

� �������	�
��

�
���	� �
��
���� ������
� �� �	���� ��� ���� �������� �
��
����

���� �
���	� �������� ���� �����
���� �
��
����� ���	� 	� ���� ��
 ���

���� �
	��� ���
����� �� ���
�� ��� �
��
����� ���� �� 	������ �� �	����

� ����	��� ����
����� ����
	��� �� ���
���	 ��� �
��
����� ���� �	
�

���� �������!�� ������
����� �
 ��� ���� �������� �� �������!�� �
���"���

#���� �	���
� �� �
 �� ��� �
 ����� ����� �
	���� �� ����	
� ���

���	� 	� �
�� ���� ���	� ��� �
��	
���� ���� �
 ������� �����������
� ���

�
��
������ �� 	����� �����
� �� �
 �� ��	�
	��� � ������� ���� �

�
������� �
	 ��� �	���
��

��	�����
� ��� ����
� �����
� � ���
� ��� ������ �������	 ���	�

	� ��
 ������ ��� ��� �
 �� ������ �
	 �����
� �
 ���
�� ���� �����

�������	��� �������$ %�	�� ��� �����
� �� �
 �� �
�� �� ��	����	�� ��

������ �� ��������
�� ��� ����	����	�� ������
� ���� �
��� ���
�� �� ����

�	������
� ����
�� �
	 ��� �����
� ��� �����
�
� &
��

'��� ������ �
	 ��� (�� ���� ������� ��� �����
�����
� ��	
�	��� ����

��
� ����
��� ���� ����
�� ��� �
 ������ �������	�� �� �
���	� 	��������	�

�����(���
�� '�� �������
� ��
��� �� ���� �
����
� ��� ������ �����(���
�

� ��� �
��
�����)� ��� �����(���
� ��� �	
����� �� 	�*��	�� ����	����
� ���

	��������� �
��
����� ��� ����	� 	
��� �����(���
��
� ����	��� ����	���

���	���
� ������ ��
� ��� �������
�
� ����	��� ������� ������ ���� ��� ����

������
� �	
�
�
� �����(���
� ��
�� ��� �������
�
� �	
�
�
� ��������� ��

9

� ��� ����	
���	�� ���� ��� ������	�� �� �	������	�� ��� �������	��� �	�����
	�� ��� ���� �� �� ���� ����	
���	��� �� 	�������� ��������	��� ��� �� ����� 	�
����
��� ���	�	�� ��������� ���� 	� ����� �� ��� ��� �� �������	�� �� ���� ��	���

���������� � !!" ���������� ��		#	�� ��� ����	
���	�� ��� ������	�� ����
�	���� �� �������� ��� �������	��� ��������� ��	� ��� ���� ������������ 	�
	�������� ��� �����	� ������ ������ ������ �$% &�� '���% ���� 	� ���� ����� ���
������� ��������� 	� ���	��������	� ��(�	�	�� ���	�	��� 	���� �) 	�� ������ *�
���� ��� ��������� ���� �� �� +���� ���	�� �������� �� ���) ��� �����	����
����	��� �� ��������	�� �������� ,� �� ��+� �����	��� ��� �-���������	���
�������	�� 	��� �������% ����� 	� � ���� ���	��) �� �������� ��	�� ��� �� ���� ��
��	��� ��������� �	��������� '����������% �������	�� ��� �� 	����� �� ���
�.�� �������% ��� ���	�	��� +������� �� ��� ������� ��� �� ���� �� ����	��
��� 	����� �� ��� �-���������	��� �������	���
��	� ���	�	�� ��������� 	� ���������� �� ������ /���� ��	� 	��������	�� ���

���	��� ���	�	�� 	� �-��	��� 	� ���� ����	 ��� ��� ���������� �� ��� ��������
��� �	�������� 0�����	�� ���� ����	��% �� �	�� �� �-���� 	������	�� ��� ���
�������� ������� ��� �� ��� 	��� �����	��� /���� ��	�1) �	��	���	�� ���� ������
���+% ��� ����� �������� ��� ��	��� �� ���� 	������

� ���������	
�������

2��������� ��� �� +���� ���� �� �	��	�) �����������	��� �� ����	��� �� ��
����� ���� ��������� �	�� �����	� ���	��� ����� ��	�� ��� ���� �� �������� �)
��� ��������� �3�� / ��������� ���� � ������� ������� �	����� �� ��������� ���
	���� ������ �� ���
���� ��� �������	�� �������� ,� ��� ��� ���� ���	��� ���� ���
��������� ���� ��� ������� �� 	����4 ��� ����	
���	�� �� ��� 	��������� 	������
	� ��� �������	�� ��� ���	�	��� 	�������	�� (���	�� ���� ��� ��������� ���
	�������	�� ��� �� ���� 	� ��� ��������� ������� �� �� �� 	� ��� ����	��	��
�����
/ ����	��	�� ���� 	� ��(�	��� �� ����	�� ��� �-���������	��� �������	�� ��

��� ������	�	�� 	� �������� /� �������	�� ��� �� 	����� �� ��� �-���������	���
�������	�� �� ��� ���������% 	�� 	�1����� ��� �� �� ����	����� ���� ����	��	��
�-���������	��� �������	�� �� ��� �)����� 5������ ��� ��	� ��� �� ���� 	� ���
���������� ��� �����	�� �� ����������% ��� ��� 	� ��� �����	�� �� ����	��	��
����� ��� �������� ����	�������� ����� �������) �	��� �� 	�������� / ����	��
���)�	� �� ��� 	����� �� ��������� �������	�� �� ��� 	� ��������� 	� �.��
6	���� � ������	#�� ��� ��������� ���	�	�� �) ����	�� ��� ������� ���������

��� ��� �	���������) ��������� ����	��	�� �����
���
���� ����� ��	� ������ 	��	���	�� ��� ������	�� �� ��� �	������	��

	���������� 6����������% ����� ��� ������ ����	�� ��� �������	�� �� ��� �������
��� ��� ����������	�� ����	��	�� ����� ��� ����	��	�� ���� ���� � ��������	�
���� �� ����	�� ��� 	����� �� ��� ������� �� ��� ��� �������	��� 0�������	�
����� ��+� ��� ��� �� ��� ������� ��������� �� 	���� ���������� ,� �� ��	��%
����� ����� ����� ������	�	��� ������	�� ��+	�� ��������� �� ��� ���������

10

���� �� ���������� �	
������ ��� ������������ ��������� �����

����� ����	
��
��� �
�� ���
��� ���
�������� ������	
	����	
� 	� �� 	����
��

������
� 	 ���
	��� ����
�
	��� ������ �� ��������

���	
	������� ��� �������� ���
�� �����
���
��

�� ����	�
	�� ����� ���
�
	�	��
�� 	���
 ������
��� �
�� ������
�� ��� 	�����
	�� ���
�� ����

�����
� ���� ���	��
�� ������
	��� ��
��
��

�� ������
�� �
	�	��� � ����

�����
� ��� � ����	�
	�� �����
�����
� ��	�� ��
� ��� ������
��	��� ��
��
���� ��
��� �	������ �� �����

��

�� �������� �
�� ����	�
	�� 	��������
���
�
�� ���	
	���� ���	����� 	�����
	���

� �������

�� 	����
��
�
�� 	��� ������
�� 	�
�� ����	��� ���
	���� ����	���
�� �����	��
�������� �� ���� � ��������
 ��	�� ���������
�� � ���
�	� �	�� � 	�����

	��� ��� 	�����
	�� 	� ��
 ��	�� ������� ��!���
��� ��
 	
� ��
�	���� ��������
� �	��	"���
 �����
 �
	��� ���
��� ��������
 	� ��	��
� ������
�	� �����
���
 ��
 ����� � ����� ��������
	�� ��
�� 	�����
	�� ��
�	���� ����	��� ���
������� ��� �� ��
��
��� �� �������� ��	�� � #���	
� � $���	�� %����	�� &��
����� '#%&()*+ ����	"��
	�� �
�� ������
	�� 	�
������ �� ���	�
�� 	� "����
,� #%& 	� �	���� ���
��	�����
�� ����	��� ����	"��
	��� 	������ ���� �������
�
������ ���	�
	�� �� � ��
 � !���
	��� ������
��	�	��
�� �	�
�	��
	�� � ���
��� ��"��� !���	
� ��
�	�� -�
�� �������� �� ��"�� � ��
�	� ����� 	��	��
	��

�� ����
	�� �
�� ����	�� �����

-� "���� ,�
���� 	� ���� � ����	��� ����
	��
�
�� ������
�� �������. ���
����	��
	�� � � ����� ��� "�
�� ��
��
�� �	���
��� ��� ����� ��

��� 	� ����

11

���� �� � ����� �� 	�
�� � ��
��� �� ������� ��	�����

����� �� ����	
��	� �� �� ���
�� �
� ����
������ ��	
 ���� ���� �� �
	��
��
�����
	� ������������ �� ��	 �
��� �� ����
�
�
���	 ����� ��
��� �� ����	
��
��� �
���� �� �
�� ��
�
� !� ��� � �� �� ��� ����	�
���� ��"���� ����� ����
�� �� �
���� �	�� ��� ����	�
�� �����#�
����� ������ �����
����
���
�� � ���
� ����
�������	�

�� ��� ����� �$
�����
 ����	
��	 �
� %��	 ���� ����	�
���� �
��� �	��
��� �
���	� ����	������� &���		��� �� ��� ����	������ �� �� �� �
�� ��

� '����� 	����	���()�� 	����	�� ����� 	��	�����
� *����� ��
� �������� ��	
��� (+�	� �� �
� ������ ������� ����������

� ��� ���� ��
�� 	������ ���� ,-&./� #	�� �� � #	�� ��� ,0�01/�
�� �� ���
� 2���	� ���������� (�� ����
 ���������� �
�
��	 ����� �
�� �� �� ���
���

�
�� �
��� ���	���
� ����
� ��� �
���	 ��� �� ��
�����
� *���	���� �
��� ��!�(+�� ���� ����	 ��� �
��� �� ����� �� ���� 3���

����� ���� �� �����#�� �� �����	 �� �
���
��� 	����	�� ������

2��	 ������ �������� �
�� ��	� �
� �� ��������
�������
�� ���� ��� �	�����
���� ����� �� ��� 4�' ���
��� �� ��� �����#� �$
����� �� �� ������
�� ����	�
��

�
 �
��� ��������� �� %���� ��5���� �� ����� �� 4�' �	�������� ������� 6
����

	� ��
�����
�� ����� ���	����� ��� �	����� �� ��
����� ���������� ����)���
�	����� 	������ �	�� ��� �
�� ��
� ��� ���	
����
� �	�#�� �
�
� ���
�� �� 4�'�
6������	
 ��������� ���	���
�
		
 �� 	���	���)� ��
	�� ��
�
		
 ����
���
��� ��� �������� �� �
���	 ��
� ��
	�����
�
		
 ����
 ��� �� 	���	���)����

 �	�������� ������ �
� �� �
�� ��� ��
�� �� ��� ��������� ����
�������)��
	�������� ������$�� �� ����� 7���	�������� ��
	�
��� �� �	����� ��� 4�' ���
�
�� �
��� �� ��� ����	�
����
�
��
���
� �� �
� ��
�
� !�� �� �����
� �
��� �	
�����
���� �� ��	 �$
�����
 �����
���� ����� �
� �����!� ��� ��������� �������

�� ���������� ��	
��� �	�� ���
�
���	 ����	
��	8� ������

���� ��� 	�������� �	�������� ����� ��� ���
�� �� ���
�
��
���� �
� ��
�	�������
��� ������ �� �� �������� �� 	�
��� �� ��� ����������� �� ���
�
���	

�� ���
�
�����

12

� ������� �	
�

������� ��	
 ��� � ��
�� �	�� ��� �	�� �� �����	��� �����	 �� ��� ������ �	 ���
�	��������	�� ������ �� � ���	���� ����� ������	� �����	� ����	���	� ��� � ����
������ ���

����������� � !�" �	�������� ������ ���� �� � ���� �� �	����� ��� !�"
������� � ��	�� ��� ��� �������� 	������ #������ �� ��� ��$� �%�� ����&
������� � ���������� ���	������ ��� � ���� ��� ��� ���������� ����	������ ���
� ����	���� ��� ������	 ����	���	� ��	 �'����� ��� ��������	 �	�������
#������ ��� (�)���� ��*��

� 	������	�

+��� ����	 �	������ ��� ���� �� ����)� ����	���	����� �	����� ���� ��� ���
�� ����	����� ������	� �� 	������ ����� �	������ ����������� � ��� ��� ���
������	� �	� ����	���� �� ���� � �	�������� ����� ������� ���� ��� !�" ������
�� ��� ����������� �� ��� ������	 ��� ��� ������� ���������� ,� ��� �� �������
� �����	 �	������� �� ����� ������ �'�������� ��� ����� �� ��� ����	���	 ���
��� ���� ��������� ���� �� ����	��� ��� ������	�

� ���� ������

-��� ������ ��� ����	� ��	
 	������� �� ���� ��	
 ��� � ���� �� ��.�	��� ������
�� ��� ���	������ ���������� ��� ����	����� �	������

� ��������� / 0�	��� ��� ��������� ���� �� �� ����	���� �� ���� ��	��� �����1&
������� �� ��� ����	����� ����� ���� �� � ����)�� �� ������ ������� ���&
�������� 2�	 ��	���� ������� �� ����	���	����� �	����� ���	� �	� ����������
����	������ ���������� ��
� 304 ��	 ��� �������	� ������ #�� ��	 ����	 �������
�� ���������� �����1������ ��������� ��� � ������ ����� ��	 ��� !�" ������
����������� � ���	� �� ����� � �	��� �. ������ �'�	������ ����	 ��� ���&
�)����� � 2�	 �'������ �� ��� ��� 1���� ����� �������� ��	 �	������ �����&
1������ ����� �� ������� �� �'�	���������� �� ��	 ����� �5����� ����	�����
�	�
����� 6���
� ����� ����� ���� ��������� �	� ��	� �'�	������� �� ��
�5����� ����	����� �	�
��� ��	 ��� ����	�� �����

� �������� �	

��� / +�� ����	���	 ��� �� �����	� ��� � ���� �������	 ��&
��	 ����)��� ��� �������� �� ��������� ��� 	���� ������	 ��	 ��� ��������
�	����� �� �'��	� � ���� ������� ��� � ���� �������	 ����� ���	���� ���
����� �� ��� ���	���� �� ��� ��� ��� �'���	�� ��	���	 ���

� ����	������ / 2����	� ����	��� �	� ���� ��	��� ��� ���1��	����� ����� ��
��� ����	���	� 3� �� ����� ������	 �� ��� ��� ���� � �'������� �� ��	�����	�)�
��� �	�������� ����� �	 �� �	��	����	 �����1������ ��������� �	� 	�7��	���

� ���������� / +�� ��������� �� ��� 	���� �	�������� ������ �� ���� ����� �� ����
������ ����� ������	 �� ��� ����������� ���� ��� �	 �'��	����� ���� ��������
8�������� � �� �� ������	 �� ��� ��� ������ ������� �� ��� ������ �����	�
���� ���� �� ��� ����	���	�

13

� ��������� � ����� ��� ��	� �
�	���� � ���������� ������	�� ����� ��� ��
������� �� ��	������	���� ������� ����������� ������ �������� �� ��������
�� ������� ������ �������� �� ���������������� ������	�� �� ����� ��������	�
����� ������ ��� ������	�� ��� �� ��������� ���������� 	����� �� ���	�

� ���	
������ � ��� ����� ���� �� ����� �� ����� ����������� ����������� �������
���� 	������� ����� ���� �� �� �	���	����� ��� ������� ����� ����� ������
�����	 ����	��� ��� �� �� �������� �� � ���� ������

��������	
����� ���� �������� �����	��� �� ����� �� � ����� ��� �����
���������� �� ��� ������� ��	���� ����������� ���
������� ��
���
� ���� �����
! ����� ��� ������������ � ��� ��	���� �� ��� �������� ���������� ������� �� ���
����� ��������� �����

����������

�� ������� 	��
������� 	�� ��������� ��� ���������� 	������ ��������� ��������
�� ����� !����� �� 	������ ��������� "#������ �� ��������� ��� 	�$��#� %�"��
	����#�� &�'�� '����� (���� �#��� �������������# 	������ !�����������)��
����������� 	��������� ��	! *++,� !#�� ����� -(� .� *,�*/� *++,� 0���
���#����� 1����� 2+/, �� 3������ 4���� �� �������� 	�������� ������� &��#�� ����
	������� 5*++,6 78982

*� :������ ;�� 	����� ��� ���������� 0�������� �# ��� 	���������� ������������ ��
	������ "#������ ��� 0�����#���� �� ��� <�� "�.���������� ��
 =����
������#
0��������� 	������� 3������ �# "���������� 5

0	3"�<,6� 1����� *<� �+
�� "�. 	����� 4������� 5�<<,6 �)79�<+

2� "������ .�� ������#�� 0�� >������ .�� "������� "#���� 	�������� ��� 0�������
>������������ ��� 0�����#���� �� ��� ?���� ����������� '������� �� ����#��
����� �# "#������ >�����@��� ��� 	������ !������� 5'�">A+,6� 5*++,6

,� ������� 	�� ��������� ��&�� >�� ����� �� 	������ ��������� "#����� �� B���
��� �� 	������ 0���������� �� ���� ��� .������� %�.�� 0��C�� 0�� �#��� 0�����#����
�� ��� ?���� ����������� '������� �� ����#������ �# "#������ >�����@���
��� 	������ !������� 5'�"> +,6� 5*++,6

/� �C������� (�� !���������� -�'�� D�������� 0���������� "##�����'������ ��#�
���� ."� -	" 5*+++6

7� ?�E���#� 	�� (��������� %�� B���������	������ 	����F����� �� ;����� ���#
 =���
	������� >������� ������ &03�<8��/<� &������ 0���#� 	������ >���������
3 ������ 5�<<86

)� (������� .�� %��� 0�� 0������
������# 	������ "������������ 0������ ��� ;���
��� ���# 	������� �# ����������� %��� '���� �# 	��� 3�# 5*++,6

8� &����� ;�� .���� ;�� '���� ;�� 0��������� �� 	������ 	������ 	�������C�#
���� ����������� ��� �������������# 	������ ;����������� ��� 	��#����
1����� � �� 	����� �� �������������# 	������ ;����������� '���# 	������F�
0� ������� ������ 5*++,6 �*<9�/<

<� D��� !�� &���� ��� %������� ��� 1�����#��� %�� ;����� 0������� !������� ��
���� ��
 =����
������# 	������� "##�����'������ ��#���� ."� -	" 5�<</6

�+� ��������� ?�� .������� ��� �������� &�� 	������#� 0�� 	��� .�� 0������

������# 	������ "����������� 9 " 	����� �� 0������� '���� G 	���� 4�� :����
4:� -	" 5�<<76

14

��� ������	
 ��
 �	�
 ��
 ������	
 ��
 ���������
 ��� ��		���������	�� ���	����
�����	��	��� !���� " ��		���� ��� #��������	 ��� $�	���%�� �&'��	�� (��)
* ����
 $�� +��%
 $+
 ,�� -".../

�"� ������
 ��
 �����
 ����
 0�1������
 ��
 �������
 ��� ���������� �����������
������	��� �� ���	���� ��1��2���	� � ���1�)� 0333 4������	���� �� ���	����
3�5�������5 �� -"..6/ "78 9�.

�9� ��������
 ����
 �����
 !�
 ���%��
 ��� ������	��� ����������� #��	���	� ��� ���	�
���� #��2����	� ��� 	���� #��2���	�����)� 0� (��%
 (�
 �����
 :�
 �;)2���%�

#�
 ����� ���������5� �� 	�� 7	� 0�	����	���� (��%���2 �� #��2����	������	��
���5������5 -(#�� .6/� -"..6/

�6� ������
 ��
 ���;��
 ��� � �����	��������� �22����� 	� ���	���� �����������
������5� 0�� ���������5� �� 	�� 7	� 3���2��� ���	���� ��5�������5 ����������
��� '���) ��	� �.	� �#� �0<���4 ��	����	���� �)�2����� �� ������	����
�� ���	���� ��5�������5
 �#� ����� -"..9/ 9=9 9==

15

Issues in the formalization of Web Service Orchestrations

Javier Cámara1, Carlos Canal2, Javier Cubo1

1 CITIC, Andalusian ICT Centre, Málaga (Spain)
{jcamara, jcubo}@citic.es

2 Dept. of Computer Science, University of Málaga (Spain)
canal@lcc.uma.es

Abstract. In this paper we outline an approach to the formalization of Web
Service composition using WSBPEL (formerly BPEL4WS). Complementing
current specification by adding protocol information, and making use of
process algebra to model both Web Service and business process dynamic
behaviour, we highlight key issues regarding the analysis of Web Service
compatibility in the context of a business process managing their interaction.

1 Introduction

Recently, Web Services are increasingly being used by organizations and enterprises
in a wide range of applications such as travel planners or financial services. The
integration of these services facilitates cooperation across organizational boundaries,
giving way to a new scenario of collaborations and opportunities in many fields.
Unfortunately, the technology to model, search, compose, and access them is still far
from mature, and the development of integrated Web Services is still a time
consuming and expensive task. The need to achieve a higher degree of automation in
the composition of Web Services has generated an important research effort by the
Web Services community in order to address this issue. The software industry is also
devoting more and more resources to solve interoperability problems, through
organizations like W3C or WS-I [16]. These organizations promote the development
and deployment of applications and services able to interact among them in a simple
and efficient way through the Internet, independently of their platforms or languages.

Currently, description languages such as WSDL are capturing only static
information about the signature and direction of the operations supported by a given
Web Service. In order to raise the level of expressiveness of Web Service
descriptions, two major conceptual approaches have been taken to Web Service
composition [13]: the Standard based syntactic approach and the Ontology based
semantic approach.

The standard based syntactic approach basically describes the order in which
messages are exchanged among services. The two major flow description languages
are: the Web Services Business Process Execution Language or WSBPEL [4]
(formerly known as BPEL4WS), largely supported by the industry and that has
currently become the de facto standard, and the Web Service Choreography
Description Language or WS-CDL [15], the latest proposal of the W3C after WSCI.

17

On the other hand, the ontology based semantic approach developed by the
semantic Web community, uses pre-agreed ontologies which explicitly define
resources, preconditions, and effects of processes. OWL-S (formerly DAML-S) is a
Web Service ontology based on OWL which provides the ability of describing
properties and capabilities of Web Services unambiguously in a machine-
interpretable way [11]. This opens new possibilities, allowing the use of reasoning
techniques traditionally used in AI oriented towards automatic Web Service
composition. Although a very promising and powerful approach, the semantic Web
community is basing most of its research on techniques grounded on knowledge
representation, goal-oriented planning, and logic [10]. These approximations,
although with a great potential, still need further development and are in the way of
solving several important issues, such as the representation of parallelism between
processes in a natural way, a key aspect to software systems, and in particular, to
Web Service composition.

Instead, we are focused in WSBPEL, since it is becoming the industrial standard,
and we believe that it is medium term realistic approach towards automation. Adding
protocol information to interacting services, and using additional adaptation
techniques based in formalization through a process algebra, will establish solid
foundations for seamless integration taking advantage of previous research made in
this field [14]. This idea will be detailed in the next sections.

2 Formalizing WSBPEL

In this section we give a brief introduction to WSBPEL and justify the use of a
process algebra to formalize it. In particular, we will use CCS [8], for which we will
briefly describe how to use it for representing the behaviour of Web Services. This
will enable us to reason about characteristics such as compatibility and replaceability,
described in the following section, as well as to generate adaptors for mismatching
behaviour whenever required and possible, just as it was done in [2] with WSCI,
where a formal methodology for the automatic adaptation of software components
described in [1] is applied.

WSBPEL is an XML based specification language used to describe business
processes which manage (orchestrate) the interaction of different Web Services. A
WSBPEL specification has four different parts:

Partner links: they identify relationships between the business process and the rest
of the partners (Web Services). They basically provide WSDL port type definitions
for process/web-service interactions.
Variables: they can carry data in messages, and define the state of each instance of
the process. These may contain partner links, that is, abstract references to other
processes. Thereby, they may be used to dynamically connect structures to each
other.
Correlation sets: they identify interactions relevant for a given process instance,
being used to dispatch messages correctly among different sessions.

18

Activities: describe the behaviour of the business process. They can be either basic or
structured (see Table 1).

Table 1. WSPBEL relevant primitive and structured activities.

Primitive activities
Receive Accepts a message through the invocation of a specified

operation by a partner
Reply Sends a message as a response to a request previously

accepted through a receive activity
Throw Used when the process needs to signal a fault explicitly
Invoke Used for invocation of a web service operation offered by

a partner
Link Defines a link of a flow; an activity within the flow can

act as the source of a link or the target of a link
Structured activities
Flow Provides concurrency and synchronization (concurrent

composition)
While Supports repeated execution of a specified interative

activity; execution continues until the specified boolean
condition no longer holds true

Sequence Includes one or more activities to be executed
sequentially, in the order in which the appear under this
activity

Pick Waits the appearance of one or more events and executes
the activity associated with the event that emerged.
Messages incoming or timer pass form the posible events

Switch Supports conditional behavior by enabling specification
of one or more case branches whose execution depends
on a specified condition, and an optional else branch
which gets executed if all cases fail their checks

The nature and features of WSBPEL suggest the use of a process algebra to

formalize it. Although the π-calculus, for instance, would be a good candidate, in an
initial approach we will not model mobility (references to other processes expressed
in variables containing partner links). This will make the expressiveness level
provided by CCS enough to verify compatibility, reducing the level of complexity if
we compare it with the option of the π-calculus, which will probably be used in a
second deeper approach to the problem.

3 Reasoning about Web Service behaviour

Web Services pursue the achievement of the highest possible level of interoperability
between software systems. Ideally, the composition of these services should be
something like connecting pieces of a jigsaw game knowing beforehand that they are

19

going to fit perfectly in every possible aspect with the rest of them. Unfortunately this
is still far from the current situation. However there are a number of aspects that we
can try to analyze in order to move in that direction when we have a given set of Web
Services. The two key aspects to interoperability are compatibility and replaceability.

3.1 Compatibility and replaceability

For our purposes, we will consider that a software system, formed by the composition
of several entities specified in a process algebra, is compatible when it terminates
without requiring any interaction with its environment. However, this definition must
be extended as detailed in [2] since client/server systems do not terminate, and we
must consider infinite sequences of silent actions.

A formal notion of behavioural compatibility has been developed throughout
several works such as [3] for software architectures and CORBA components. These
notions can be directly applied to Web Services. In [5] a model-based approach is
proposed for verifying Web Services composition, using Message Sequence Charts
(MSCs) and WSBPEL.

Replaceability refers to the ability of a software system to substitute another, in
such a way that the change is transparent to external clients. In stateless Web
Services, replaceability is fairly easy to check. We only have to test that the WSDL
description of the new service contains all the operations of the replaced service.
However, the situation is different at the behavioural level. First, we need to check
that the dependencies of the new service when implementing the methods of the old
one, are a subset of the dependencies of the old service. Second, we have to check
that the relative order of incoming and outgoing messages of the old service is
preserved by the messages of the new one..

Being able to express with WSBPEL dynamic behaviour has been an important
step ahead in Web Service description, but once we have that information, what can
we do with it? Which kind of properties can we infer from WSBPEL descriptions?
How can we prove those properties? In the case that two Web Services are not
compatible, can we solve this situation adapting them somehow?

3.2 Issues on behavioural analysis

There are two different approaches to the standards based syntactic composition [12].
In Web Service choreographies we have a description of the observable behaviour of
each of the services participating in the interaction. For instance, WSCI defines
interfaces for each of the interacting services. The alternative to choreographies is
called orchestration, where a single business process which coordinates the
interaction among the different services is defined, as in WSBPEL specifications (see
Fig. 1).

20

Fig. 1. Basic WSBPEL business process example: On receiving the purchase order
from a customer (1), the process initiates three tasks: selecting a shipper (2.1),
calculating the final price for the order (2.2), and scheduling the production and
shipment for the order (2.3). While some of the processing can proceed concurrently
(section 2), there are dependencies between tasks (represented by dashed lines). In
particular, the shipping price is required to finalize the price calculation, and the
shipping date is required for the complete fulfilment schedule. When the three tasks
are completed, invoice processing can proceed, and the invoice is sent to the customer
(3).

While the choreography approach provides a description of the dynamic
behaviour of each of the services participating in the conversation through their
interfaces, there is an inherent problem to orchestration, and it is that we have only a
dynamic model of the process coordinating the interaction among services. WSBPEL
provides the description of a business process which interacts with several Web
Services through WSDL ports, each containing only static information about the
signature of supported operations. The immediate consequence is that we have to
assume either that we are interacting with stateless services, or that the Web Services
the process is interacting with are going to behave as expected. This puts all the
responsibility in the hands of the engineer, who has to perform the task of
composition manually, considering all the possible issues in the interaction without
any guide.

This lack of information about partner dynamic behaviour hampers the analysis of
characteristics such as compatibility and replaceability, as well as the use of
automatic or semiautomatic adaptation mechanisms between services. In order to
overcome this situation, we need to complement the description of the services
participating in the conversation with protocol information. Although different
alternatives may be considered here, we have to choose carefully the most appropriate

21

taking into account the differences between Web Services orchestration and
choreography: While in choreography interaction occurs between any pair of services
arbitrarily, in orchestration all interactions have a single Web Service and the
coordination process as endpoints. For this reason, we can choose between two
alternatives when analyzing service compatibility and replaceability (see Table 2). In
both of them we would model dependencies between operations by means of
synchronization messages.

Global: Analysis of the interaction of the process with all the services involved in the
conversation. While this alternative makes more information available and allows
deeper analysis, it makes the process much more complex as well.

Partitioned: Analysis over the different projections of the business process in terms
of observable behaviour or message exchange, on each of the services which interact
with it. As an advantage, the analysis is substantially simplified, although several
issues have to be addressed in depth, such as the detection of deadlocks.

Table 2. Global and partitioned behavioural specifications expressed in CCS for
the purchasing process example.

Global behaviour of the business process with the participating services.

purchasingProcess = PurchaseOrder?().

 ((Shipping!().
 synch211-222!().
 ShippingSchedule?().
 synch212-232!()) ||
 (initiatePriceCalculation!().
 synch211-222?().
 ShippingPrice!().
 Invoice?()) ||
 (ProductionScheduling!().
 Synch212-232?().
 ShippingScheduling!())).

 AckPurchaseOrder!()

Projections of the business process with the services that interact with it.

purchasingService = PurchaseOrder?().
 AckPurchaseOrder!()

shippingService = Shipping!().
 synch211-222!().
 ShippingSchedule?().
 synch212-232!()

invoicingService = initiatePriceCalculation!().
 synch211-222?().
 ShippingPrice!().
 Invoice?()

schedulingService = ProductionScheduling!().
 synch212-232?().
 ShippingScheduling!()

22

3.3 Adaptation

In case of detecting a mismatching or incompatible behaviour between a Web Service
and the business process, we could attempt to perform adaptation between the two of
them. The formalization previously described would allow adaptation of the services
at the behavioural level, rather than dealing with the more traditional issues of
message naming unification.

In our opinion, the semantic approach would be a more appropriate option to deal
with message and parameter naming. By establishing sets of domain-specific
common ontologies, inference techniques could be used in order to provide
meaningful message exchange between different Web Services.

On the other hand, dynamic behaviour adaptation has to be performed as well,
where message order has to be carefully considered in order to avoid deadlocks.
Every possible execution path has to be considered. Generating an adaptor between
the business process and a Web Service would require a mapping relating actions and
data from the two software entities. In a first approach, this mapping would have to
be confectioned manually, although semantic technology could substitute domain
specific knowledge in order to provide a higher degree of automation for this task.

In conclusion, our opinion is that adaptation is not a trivial issue, and we have to
use every available tool in order to solve interoperability problems. A hybrid
approach would provide enough expressive power, both at the semantic and the
behavioural level, to describe and adapt business processes and Web Services.

4 Conclusions and open issues

We have seen throughout this paper that there are mainly two conceptual approaches
to Web Service composition [13]. On one hand, we have the ontology based semantic
approach, which although very promising [6,7], is still in an early stage to offer short
term results in the context of service composition. In [9] and [10] several models for
checking the composition of Web Services are proposed. On the other hand, we have
the standards based syntactic approach, which uses flow description languages and is
currently supported by the industry.

We have attempted to describe a potential approach to the formalization of Web
Service orchestration, with a specific interest in WSBPEL, the current industry
standard, using a process algebra (CCS).

Several considerations have been made, regarding behavioural analysis of Web
Services in the context of a process managing their interaction (orchestration). We
proposed two different alternatives to the analysis of compatibility and replaceability
of Web Services: global and partitioned, where analysis is performed on projections.
Each alternative has to be studied carefully, and its benefits for the analytic process
considered as well. For example, finding suitable mechanisms for deadlock detection,
or appropriate formalization of WSBPEL link semantics in process algebra, are two
important tasks which still have to be tackled.

Another major problem Web Service composition faces is the volatility of
standards, in continuous evolution, appearing and becoming obsolete remarkably

23

soon. Flow description formalization through a process algebra such as CCS in this
case, would allow a higher degree of independence between analytic machinery and
description language syntax. This would enable the community to reuse analysis
techniques as well as to adapt them to new standard specifications whenever required.
Even in some cases where similarity between language constructs is remarkable,
cross language analysis could be considered based on a common algebraic notation.

References

1. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation. The
Journal of Systems and Software. Special Issue on Automated Component-Based Software
Engineering 74 (2005), pp. 45-54.

2. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing Web Services
choreographies. ENTCS 105 (WS-FM’2004), pp. 73-94, Elsevier 2004.

3. Canal, C., Fuentes, L., Pimentel, E., Troya, J.M., Vallecillo, A.: Adding roles to CORBA
objects. IEEE Transactions on Software Engineering 29 (2003), pp. 242–260.

4. Curbera, F., et al.: “Updated: Business Process Execution Language for Web Services
version 1.1,” BEA Systems, IBM, Microsoft, SAP AG and Siebel Systems, May 2003,
available at http://www-128.ibm.com/developerworks/library/specification/ws-bpel/.

5. Foster, H., Uchitel, S., Kramer, J., Magee, J.: Model-based verification of web service
compositions, in: Proc. of Automated Software Engineering (ASE’2003), 2003.

6. Mandell, D.J., McIlraith, S.A.: Adapting BPEL4WS for the semantic web: The botton-up
approach to Web Services interoperation. To appear in the Proceedings of the Second
International Semantic Web Conference (ISWC’2003), Sanibel Island, Florida, 2003.

7. McIlraith, S.A., Martin, D.L.: Bringing semantics to Web Services. IEEE Intelligent
Systems, 18(1):90-93, January/February, 2003.

8. Milner, R.: “Communication and Concurrency”. Prentice Hall, 1989.
9. Nakajima, S.: Model-cheking verification for reliable web service, in: Proc. of OOPSLA’02

Workshop on Object-Oriented Web Services, Seatle (USA), 2002.
10.Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition of Web

Services, in: Proc. of the Eleventh International World Wide Web of Conference
(WWW’2002), pp. 77–88.

11.OWL-S Home Page, “OWL-S: Semantic Markup for Web Services”, The OWL Services
Coalition (2004), available at http://www.daml.org/services.

12.Peltz, C.: Web Services orchestration and choreography, A look at WSCI and BPEL4WS.
Web Services – HP Dev Resource Central, July 2003, available at
http://devresource.hp.com/drc/technical_articles/wsOrchestration.pdf.

13.Talib, M.A., Zongkai, Y., Ilyas, Q.M.: Modeling the flow in dynamic Web Services
composition. Information Technology Journal 3 (2) 184-187, 2004.

14.Viroli, M.: Towards a Formal Foundation to Orchestration Languages. Electronic Notes in
Theorical Computer Science 105 (WS-FM’2004), pp. 51-71, Elsevier 2004.

15.W3C, “Web Service Choreography Description Language (WS-CDL) 1.0”, World Wide
Web Consortium (2004), available at http://www.w3.org/TR/ws-cdl-10/.

16.WS-I Organization, “Interoperability: Ensuring the Success of Web Services”, Web
Services Interoperability Organization (2004), http://www.ws-
i.org/docs/20041130.introduction.ppt.

24

Meta-Level Architectural Connectors for Coordination

Carlos E. Cuesta1, Maŕıa del Pilar Romay2, Pablo de la Fuente1, and
Manuel Barrio-Soĺorzano1

1 Departamento de Inforḿatica (Arquitectura, Ccia. Comp. y Lenguajes)
Escuela T́ecnica Superior de Ingenierı́a Informática, Universidad de Valladolid?

{cecuesta,pfuente,mbarrio }@infor.uva.es
2 Departamento de Sistemas Informáticos

Escuela Superior Politécnica, Universidad Europea de Madrid
pilar.romay@uem.es

Abstract. Architectural connectors are defined as the elements which explicitly
capture essential interaction and multiparty protocols at the architecture descrip-
tion level. Therefore higher-order interaction abstractions such as coordination
and adaptation are also described within them. However, atomic connectors can
only capture coordination of a basic kind, located in a single ambient and un-
folding in a single layer of specification. The modular description of complex
coordination strategies requires the ability to compose connectors, defining a no-
tion of higher-order connector. This paper departs from the classic first-class con-
nector and approaches the concept from a different point of view. In thePiLar
ADL, pure bindings are reified as explicit meta-level connectors which reify the
interaction protocol. Thus the connector can be decomposed as a set of modular
meta-components. Similarly, a complex connector can be built by composing the
components describing several simple connectors at the meta-level. Higher-order
connectors are no longer required to describe this sort of complex coordination,
as we show by means of a pair of simple examples.

1 Introduction

One of the most important contributions of the Software Architecture discipline is the
explicit definition ofconnectors. These are first-class architectural entities to explicitly
capture interaction issues and hence emphasize their importance, by strictly separating
them from pure computational or functional concerns. The introduction of intermediate
components in complex, compound systems is not a new idea: many languages and
models provide partially similar notions. The real novelty was to give them a first-class
status and a common ground in which to be defined.

Interaction is a complex concern and it can evolve to acquire rich features. In fact,
both coordination and adaptation can be conceived as higher-order abstractions over
interaction. Therefore it is natural to assume that they should also be captured by ar-
chitectural connectors. However, basic connectors are atomic, and therefore they are

? This research has been partially funded by the Spanish Ministry of Education and Science as
part of the National Research Projects MCYT-TIC2003-07804-C05-01 (DYNAMICA -PRISMA)
and MCYT-TIC2003-09268.

25

supposed to be simple, and to be located in a particular context. The logical conse-
quence is to infer that these higher-order abstractions are to be captured by some kind
of higher-order connector, a composite connecting element which gathers, combines
and spreads the influence of several basic connectors.

But to define this new abstraction has proven to be quite difficult, specially if trying
to be coherent with previous concepts. In this paper we propose to use a variant of the
classic definition of connector, still in the existing tradition, which could be considered
similar to a higher-order connector, but without the need to distort the original notion or
to introduce a lot of new concepts. That is the notion ofmeta-level connectors, which
were introduced in the context of the reflective, dynamic ADL PiLar [2]. In the follow-
ing we expose how to use this concept to obtain a compositional scheme for connectors,
and therefore to fulfill our stated purposes.

2 Connectors: Beyond Shaw’s Definition

In one of the most influential papers in the history of Software Architecture [5], Mary
Shaw advocated for the definition of a first-class notion ofconnector. Many compo-
sitional and architectural proposals have used some kind of second-class connecting
element, in which the behaviour was always implicit and assumed. Her purpose was
twofold. First, to emphasize the importance of interaction, which was hereafter recog-
nized as the second architectural dimension; and second, to force architects toexplicitly
describe this interaction in connectors.

There are many variations for several well-known connectors, but in essence to de-
fine a new one is difficult and rare. In fact, it is much more common to have the need
to combine the effects of some existing connectors; however the only way to do that
in most ADLs is to rewrite a “combined” connector from scratch, which would still be
atomic. There has always been an interest in approaching the problem from a compo-
sitional point of view, such that complex connectors can be constructed by assambling
existing ones, hence reusing their definitions. This line of research is grouped under the
name ofHigher-Order Connectors.

The first request for higher-order connectors was made by David Garlan [3], who
also established that an appropiatealgebra of connectorswould be the ideal solution.
In this line, Spitznagel [6] has studied the definition of compositional transformations
for constructing connectors. Theseconnector transformationsbasically augment an
existing connector definition by adding new features. More complex is the work by
Lopes [4], who defines areal higher-order connector as a parameterized composition,
based on a notion of refinement and supported by a categorical foundation.

In our opinion, the spirit of Shaw’s original proposal [5] does not necessarily imply
the definition ofsyntacticconnectors. Once interaction has received a prime status,
and theexplicit description of this behaviour is guaranteed, the goals of a first-class
definition are fulfilled, and a separate notion of connector is not really necessary.

ThePiLar ADL [2] does not have syntactic connectors, justn-ary bindings be-
tween components. But these bindings have a behaviour, and may have an internal
structure, which is not left implicit. Instead of that, these details are specified in an-
other level of description, which forms themeta-levelof the architecture. This means

26

that the binding isreified (materialized) as a configuration, which describes its internal
architecture. This configuration is in turn composed of conventional components and
bindings, with the same properties than any other; the only difference is that they are
situated at a different layer of description. This approach to interaction specification has
been designated under the name ofMeta-level Connectors[2].

However, the name should not be misleading: meta-level connectors are not meta-
connectors, which would be “connectors of connectors”. They are just conventional
bindings, which are reified as a meta-level architecture.

3 Coordination with Connectors

In this section we provide an example to show how the notion of meta-level connectors
can be used to modularly describe a complex coordination strategy. In this context, the
main novelty of our approach is to present a general mechanism to combine atomic
connectors into more complex ones, without introducing a lot of new concepts.

Due to space reasons, we have to constrain ourselves to use some fairly simple
examples, but they are nonetheless representative. Here, just the straight combination of
two basic connectors is described; however, any complex composition, even involving
many connectors would exactly use the same techniques.

The connector in section 3.1 provides the basic mechanism for the definition of an
implicit invocationstyle; by issuing an event, a component is implicitly calling a re-
action (a callback) in some other(s). On the other hand, the connector in section 3.2
provides the basic infrastructure for agenerative communicationschema; by writing
something on the shared memory (or blackboard), a component is asynchronously trig-
gering a behaviour on the reader(s). These two strategies can be seen, respectively, as
the distributed and centralized approach to anonymous interaction.

In the following, we will describe how meta-level connectors can be used to com-
bine them into a composite connector, with an ellaborate coordination strategy.

3.1 One Connector To Reach Them All

To simplify the presentation, we assume that every connector in this paper has the same
context. Ideally, this context is a small or medium-sized P2P architecture, in which a
number of identical peers try to interact to each other just by sending and receiving mes-
sages. These peers need not to know about each other; all the necessary infrastructure
for finding and communicating is provided by connectors themselves.

The description of the first connector is provided in Fig. 1. This can be conceived
as anevent channelwith N input and output slots, a broadcasting medium to transmit
events. Every peer in the system is bound to this channel; every time it needs to send
a message, it just issues an event. This event is notified to every peer attached to the
channel (including itself), therefore it is implicitly “calling” everybody.

Thebehaviorpart of the connector’s definition just describes this protocol. Like in
most other process-algebraic ADLs, a component’s behaviour is described inPiLar
as a set of processes. In our syntax those are abstract processes [1], that is, process
definitions with an algebraic syntax, but whose terms refer to architectural abstractions.

27

\component EvChan <N:Int> (
\interface (port notify [N] | port listen [N])
\behavior (

Broadcast def= loop vi (1..N) (
rep (notify [vi]?(ex);

loop vj (1.. N) (
listen [vj]!(ex))))))

P1:Peer

P2:Peer E
C

:
E

v
C

h
a

n
<

2
>

notify[1]

listen[2]

listen[1]

notify[2]

Fig. 1. Event Channel Connector

\component ShSpace <N:Int> (
\interface (port read[N] | port write [N])
\behavior (

Chalk def= loop vi (1.. N) (
(rep (write [vi]?(dx); Queue(vi,dx))
| rep (read[vi]?() ; DeQueue(vi,dy);

read[vi]!(dy))))
Queue(idx,data) def = ...
DeQueue(idx,data) def= ...))

P1:Peer

P2:Peer

SS:ShSpace<2>

write[1]

write[2]

read[1]

read[2]

Fig. 2. Shared Space Connector

Here, every input port (notify) is permanently waiting for an event; once it is received,
the contents of this event are immediately sent through every output port (listen). In
summary, every issued event is instantly replicated and broadcast to every peer.

3.2 One Connector To Join Them

The description of the second connector is provided in Fig. 2. This can be conceived
as ashared spacewith N reading and writing slots, a common memory which behaves
like a blackboard. Every peer in the system accesses this space; every time it needs to
send a message, it writes an (indexed) note on the blackboard. But peers also access the
blackboard for reading, and eventually one of them reads the note, possibly consuming
it. In summary, an asynchronous interaction is held between two peers which initially
don’t know about each other, provided thatbothof them take the initiative to exchange
information: one to send it, and the other to receive it.

This protocol is specified in thebehaviorpart of the connector’s definition, which
starts with theChalk process. However, the specification is partial, as it uses two other
processes (QueueandDeQueue) whose description is not provided. This omission is
intentional; depending on the way the queue of messages is managed, the blackboard
would have very different policies. Here we assume it is an indexed queue with a FIFO
model, where messages are consumed when read.

3.3 . . . And In The Meta-Level Bind Them

The two connectors described up to this point could have been specified using almost
any existing ADL, as they are atomic entities, composed of an interface –a set of roles to

28

\component EvSpace <N:Int> (
\interface (port send[N] | port recv[N])
\configuration (

EC:EvChan<N> | SS:ShSpace<N> |
\bind (for i (1.. N) (

EC.listen[i] = SS.write[i] |
send[i] = EC.notify[i] |
SS.read[i] = recv[i]))))

P1:Peer

P2:Peer

SS:ShSpace<2>

E
C

:
E

v
C

h
a
n
<

2
>

Fig. 3(a).Event Space Connector

\component ShChan <N:Int> (
\interface (port send[N] | port recv[N])
\configuration (

SS:ShSpace<N> | EC:EvChan<N> |
\bind (for i (1.. N) (

send[i] = SS.write[i] |
EC.listen[i] = recv[i])))

\behavior (
Lookup def= loop i (1..N) (rep (tau ;

SS.read[i]!(); SS.read[i]?(dz);
EC.notify[i]!(dz)))))

E
C

:
E

v
C

h
a

n
<

2
>

SS:ShSpace<2>

P1:Peer

P2:Peer

Fig. 3(b). Shared Channel Connector

be played– and an associated behaviour –the protocol between them–. Using the meta-
level connector approach, they just need to be conceived as conventional components at
the meta-level, so standard compositional schemes are already available. Therefore we
just need to take the existing definitions and combine them into a composite.

The first composite is described in Fig. 3(a). It can be conceived as anevent space,
which can be defined as a common space in which events flow. Every time a peer issues
an event, it gets replicated so that there’s a copy for everyone. Then those messages
enter this space and remain there “floating”. Eventually, every peer captures their own
and reads its contents. In summary, every issued event eventually reaches every peer in
the system, but asynchronously; they have to look for it within the space.

This composite is in the tradition of existing research about higher-order connectors,
as it provides an example of“pure” composition. We just reuse the existing definition
and attach some ports. No additional behaviour definition is required.

The second composite is described in Fig. 3(b). It can be conceived as ashared
channel, which can be defined as a channel in which messages are asynchronously
broadcast. Every time a peer sends a message, it enters the channel and remains there
for some time; eventually the message is simultaneously delivered to every peer in the
system, including its originator.

This behaviour is provided by the specification in Fig. 3(b). Every time a peer is-
sues an event, it is written as a message in the shared blackboard, where it is stored.
Eventually, theLookup process takes place, triggered by some internal operation (tau).
The message is searched and recovered from the blackboard; and then it is forwarded
through thenotify port to the event channel, which sends a copy to every peer. Hence,
the first half of the connector provides persistence and asynchronicity, and the second
half provides replication and broadcasting.

29

Contrary to the previous example, this is not a pure composition, as the behaviour in
one port (SS.read) has to be adapted to match that of its correspondant (EC.notify). In a
conventional ADL, this is something that cannot be achieved by simply attaching these
ports. Most of them would need to insert an intermediate component to provide the
connection between connectors. Here, the parts of the connector are just components in
a meta-level configuration, and hence any additional behaviour is just provided as part
of the composite enclosing them.

The Meta-level Connector approach could still be exploited in a slightly different
way by using just pure compositional features. The idea is simple: instead of composing
connectors to build a “closed” composite, the meta-level description can be used to
define interaction between separate, independent connectors, which remains hidden to
the base level. That would provide the support fornon-localcommunication.

4 Conclusions

The examples in previous sections emphasize the fact that describing the meta-level
structure of connectors provides separation of concerns and modularity, and hence com-
positionality. This sort of compositional schemes show the real nature of the Meta-level
Connector approach; namely, that explicitly defining a connector as a configuration in
a separate layer makes possible to use standard composition and interaction patterns to
define composite connectors. Therefore, the notion of meta-level connectors does not
depend on a reflective ADL, and can be used outside the context ofPiLar.

In fact, through this paper we have not used any of the reflective features of the
PiLar language, to emphasize that meta-level connectors and reflection are separate
concepts. However, they also are obviously related: reflection is defined inPiLar as the
way to handle different meta-levels, including those of connectors. By using reification
and reflective (inter-level) names, flexibility of the description would be increased by a
degree of magnitude. For example, a connector could be defined to observe the internal
behaviour of some bound component, and to alter the protocol accordingly.

References

1. C. E. Cuesta, P. de la Fuente, M. Barrio-Solórzano, and E. Beato. An “Abstract Process”
Approach to Algebraic Dynamic Architecture Description.Journal of Logic and Algebraic
Programming, 63(2):177–214, May 2005.

2. C. E. Cuesta, P. de la Fuente, M. Barrio Solórzano, and M. E. Beato. Introducing Reflec-
tion in Architecture Description Languages. In J. Bosch, M. Gentleman, C. Hofmeister, and
J. Kuusela, editors,Software Architecture: System Design, Development and Maintenance,
chapter 9, pages 143–156. Kluwer, Aug. 2002.

3. D. Garlan. Higher-Order Connectors. InCompositional Software Architectures. Jan. 1998.
4. A. Lopes, M. Wermelinger, and J. L. Fiadeiro. Higher-order Architectural Connectors.ACM

Transactions on Software Engineering and Methodology, 12(1):64–104, Jan. 2003.
5. M. Shaw. Procedure Calls Are the Assembly Language of Software Interconnection: Connec-

tors Deserve First-Class Status. InProc. Studies of Software Design, Jan. 1994.
6. B. Spitznagel and D. Garlan. A Compositional Approach for Constructing Connectors. In

R. Kazman, P. Kruchten, C. Verhoef, and H. van Vliet, editors,Proc. Second Working IEEE/I-
FIP Conf. on Software Architecture, pages 148–157, Amsterdam, Aug. 2001.

30

Coordinating Adaptation of Composite Services

Alan Davy and Brendan Jennings

Telecommunications Software & Systems Group,
Waterford Institute of Technology, Cork Rd, Waterford, Ireland.

{adavy, bjennings}@tssg.org

Abstract. We contend that the adaptation of third party services within a
composition is an optimisation problem, and that coordination techniques must
be used to ensure optimised composite service behaviour. Within the future-
computing environment of the mobile user, one will begin to see a convergence
between Internet and telecommunication networks, incorporating context
information to provide the user with a personalised services environment. As is
the nature of the mobile users’ environment, nothing can be guaranteed to be
static. The dynamic adaptation of services within this environment in response
to change is therefore a major factor in the optimal delivery of services to the
mobile user. The problem begins when a set of third party services are
configured and composed together to deliver a service within this unpredictable
environment. We demonstrate our contention through the use of a scenario. We
then outline some open issues and future work.

1 Introduction

The evolution of 2.5G / 3G technologies (GPRSi, EDGEii, UMTSiii), has provided
users with access to newly advanced communications services, from any location and
at any time. This modern communications environment promotes the use of open
service access technologies such as OSAiv/Parlay, to enable service providers to offer
third party services to the user through the network operator’s infrastructure.

The success of service providers in the competitive market of the future will
largely depend on their ability to offer services, resources, and applications that meet
the needs of its users at a particular time [1]. This implies that pre-packaged services
are not as important as the ability to rapidly and cost-effectively compose and
provision personalised user services.

Current trends [2-5] suggest that the uptake of service composition technologies
will facilitate the provision of personalised composite services to the user based on
their immediate needs and current needs of the environment.

The environment of the user is made up of various sources of information that is
considered relevant to the users or services situation. Based on research from [6-8],
we describe this as context information. It refers to any information about the
environment an object is interested in, such as a user’s location, time of day, available
network bandwidth, current environment security level, mobile device power usage
and various user preferences.

31

Composite services will be created based on user requirements and environment
context information to aid the user with his/her task. As the environment of the
mobile user is constantly changing, so must the configuration of the composite
services operating therein. For example if a user walks into a room where a large
display is available, he/ she may prefer to use this resource instead of their PDA
display. An alteration in user context information, namely the user’s location, has an
impact on the behaviour of the composite service.

There is a need to develop a method of adapting third party services within a
composition to facilitate continued optimal service delivery to the user in response to
varying context information. Such a method will allow service providers to offer
optimised, cost effective, delivery of composite services to the user, benefiting both
the service provider and the user.

If the performance of a composite service is dependent on specific context
information, a change in this information can directly affect the performance of a
composite service. We contend that composite service behaviour can be optimised, in
response to varying context information, through the use of coordinated adaptation
techniques.

Through the use of a developed scenario we intend to highlight how uncoordinated
self-adapting services can yield sub-optimal composite service behaviour. This
scenario will aid us in identifying key challenges to be addressed in the development
of a coordinated adaptation solution.

2 Research Domain

Fig 1 depicts the environment we consider. This diagram outlines an initial
architecture for the provisioning of adaptive composite services to the mobile user.

A service within this environment has three main characteristics. Firstly, the
service is open. This is a third party service that offers a standards based open
interface, to allow interaction with the system and other services. WSDLv can be
considered an open service interface technology.

Secondly, the service is composable. This service offers additional semantic
information to aid with the composition process. Current work in this area is coming
from the Semantic Web community, defining ontologies to describe semantic
information about internet services [9, 10]. Once service are defined using these
ontologies, there are various methods available to compose these service in order to
fulfil a specific task [3, 11-14].

Thirdly, the service is adaptable. The service is sensitive to specific forms of
context and offers various modes of operation to cater for different context situations.
There has been a large amount if research in this topic from different areas of
computing. From adaptive user interfaces [15-17] to adaptive QoS (Quality of
Service) systems [18-21]. These areas of research may concern very different aspects
of computing, but their concept of adaptation is fundamentally the same.

A composite service within this environment is made up of a set of adaptable,
composable services operating under a common goal. The user agent represents the
user within the system, such as their preferences, current location, and role. This

32

information will be used by the service composer in creating the service composition.
The service composer searches the service repository for all appropriate service and
creates an appropriate composition plan to enable the involved services to interact in
an optimal manner within the current context environment.

The composite service is executed and monitored by a service executor. As context
information within the environment changes, so must the operation of the composite
service to suit. The adaptation manager monitors the context environment, and adapts
the services within the composite service in an appropriate manner to ensure optimal
composite service behaviour in response to varying context information.

Fig. 1. Adaptive Composite Service Provisioning Architecture

Our research primarily focuses on representing the adaptation of a composite service
in response to varying context conditions as an optimisation problem. We believe that
self adapting services operating within a composition can yield sub-optimal
composite service behaviour if adaptations are uncoordinated. Thus we propose a
possible solution can be attained through the use of coordination between involved
services.

3 Scenario

This scenario will follow a particular activity of the security warden (Jim) working at
an Airport. The scenario describes the composite service aiding him with his duties.
The operation of this composite service is dependent on a specific set of context
information within the environment of the user and services.

33

Jim logs in to the airport system. His PDA displays a list of duties for him to do
during the day. Jim sees he is on baggage inspection duty today. Jim proceeds to
baggage carousel five to begin inspection of checked in baggage items for flight
number IE103.

Each baggage item is equipped with an RFID tag, which is associated with a
checked in passenger on a scheduled flight. Jim must ensure that each baggage item
on the baggage carousel is associated with a passenger on flight IE103.

Jim is required to perform a complete inspection of selected baggage items as
requested by the system. Inspection decisions can be based on either random
selection, or profiling based on collected passenger information. This inspection must
be supervised by a manager on duty at this time. Supervision can be performed in
person at the carousel or over a voice/video call.

As context conditions change, so will the performance of the composite service in
aiding Jim with his duties. The services involved within the composition must adapt
to the change in context. It is this adaptation decision that will dictate the behaviour of
the composite service.

Two approaches are defined. The first approach is to allow services to adapt
themselves in response to changes in context information. The second approach will
argue that in order to achieve optimal composite service behaviour in response to
varying context information, an adaptation solution must be coordinated between the
involved services.

Table 1 illustrates the relationship between the chosen sets of context and services
within the composition. Each service has predefined default rules of how to deal with
a change in the specific context.

Table 1. Services versus Context

 Context
Service

User
Location

User
Preference

Security
Level

Time Device
Power

Network
Bandwidth

Network
Interface

X X X

Logging
Service

 X X X X

Transport
Service

 X X

Call-Control
Service

 X X X X

Baggage
Inspection

 X X

Self-Adaptation

As can be seen in Table 1, three services within this composition have adaptive rules
on how to react to a change in “Device Power” of the user’s device. The Network
Interface Service, Logging Service, and Call-Control Service are all sensitive to the
level of power remaining in the user’s device.

34

As the power in the device changes, these services react in an appropriate way such
as when power is below 15% the Network Interface Service will react and try to
conserve power by disabling the wireless interface. The Logging Service will reduce
logging to priority information only, and the Call Control Service will enable all
communications to use the lowest audio streaming bit rate.

All these adaptations will indeed reduce the drain of power on the device, but will
have an adverse affect on the overall behaviour of the composite service. By disabling
the Network Interface Service, all other network services operating on the user device
will be ineffective such as the Logging Service and the Call Control Service.

Coordinated Adaptation

If this decision is coordinated, an adaptation manager can review the adaptation
decisions of the involved services first, before allowing any adaptations to take place.
If any conflicting adaptation decisions arise, the adaptation manager will detect and
resolve these decisions. With regards to the current scenario, the adaptation manager
could decide that adapting the Logging Service and Call Control Service will ensure
sufficient device power for the remaining of the user’s task (or composite service
lifetime), thus not requiring the Network Device Service to be disabled. The
adaptation manager will ensure that the adaptation decision taken is the most optimal
one taking into consideration all other adaptation possibilities, context information
and service semantics.

4 Open Issues and Future Work

A possible method of approaching this problem is to allow all adaptable service to
contain an adaptation policy governing how they can react in different situations.
Christos et al [22] proposed a coordinated adaptation architecture where individual
services contained adaptation policies. His architecture is aimed at services operating
on a mobile device, where as the services we consider are distributed, third party
services operating within a composition. As a composite service can be made up of
possibly hundreds of such services, which themselves could possibly be composite
services, we believe the adaptation decisions must be distributed to ensure efficiency.

An effective method may be to use a hierarchical decision making process where
sub-composite services are responsible for their own adaptations. Only if their
adaptations are seen to affect the optimal operation of other services within the overall
composition, is the adaptation decision passed up the hierarchical level. Optimisation
strategies must be adopted to ensure the coordinated decision making process is
aligned with optimising the behaviour of the composite service. Various optimisation
strategies and models exist within the area of operations research.

There are several open issues yet to be addressed such as, if adaptation policies are
to be used, how will they be defined within the services? And if a hierarchical
coordination solution is appropriate, how will composite services decide whether an
adaptation should be invoked locally or globally?

35

Our future work involves developing a scenario to demonstrate how uncoordinated
adaptations can lead to sub-optimal composite service behaviour. These results will
then be compared to an appropriate coordination solution, when one is developed.
Further research in the area of optimisation in operations research and its applicability
to this problem domain is also on the agenda.

5 References

1. Margaret Hopkins, Broadband Value-Added Services for SMEs: market strategy and
forecasts 2003-2008. 2003, Analysis.

2. Zeng Liangzhao, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, Quan Z.
Sheng. Quality Driven Web Services Composition. in WWW2003. 2003. Budapest,
Hungary.: ACM.

3. Narayanan Srini and A. McIlraith Sheila, Simulation, verification and Automated
Composition of Web Services. 2002: ACM Honolulu, Hawaii, USA.

4. McIlraith, Semantic Web Services. IEEE INTELLIGENT SYSTEMS, 2001.
5. Hamadi, A Petri Net-based Model for Web Service Composition. 2003, Proceedings

of the Fourteenth Australasian database conference on Database technologies:
Adelaide, Australia.

6. Bill N. Schilit, Norman Adams and Roy Want. Context-aware computing
applications. in Mobile Computing Systems and Applications. 1994. Santa Cruz, CA,
USA.

7. Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, Pete
Steggles. Towards a Better Understanding of Context and Context-Awareness. in
First International Symposium, Handheld and Ubiquitous Computing. 1999.
Karlsruhe, Germany: Springer-Verlag GmbH.

8. Anind K. Dey, Gregory D. Abowd, Andrew Wood. CyberDesk: a framework for
providing self-integrating context-aware services. in 3rd international conference on
Intelligent user interfaces. 1997. San Francisco, California, United States: ACM
Press New York, NY, USA.

9. OWL Services Coalition, OWL-S: Semantic Markup for the Web. 2003.
10. Ankolekar, The DAML Services Coalition, in DAML-S: Web Services Description for

the semantic Web. Proceedings of the First International Semantic Web Conference.
2002.

11. D. Calvanese D. Berardi, G. De Giacomo, M. Lenzerini and M. Mecella. Synthesis of
Composite e-Services based on Automated Reasoning. in The 14th International
Conference on Automated Planning and Scheduling. 2004. Whistler, British
Columbia, Canada.

12. Ponnekanti, SWORD: A Developer Toolkit for Web Service Composition. 2002.
13. Cardoso, Semantic e-Workflow Composition. 2002: Technical Report 02-004, LSDIS

Lab, Computer Science Department, University of Georgia, Athens GA.
14. Sirin, HTN Planning for Web Service Composition Using SHOP2. 2004, Elsevier

Science.
15. Uwe Malinowski Kuhme.T, Matthias Schneider-Hufschmidt, Adaptive User

Interfaces: Principles and Practice. 01 ed. 1993, Europe: Elsevier Science Ltd.
16. Stephanidis Constantine, Alex Paramythis, Michael Sfyrakis, A. Stergiou, N. Maou,

A. Leventis, G. Paparoulis, Charalampos Karagiannidis, Adaptable and Adaptive
User Interfaces for Disabled Users in the AVANTI Project, in IS&N '98: Proceedings
of the 5th International Conference on Intelligence and Services in Networks. 1998,
Springer-Verlag. p. 153--166.

36

17. P Totterdell D Browne, M Norman, Adaptive User Interfaces. Computer and People
Series. 1990: Academic Press.

18. Zhijun Lei, Nicolas D. Georganas. Context-based media adpatation for pervasive
computing. in Proceedings of Canadian Conference on Electrical and Computer
Engineering (CCECE 2001). 2001. Toronto.

19. Eelco Herder, Betsy van Dijk. Personalized Adaptation to Device Characteristics. in
Proceedings of the Second International Conference on Adaptive Hypermedia and
Adaptive Web-Based Systems. 2002. Lecture Notes In Computer Science: Springer-
Verlag London, UK.

20. Araniti, Adaptively Controlling the QoS of Multimedia Wireless Applications
Through User Profiling Techniques. 2003, IEEE Journal on Selected Areas in
Communications.

21. Nicola Cranley, Liam Murphy, Philip Perry. User-perceived quality-aware adaptive
delivery of MPEG-4 content. in International Workshop on Network and Operating
System Support for Digital Audio and Video. 2003. Monterey, CA, USA: ACM Press
New York, NY, USA.

22. Efstratiou Christos, Adrian Friday, Nigel Davies, Keith Cheverst. A Platform
Supporting Coordinated Adaptation in Mobile Systems. in Fourth IEEE Workshop on
Mobile Computing Systems and Applications. 2002. Callicoon, New York.

i General Packet Radio Service; Method of transferring data over the GSM wireless

telecommunications network.
ii Enhanced Data rates for GSM Evolution; Method of transferring data over the

GSM wireless telecommunications network.
iii Universal Mobile Telecommunications System; Method of transferring data over

the 3G wireless telecommunications network.
iv Open Service Architecture
v Web Service Description Language

37

Adaptation of Software Entities for Synchronous
Exogenous Coordination

An Initial Approach

Nikolay Diakov and Farhad Arbab

Centrum voor Wiskunde en Informatica,
P.O. Box 94079, 1090 GB Amsterdam,

The Netherlands,
{nikolay.diakov, farhad.arbab}@cwi.nl

Abstract. In this paper we present an ongoing work on a framework for
adaptation of heterogeneous software entities to allow their integration
together with the help of synchronous connectors. By using synchronous
connectors for software integration, we intend to make it possible to
significantly reduce the time and money spent for programming fortifi-
cations against unwanted behavior, as compared to the time and money
spent for programming explicit business scenarios. In this paper, we de-
scribe our initial approach to how one can adapt a large class of existing
software entities that offer standard RPC-style operational interfaces, for
integration through an arbitrary synchronous Reo connector.

1 Introduction

A business scenario explicitly describes a recipe for performing some necessary
steps that ultimately lead to the production of a desired end-result. Take as an
example a holiday reservation service that requires the reservation of a flight, a
hotel, and a car. A successful reservation requires all of the individual steps to
happen and it does not require them done in any particular order.

A business scenarios typically states what should happen, which at the same
time means that anything omitted from the scenario that may prevent the
achievement of any explicitly mentioned results, should not happen. We dis-
tinguish two general methods that business automation developers use to build
a software system that enforces a business scenario: (1) direct – through pro-
gramming the steps that the scenario says should happen, and (2) fortification –
through programming to prevent the unwanted behavior that a scenario does not
mention explicitly, but common sense and experience dictate should not happen
in order to make sure that the software systems always follows the scenario that
it automates.

In our experience, developers often spend less time for designing and pro-
gramming business scenarios directly, than for designing and programming for-
tification code for these scenarios. Developers spend even more time for debug-
ging the manually-developed fortification code, often designated to operate in a

39

large and dynamic distributed environment. The high cost of enforcing explicit
behavior of software applications by default, through developing fortification
code, sometimes even becomes prohibitive. We consider this as one of the main
problems in contemporary business automation. Therefore, any tool or technique
that improves on the situation has the potential to generate serious value for the
software development industry.

Large and dynamic distributed systems, such as the Internet, offer great po-
tential for business automation to take advantage of. At the core of programming
in a distributed environment lies the capability and the necessity to coordinate
independent activities together, to achieve a common goal. Using connectors to
directly and exogenously (i.e., from the outside) coordinate the activities per-
formed by independent, autonomous, and possibly physically distributes software
entities, has become a promising technique for integrating heterogeneous soft-
ware in large, dynamic and distributed computing environments. Channel-based
coordination languages, such as Reo [1], facilitate the modeling, construction,
and execution of such connectors.

The database community has studied the problem of directly enforcing be-
havior in an automatic manner by introducing the notion of a transaction.
Among other things, any steps undertaken by design within the context of a
transaction, appear to an entity outside of this context as one atomic activ-
ity. Most databases support transactions by automatically taking care of any
clean up necessary after an incomplete transaction, thus enforcing only explicit
(completely successful transaction representing a) business behavior. Packages
for doing business transactions have also appeared (MTS [2], IBM CICS [3])
that operate at the level of inter-component interactions. These packages al-
low developing components that can participate in transactions. Current vendor
technologies: (a) focus on providing transactions for particular narrow domains of
applications (e.g., databases); (b) can provide a wider choice of applications but
at the cost of leaving too much for the application developers to do themselves
(e.g., transactions cover only basic sequences of simple component interactions);
and (c) do not provide sufficient support for composition and nesting of exist-
ing transactional components. Synchronous programming languages also allow
enforcement of synchronous behavior. ESTEREL [4] and LUSTRE [5] offer a
practical approach and have large commercial acceptance especially in the em-
bedded systems domain. This class of languages, however, enforce a click-step
style of synchrony through all components in the system – something inappro-
priate in a distributed system, in which individual components may want to
execute at their own speeds.

The rest of this paper has the following structure. We elaborate on the notion
of enforcing explicit business scenarios in Section 2, and introduce our approach
to specify and enforce them using Reo. In Section 3, we analyze the issues related
to our goals, and we present what designers need to do to adapt a COTS compo-
nent built using common middleware technology. We present a proof-of-concept
implementation of a Simple Transactional API for the MoCha coordination
middleware in Section 4, using a special f(x) channel, allowing us to adapt an
example database application for use with synchronous connectors.

40

2 Enforcing business scenarios

In a business scenario, to achieve the end result one usually performs all nec-
essary steps of the scenario and therefore no intermediate result can count as
a success. Referring to individual business scenarios as inherently atomic seems
natural – the term business transaction predominates the language we use when
communicating about business. In this paper we disregard long running business
interactions, which may tolerate partial failure by allowing for compensation ac-
tivities. Technically, we do not consider these as atomic in the classical sense
introduced with ACID transactions (where A stands for atomicity) [6].

Automating a business scenario in a distributed environment requires the co-
ordination of the behavior of several otherwise independent software components.
After some refinement of a business scenario, software designers typically come
up with some protocol to coordinate the activities of the instances of the nec-
essary software components to achieve the desired result. In a component-based
system, a coordination protocol resides within the “glue code” that composes
some (possibly independent, e.g., off-the-shelf together as well as home-grown)
components. Exogenous coordination treats glue code as a first-class modeling
entity that resides outside of any of the components it coordinates (hence “exoge-
nous”). Exogenous coordination promotes loose-coupling between components,
which in turn improves software reusability, maintainability, change manage-
ment, and with proper technological support, allows dynamic re-configuration
[7, 8].

Our work focuses on facilitating a component-based software development
process that allows and encourages the direct (semi)automatic enforcement of
explicit behavior by means of exogenous and synchronous coordination, as op-
posed to manual fortification against unwanted behavior by means of additional
developers work. We aim to allow integration of commercial off-the-shelf (COTS)
components into atomic implementations of business scenarios (transactions).
Furthermore, we aim at facilitating composition of existing transactions. To
specify and implement exogenous and synchronous connectors, we use the Reo
coordination language [1]. Reo offers both synchronous and asynchronous coor-
dination primitives, called channels.

The concept of synchrony in Reo directly relates to the notion of atomicity
we introduced earlier. Consider the synchronous channel Sync. A Sync has two
channel ends, an input and an output. A request for writing a data item on the
input end of a Sync succeeds if and only if a pending request exists to take a data
item on the output end of the channel. Since neither a write nor a take request
can succeed on its own, Sync appears to combine the acts of writing and taking
of data items into a composite atomic act enforced by this channel. Composing
more synchronous channels together using Reo’s topological operations allows
one to create a connector that makes an arbitrary number of write and take
activities appear atomic, with the side effect of transporting data items, e.g.,
across some communication infrastructure.

The Reo coordination language by design supports compositionality [9], al-
lowing compositional construction of complex applications [10]. Compositional-

41

ity in Reo permits nesting of synchronous connectors for free – behaviorally,
we interpret the notion of nesting as composition of constituent behaviors to
form a new higher order behavior. Reo also comes with the added value of the
ability to compose during runtime. Consider an example in which an electronic
auction system supports many participants: an auctioneer hosts the auction, and
an owner determines the initial conditions of the auction [11]. Now suppose that
several of the participants dynamically enter into an alliance in order to im-
prove their outcome. An auction protocol and an alliance protocol implemented
in Reo, allow composition just by using some auxiliary synchronous channels
to connect the alliance to the auction as a new participant [12]. From the auc-
tions perspective, this looks like nesting an alliance behavior within a participant
behavior to allow participation in the an auction (transparent to the auction).

To facilitate the integration/assembly of COTS component with synchronous
connectors specified in Reo, we need to provide the necessary minimum technol-
ogy that enables this integration. We cannot assume that a COTS component
that provides the necessary functionality comes also with support for participa-
tion in a transaction. For example, if a transaction does not succeed, a component
may need to restore its previous internal state in order to remove the traces of
any intermediate results of the unsuccessful transaction; something the original
designers of a component may not have intended it to do.

To summarize our initial approach: we analyze what facilities we need to
provide so that a designer can adapt a COTS component with little effort for
integration with the Reo technology; we implement the identified facilities in the
MoCha middleware [13] – an initial implementation of Reo; we then provide
an example of the use of these facilities to demonstrate the feasibility of our
proposition.

3 Middleware for synchronous interactions

In this section, we analyze our problem from several perspectives. We explore
what it means for a component to interact synchronously (as we defined it). We
summarize the interaction patterns of common component middleware. Finally,
we present the current state of coordination middleware that we can use.

3.1 Synchronous interactions

We assume that a coordination middleware that “speaks” Reo enforces the
necessary synchronous coordination among arbitrary individual COTS compo-
nents. To integrate a particular component technology with such a coordination
middleware, we need to (a) allow a component instance to interact with a syn-
chronous connector technologically, and (b) since, in the general case, we cannot
assume that a COTS component supports transactions, we may need to adapt
it to support them. We consider (a) as a matter of proper wrapping, done once
at the technological level for a particular component middleware, and therefore

42

we do not discuss it in detail. To do (b), however, one may need additional work
per individual component depending on what it does.

Designers can easily integrate stateless components into a transaction. In
stateless components, every interaction depends entirely on its immediate pa-
rameters and a component instance does not keep any information about its
past interactions in the form of some internal state. For example, a component
that sorts an array passed to it in a parameter and returns the result does not
need to preserve a state. A stateful component, on the other hand, requires
certain adaptation to allow it to clean up its internal state, if a transaction in
which it participates fails. The Reo computational model [14, 15] uses a proto-
col similar to the well-known two-phase commit protocol (2PC) to implement
its synchronous connectors. Adapting stateful components for the 2PC provides
one solution to their integration: the connector plays the role of the global coor-
dinator in the 2PC. Depending on the actual component middleware, in addition
to state, designers may also have to take care of various concurrency issues, such
as call isolation among concurrent access sessions, re-entrance within the same
session, object activation/deactivation, persistence, and others, which we do not
discuss in this paper.

3.2 Component middleware

Most technologies for component-based development use an RPC-capable com-
munication infrastructure for interaction – DCOM [16], CORBA CCM [17], EJB
with Java RMI [18], and so on. A component offers its behavior in terms of an
interface: a collection of individual operations (also called methods, functions, or
procedures) specified by a signature, perhaps pre and post conditions per oper-
ation, and some relations among the operations (e.g., order of calls, etc). Thus,
we do not much limit our options by considering a component to represent an
RPC-enabled library of (a) functional blocks defined in formal operational in-
terfaces, and (b) software protocols for using them, often specified informally. In
this paper we deal with facilitating (a). We leave (b) for future work.

The RPC protocol for invoking operations blocks the caller until a result be-
comes ready. In the blocking 2PC protocol, the component that serves an RPC
call (callee) also blocks until the transaction in which it participates (through in-
teractions with a synchronous connector) completes, either failing or succeeding.
A designer can hide this blocking from a component through a generic wrapper
that mediates all interactions with the component. This wrapper exposes the
necessary facilities for notification of success or failure through a generic pro-
gramming interface. Integrators use this interface to adapt their components for
synchronous integration.

3.3 Coordination middleware

The MoCha middleware [13] constitutes the current initial implementation of
the Reo coordination language. MoCha implements individual synchronous

43

channels, which also support mobility. The individual functional blocks, the op-
erations, that a component offers through its operational interface take an input
(parameters) and produce an output (result and/or exceptions, error codes, etc).
In this sense, an operation behaves somewhat similar to a channel in Reo. It
seems natural then to view a component instance as a collection of channel
instances. For synchronous connectors, we require operations to appear as syn-
chronous channels. Thus, from the point of view of a connector designer, we
regard an operation as a Sync channel that synchronizes its two ends and trans-
ports data. This data transport, however, has the side effect of computing some
(for stateful components – possibly history sensitive) function y = f(x) on that
data (here x stands for a tuple of input parameters and y represents a tuple of
output parameters or results). From the point of view of an application integra-
tor who needs to adapt a component, to appear as a synchronous channel, the
code of each (stateful) operation should become transactional. In MoCha, an
Simple Transactional API (STAPI) for 2PC-style, offered next to the standard
API for implementing new channels, can aid the integrator in the adaptation
process.

4 Proof of concept

In this section we assume the role of an integrator who needs to adapt a simple
database access component for use with synchronous connectors for the pur-
pose of logging of transaction successes (e.g., to use for auditing). Naturally,
the logging of a success should become a part of the transaction itself (through
synchronous integration, logging success only when the transaction completes.
Since we do not have a complete Reo implementation, we use the Java-based
MoCha middleware, which provides only basic synchronous connectors called
synchronous channels.

We build a specific general f(x)Sync channel, which internally provides a
STAPI for MoCha (STAPI4MoCha) programming interface. Integrators can
use this interface to allow something (a connector) that appears as a 2PC proto-
col coordinator, to interact with the implementation of the component operation.
The 2PC protocol requires processing of several messages: a global prepare
sent from the transaction coordinator (in our case, the synchronous connec-
tor) to all participants, to which they respond with either local success or
local failure; a global abort; and a global success. Our interface offers
only two kinds of messages to the component: global success and global
failure. Internally, we consider the actual invocation of an operation as the
global prepare message, returning normal result as a local success, and re-
turning with exception as local failure. A call to transaction(callback
interface) within an operation establishes the callback method, to which the
channel implementation will deliver the messages.

For our example, we use a simple database access component that provides
access to a file storage. As a component model we assume a single Java class.
We intend for the operations of reading from (given offset and size) and writing

44

to (given offset and data of some size) a file, to appear as operations on two
respective f(x)Sync channels. Note that we have chosen a stateful component
(the write operation), because the file represents the state kept between individ-
ual calls. In this application, we buffer the written data, preparing it for writing
exclusively to the file, checking space limitations, and so on. When a global
success arrives we flush the buffer onto the file.

5 Conclusions and discussion

We presented an approach to synchronous software integration, in which we
propose to use Reo as the specification and implementation language for syn-
chronous connectors. As an added value, using Reo as a specification language
enables one to take advantage of Reo’s formal semantics [19] for tool-based
verification, simulation, and reasoning about software compositions. Used as an
implementation language, Reo’s computational model [14, 15] can enforce co-
ordination protocols in a de-centralized, scalable, and (partially) fault tolerant
manner.

In our approach, for practical reasons we have decided to focus on a basic
behavior block widely used by the industry to offer behavior through remote
interfaces – the RPC-style of operation invocation. By modeling an operation
as a synchronous channel, we enable native integration with Reo-connectors
of PRC-style operational interfaces. Providing native support for other styles of
interaction, such as asynchronous message passing, message queueing and event-
based notification, remains an open issue. Nevertheless, if we have a library for
these interaction styles, implemented with RPC-style interfaces, we can still offer
a technological solution with our framework. We see such solution as non-native,
but one on top of the existing framework presented in this paper. For this kind of
solutions, however, we need to have a better specification of coordination among
the uses of the individual operations in an interface (provided by a component
or library).

We realize that developers often describe the software protocols for using
interface operations of a component in an informal language (manuals and doc-
umentations). This practice inherently has a huge potential for producing errors
in the way integrators use a component. Components and libraries for high-level
distributed communication protocols, such as the alternatives to RPC mentioned
above, include subtle details of how multiple parties can concurrently use a com-
ponent. We intend to investigate whether one can use “local” connectors that
directly express and enforce any intra-component coordination among the oper-
ation calls on a component interface.

As part of future work, when the middleware that supports the full Reo be-
comes available, we plan to enhance it with facilities for integration with at least
one common component model, such as CORBA CCM, EJB, or COM+/.Net
Components.

45

Acknowledgements

We thank Dr. David Clarke for his comments on this work.

References

1. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14 (2004) 329–366

2. Microsoft Corporation: Microsoft Transaction Server (2005)
http://www.windowsitlibrary.com/Documents /Book.cfm?DocumentID=405.

3. IBM Corporation: IBM CICS Transaction Server (2005) http://www-
306.ibm.com/software/htp /cics/tserver/v31/.

4. Berry, G.: The Foundations of Esterel. MIT Press (2000)
5. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language for

programming synchronous systems. In: POPL. (1987) 178–188
6. ISO/IEC: ISO/IEC 10026-1:1992 Section 4 (1992)
7. Arbab, F.: A behavioral model for composition of software components. L’Objet

(2005) to appear in 2006.
8. Arbab, F.: What do you mean, coordination? (Bulletin of the Dutch Association

for Theoretical Computer Science (NVTI))
9. Arbab, F.: Abstract Behavior Types: A foundation model for components and

their composition. Science of Computer Programming 55 (2005) 3–52 extended
version.

10. Diakov, N., Arbab, F.: Compositional construction of web services using Reo.
In Bevinakoppa, S., Hu, J., eds.: Proceedings of The second International Work-
shop on Web Services: Modeling, Architecture and Infrastructure, WSMAI’2004,
INSTICC Press, Portugal (2004) 49–58

11. Zlatev, Z., Diakov, N., Pokraev, S.: Construction of negotiation protocols for e-
commerce applications. ACM SIGecom Exchanges (2004) 11–22

12. Diakov, N., Zlatev, Z., Pokraev, S.: Composition of negotiation protocols for e-
commerce applications. In Cheung, W., Hsu, J., eds.: The 2005 IEEE International
Conference on e-Technology, e-Commerce and e-Service, IEEE Computer Society
(2005) 418–423

13. Arbab, F., de Boer, F.S., Scholten, J.G., Bonsangue, M.M.: Mocha: A middleware
based on mobile channels. In: COMPSAC, IEEE Computer Society (2002) 667–673

14. Everaars, K., Costa, D., Diakov, N., Arbab, F.: A distributed implementation of
Reo connectors – ongoing work at CWI (2005)

15. Costa, D., Clarke, D., Arbab., F.: Connector colouring: Towards implementable
semantics for Reo – ongoing work at CWI (2005)

16. Kirtland, M.: Object-Oriented Software Development Made Simple
with COM+ Runtime Services. Microsoft Systems Journal (1997)
http://www.microsoft.com/msj/1197/complus.aspx.

17. OMG: CORBA Component Model Specification (2001) http://www.omg.org/cgi-
bin/doc?ptc/2001-11-03.

18. SUN Microsystems: Enterprise Java Beans Specification (2002)
http://java.sun.com/products/ejb/docs.html.

19. Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In M. Wirs-
ing, D.P., Hennicker, R., eds.: Recent Trends in Algebraic Development Techniques,
Proceedings of 16th International Workshop on Algebraic Development Techniques
(WADT 2002). Volume 2755 of Lecture Notes in Computer Science., Springer-
Verlag (2003) 35–56 http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0216.pdf.

46

�� ���������� �� 	
	��	���� �� �� ������� ��

������ ���������

����� ����	�
 ���� ���
 �� ��� ������

��� � ���� ��	
 ��	
���	
� ��� ������� �������� ����� ����� ��� !�

��������	
���� ������	���� �
����������������������

��������� ��"��� !�#$�%� & '�%� �� ()���((���!�� ��!� �� $���� ��
(�&�%�� �����%� %� � (#�"��� $�� �� �� "�!�#� & � ��%�� �%��� %� !���)
��!�� '���(!�#$�%� &* � ��!� � ���� #� %�� � (��!� �!%�� �� � ��)
#�� ��� % � (�����(�% "� !� ��(���(�� � � %����$%�� �+ �����!�
+���,� & %�� �$$��!�%�� * � �������(� %�� ��%���%���� %���� �� #�!�
'��- (���� & '�%� #�"��� � +��#�%�� �!!��� %��% (�#� �%��%�� %��% %��
�����������	� �$$���!� .�(�$%�%�� %� #�"���%� $��+��#�(� �� "� %�� �$)
$��!�%�� / � (%�� %�� �$��� % �$$���!� .�(�$%�%�� $��+��#�(������
"� %�� #�((��'���/ ��� �% �(�0��%�� %��� ���(� & %� %��
������	����

�%��%�&� � '��!� "�%� %�� �$$��!�%�� � (%�� #�((��'��� $��%�!�$�%� %�
%�� �(�$%�%�� * � %��� $�$��� '� (��!��"� ��� �1$���� !� � (�����$� &
� �$$���!� %� �$�!�+� %�� �(�$%�%�� �+ (��%��"�%�(!�#$� � %)"���(
�$$��!�%�� � � (� (���& � & � $��%+��# %��% �(�$%� �$$��!�%�� �*

��� �����	 ���������
 ������ 	�������
 	������ ����������

� �������	�
��

���� ��� �������� �� �������� 	�����	����
 ������ 	������� ���� ��� ����
����	�� ��	� �� ������� ������� ��������� �� ������ ����� �� ��	���� � ��
�������� �� 	�����	�� ����� 	�������� ! ��	� ���������
 � ���	��	��� �� �
����� ���� �� ������ �� �� 	�������� �� � ���������� �� �����	� ����"��
��� �����	����� �� ��#� ��� �����	��� ������ ��� #��� �� ���	��	����$
�������� ���	��	���� ��� ��� ���� ��	���� �� ���# � ����� �� ��� �����
������� �� 	�����	���� 	����
 �� ��� ����� ����������� ��� ���������� ��
������ � ����% �� ��������� ���	��	���� ��� �� �����	�� �������� 	����
�	���� ����#���� ��	� �� � � �	������ ���� �� ��� ��� ���� ����� ��� ��
��� ���	� �� ���� �������� �� ���� 	������ ��� 	��� ����� ��� 	�����	���� ��
����� �������� ��� �� �� � ������� �����
 �������� ���� ���������� 	�����
	����
 ��� ��������
 ���� ����	�
 �� �&������ �����#�� �� � 	���'��	�

��� ������ ������� ��� �� �������� 	���
	�
� (��	��� �� ��� !����� ��� �
���� �� �������� ��#)
 ���	���
	�
� (� �����# 	��	��� �� ��� !�����)
 ��

���� 	���
	�
� (��	��� �� ��� !����� ��� � ���� ��#)�

*��� �� ����
 ��� ����������� �����	����+� ������� 	� ������ ���� ,&��
�������� -./0
 �� ���� ,&�� �� ������ �������� -.10� ! ��� ,��� 	���
 ���

47

����������� �	������
����	� �	 ��� ����� ����	��� ��� ���� ����	 �����������
�	������ ���� �� ����	��� ��� ����� ������ ���� �	� ��
������	 ������� �	�������
�	 ���� ������ �	 ��� ����	� ����� � ����� ����	�� ��	 �� � ����	� ��� ������� �	�
��	 �� � ������ ��� ����� ������ ���� ���� ���� ��� ���� ������	��� ������� �	 �����
�	����	�	�� ������� �� ��� ������ ��
����� �� ����� ����	��� �	� ������� ��
��� �� ����� �	 �
���	��	� ����� �

�������	� ���� ��������	�� ��!���"����	����
��������"����	���� �� ���"����	��� �����	 �	�
������	�
��������

�	 �������	� �� ��� ������
�	� �� ����������� �

�������	� ��	������ ��"
����� ��
�	�	�"����� �

�������	� �����	�� ���� ��
�	�	�"����	��� �����"
���� ���� �� #$%� &&' �	� �(��� 	�� �

����	����� �

��� �� ������ �������
��� �

�������	 ��
������ �� ��
�����	� ��� ��	����	�� �	� ��� �����"��	����	���

��	���	��

�	 ����
�
��� ��
����	� ��� ��
����	�� �	 ������
�	� �	 �

����� �� �
�����
��� ���
�����	 �� ����������� ��
�	�	�"����� �

�������	� ��� ��� ��	��	����
�� ������� ����	� �����		�����	� �	� �	 �����	�	� �
������ ���� ���
�� ���
�

�������	 �� �������� ������������ ��������	� ��� �������	� �	�
��
���	� ���"
��		�����	��

��� ����	��� �� ����
�
�� �� ����	���� �� ��������)�����	 * ����� ��� ���"
�����	� �	� ������� ���+� �	� �	�������� ��� ����� ��
�� �� ���
�����	 ���� ��
����� 	���� ������� ��	��� �	� ����"���
�����	� %����� ��� �������� ��
��� �	
��� ��
����	���)�����	 , ��������� ��� �������	 �� �����		�����	 �	����	��
(����)�����	� -� . �	� / ������
 ��� ��� �������	 �� ����� ����� �	 �������
��	��� �	� ����"���
�����	� ���
��������� 0�	�����)�����	 1 �������� ���
���
�����	 ��������	�� �������� �	�
����	��� ����	� ���
�
��� �	� ��	������
���
�
���

� ����������	 ��
 �����
 ����

��� 	��� �� +��
 ���+�	� ����� ���	� �����		����� ������ ���
����� �� ����
�	� ���� ������������� 2�� �

����� ���	� �� �����	� ����
����� �� �� ���
�
����������� ��������	 �� ��� ��������������� �� ����� �	����	�	��� 3������	�
�� 4516� ��� ���
�����	 �� ������� ��	 ��
������� �� ��� �

�������	 7��������
���	� ��������8� �� ��� ��������� 7
	�����	��
 ��������8� �� �� ���� ��� �
"

�������	 �	� ��� ��������� 7������	�
��� ��������8� 3� �������� �	 416� �����
�� ��� ���+ �����	� ���� ����� �	�������	 ������ ����� ���	������� ����
��� �����������	� �	� ��� ���	�
���	� �

������� ��� 	�� ��������� 9� ���	 ���
��� �	�"���� �	�����	� ����	� ��� ������
�	� �� ��� �

�������	 7��� ��� �����"
����8 �	� ����	� ��� ��������	 �� ��
�����	�
������	���� ��� ���� �	�����	���	
�� ������� ��� �������	 �� ��� ����� �
����� �� �����		�����	 �	����	�: ���
�	���	��� ��� �	�"���� ��	�� �� �+� ��� ������ ������	 � ��� ����";����� ��	�"
���	������� �	� �	� ��� ��� �������� �	��� �� ��	�� �� ����
��������� ���	 ��
��
������� �� �� ���	�� � ������ ���	 ������ ��� ����	� �	�"������ �	�����	���	

� �� ���� ���	
� ��	 	��
����������� ����	
��� ��	� ��	� �
	 �
����	� �� � �����	��
	�

�
	 ����	� �����	��
	 �	
���	��

*

48

�� ������ �	

�
������ � �	�� ���� ���
����� ��������� ���	 �� �	
 ���
��
������ ��
 � �	
 ����
 �
������ �� �������
� � �	
 ��
�� �	
 �
��� �� �	��
������� �� �	�� �	

�����
� ����� � ��
�	�� �	���
 �	
�� �
	����� ������
������
������ ����	
���
� �� ���
��� �
����
�� �	

�����
� ����� � ���

�	��
� �� �
��� � ������������
� ���
��
� ������ ������
������

�� ����
� �� ��� !� �� ������� � �
 ��
���
� �
��
 �	

�
����� ������ ���
��������"� �
�
���
�� #������ ���������$ � �����
�
� �� ������ ������ �	

��

����� #����	�� ���������$� ��������� ��� ��� �
 ������������ �
����
�
�� �	
 �����
���
 �	�� �
���� � ��
 �	���
� �� �	
 ���
�� � �	
 ����������
������
�
����� #�
������������ ���������$� �	�� ����
� ��������� �������
�� ��������
�� �����	��� �
��

� �	
 ������ ��%�������� � �	
 ����������
��
��%
� �� �	
 ������ ���������� �	
�
 ��%������� �	���
� ��
 �����
�
� ���
������
� �� �	
 �����
���
 �	��	 ���������� �������� � �	
 �

�� � �	

���������� ��� � �	
 ���
��� �&! ������
� �
'���
�
��� � ����������� ��� �	

����
� � ��
 ���	 ����������� �	������
�
�����
������
��� (� �� ���
����	� �	

�����
� �� ��� �����
� �� �	
 ���
�� �
�������� �	
 �
'���
�
���
�� �	
 ��������������

(� �������� ������������� �� �
����
� �	���� � ��������� �)*!� �	
 �����
����
 �� � ���� ������
 ���� � ������
�� ��� ����� ��� �� ���������� ���
������ � �	
 ��������
 �
����
�� +
,
���� ��� �
��� � � �
��
� �
�������
�
��

� ��������� ���
�������������� ���
���� +
,
���� �� ���
��� ��
� ��
�����
���
 �
���� � ��	�
�
 �
��%������� ��� ��������� �
'���
� �� ����

�������� �)� *!� �	
�
 ��
 ������ �� ����� � �
,
����� �	
 �������
��� �
,
��
��� �� ���
��
� ���	 �	
 �
�%����� � ���������� ��� �	
�� �
	�����- ��

�����
� �	
 �������	��� � �
'�
��� ��� �	
 ������� � ��
� � ������
���
����
�	
 ���
��
��� �
,
���� �� ���
��
� ���	 �	
 ���
������ ��������
 � �	
 ���
�������� #�.
��� ����
��� � � $- ��
�����
� �	
 ���������� � �
��
�
����� �	

��������
� � ����
��� ����� �
�������� (� �� ���� �
 ���
����
�� ��
 �
�
,
�����

(� ����
�����
��
� �����
���
 ���	 �� //0� 123 ��� �4
�� �	

�����
��������� ���
��� ��
 �����
� �� �
��� � �	
�� ����
� ��� �	
�� ���
� 5
�
���
������	
� �� �	
 ���
������ �
�������������� ���
��� 	��
 �

� ����
��
�	
 ��� ��
� ��
 ���
���6��
��
� 7��������� #�67$ �8! ��� �	
 ����
�
��9������
� �������� �)8!� (� �	
 %��� ������	� �	
 ��
 ����
�
����� �	

�������������� ���
�� #����
� �����$ �� �
�
��
� ���
�
��
���� ��� �
��
�
�	���	�� �	
 ����
�
������ � �	
 ��������� ���
���� (� �	
 �
��� ���
����	� �	
 ����
�� ��� ������� ��������� ���
��� #�	
 �����
�� ����$
��� �	
 ������
� �����
� �	

�
�����
������
��� 1�������������� ���
�
��� ��
 	����
� ���
����
� �� �	
 ������
�� ����� ����������
� ����
����
��� �
�	��'�
� ���	 �� ��
 �
�
������ 0��� ���� 	��
 �

� �����
� �� ��
�	
 ���
������ �
�������������� ���
��� ��� ������
��� (� �	�� ��
� � ���
�
�
��� �	
 ��� �����
�
�������������� ���
��� ��
 �
�����
���� ������������
������� �
������� ��� ������������ �)�! ���
����
� �	
 �����
�
�� � �	
 '������
� �
����
 ��� 123 ������
��� �):! ���
����
� ������������ �����
� ��� //0

� ������� �� �	
������ ����	�� �� ��� ����������	�

�

49

���������	
 ��� �� �����	�	 � ��������� ����	������ 	������ ���������� �����
�	�	 ����������� ��� 	��������� ��������� �� ����� ��� ����	������ 	������	 �� ��
��	������ ��� �	�� ��������� �� ��� ����	 �� ��� ������������ �������
 ��� 	���
���� �� ��� 	����
 ��	���������� ����������
 �	 ������ ���	������ �� ����������
�������� �����������

� �������� �	
�� ���
���
� ���������
��� ���������

��� ��������� �� ��� 	������� �	 �� ����� ��� 	����� ������ �� ��� ������ ��	�
�� ��� ������ �������� ��� �	� �� ������ ��	���������� ��������� �� ��� ����
���� �� ��	��������� ��������� � !�� "�� ���� ���� ���	��
 � ����� ���#� �� ���
������ ���������
 ������ � ��	��������� ���������
 �������	 ��� 	��� �����
����������	 �	 ��� ��������� �� ��� ������ 	�����
 ��� �	 	����$����� ����� ��
���� ���� ��	���������� ��� ���% ������������� ��� 	������� �	 ���� ��������
"��	���
 ��� ��	�������� ����������� ��	� �� ����� �� 	��� � ��� ���� �� 	����$�	
��� ��������� ����� ����� ��	���������� ���	 �	 ��������	��� �� �	��� 	���
��������� �� 	������ �����������&	 ���������	 ��� ��������������	' ����� ����
������	 �� ��������������	 ��� �� ������()�� ����� ���	 ��	� �� ���	��� ��
��� ������ �������� ��� ��� ��	��������� ����(*�������
 ��� ���������� ������
�#������� ��	� ����	� ��� �������	 	����$�� �� ��� 	������� ������������&	 ���
	��� ���� ��������� �� ��� �#������� �����#� ��� ��� ����	���	 �� ��� �����	��	�
�� ���	 ���
 �� ������	� ��� ������������ �� ���������	 	� ���� ���� �����	�����
��� ���������� 	������	 	����$����� ��	����� ��� ��������� ��	���������� �����	
��� ��� ������� ���������	 ��������� �� ��� �����������&	 ���$��
 ����� ��� ��
����������� ���������� �� ��� �����	��	�

� �
�
�� ����
�
���

+� ���� ���������� � ���������� ��� ��	������ �����������	 ���� ���� ���� ��	�
����������	� ���	 ���������� �	 ��	�� �� ��������� ���� ��$�� �� �����������
���$��� ��� ��	�������������� ��������� �������� ������� � ��������� ��	�����
�� � ������ 	����� ��� ���� � ���#� ��������� �� ��� ������ �������� ,���
��	��������� ���������-� .� ���	 �	 ��� ��	�
 ��� �������� ��������� �	 	��� ��
�� ��	������������ *������� ���������	 	�� ��� ��	�������������� ��������� 	����
���� ���� ��� ��	� %�������� �� ��� ����������� 	�������	� "����������
 ��	����
����������� ������	 ��	��� ���	������	 ���� ��� ���������	 ��	� ��	����� /�#�
 ���
����		��� ��������� �������� ������� � ��	��������� ��������� ��	� �� ���	���
�� ��� �	�� ��������� 0������
 ��� ����		��� ������	 ���� �� ��	����������� ������
����	� ��� ����		��� �	 	����$�� ���� �� �����������&	 ���������	 ��� �����	��	�
��� ������ 	��%��������	 ������� � $�	� ���		�$������ �� ��������������		��� ���
����������������		��� ���������	
 ��� ��� ������ 	��%��������	 ��� �������� �
����������������		��� ��������� �� �� �	�������		��� �� �������� "������
 ���
�������� ��������� �������� ��� �������� ������� ���������	�

�������
 �����	��	 ��� ���� ����� �� ����������� ��������������	 ��� �������
�� ���������	 ����� ��� �	�� �� ������� ���	� ��������������	� ���	
 �� ��$��

1

50

� ������� �� � ��� 	
 �	��	��� ���� ������� ���� ���� 	����� �	 ������� �
���
��	������ ��� ���������	 �� � ��	�� ��� �� �������� �� � ��� 	
 �������� �����
��� �������� �� ����� ���	��� � ���� ����� �� ���� ��	 ����� 	
 ��������	��
������������ ������� �	��	��� � ��� ���� ������� �� ������������� ����
���� �������� � !	������ ��� �	��� ��� 	
 � ������� ����� � ����	����	 ���
��"���� ��� ������� 	
 	����� �������� � ��� ������ #	���� ���� ����� ����� �	
��� ����������	 �� ��� �	�������	 	
 ���������� ������ �������� $%%&�
����� ���������� ��� �������� ����� � �������� ����� ����� 	��� ��	��
�������� �� ����� ��	�� ��� ����� �������� ����� �� �	����� ���� ���
�������� ���������� � ������	� ������� ������������ � ����	����� �	�� ���
����� ��� ������� 	
 �	�� �	��	��� ����� ��� ����
	� �������� ���� ��������
����� �� ���	��� �	��	�� ���������� ��� ���	 ���� ����� ��� �����
���� ����� ����� 	��� ��	�� �	��	��� �� ����� ��	�� ����������
������ �	��	����

��� �����	���� ��	���� �� ����� 	 ��� '(�)���* ����� ������ $+& ��
��� ',-%* ���� �	��� $%.&� ��� '(�)���* ����� ������ ���	�� �	 ������
� ���
������ �	 � ��� 	
 ������� �	��	��� �� ��	����� � ����� ���� �	��� �����
������� ��� ����� 	
 �	��	��� �������� �	 ��������� ��� ',-%* ����
�	��� ��/�� �	������ ��� 	��������	 	
 ��� �	
����� ������������ � ��������
�	������ ����� ���� ������ �	������ ��	����� �����	����� �� �������� � 0���
	� ��������� ��� �	���� 	
 �	�� 	
 ��� ����	�� ���/���	����� 	
 ��� �����������
���������	� � ������	� �� ����� � ��������� ���
����	�� �� �1����
����	��
�	�����

� ������� �	�
������

��� ��� 	
 ��� '(�)���* ����� ������ ����� ���������	 �����	���� �������
��� ����� 	
 �	��	��� �������� �	 ��� ���� ���� ������
��� ��� �����
	
 ��� ���� 2���� �1�����	� ��� ��� �� ������ �	 ��� ������� ��� ���� 	

�������� 	3���� �� ��� ���������	 �� ����� �	�����	��� ��������� �����	�
����������� ��������� �� ���	���� � ��� ������� ���� ���� ���� �	 	����	�� ���
�������� 	
 �	�� ��������� �������� �� �� ������ ����� 	����	��� ���� �	 �
��	������	 	
 ��� ��������� ����� �� �������������� 4	�� ������� ��	�� ��
������� ��	������	 ��� ���� � $%%&� ��� �	�� 	
 ��� ������ ���������	 ��	���
�� ��� ����������	 	
 ��� ������ ��� 	
 �������� ��� ���� �	��	��� ����
���� �� ������ �� ������� ����� �
���� ��� ���������� ��
���� �	 ����� ���
��������	 	 ��� �	���� ������� �
 ����� �� 	� �	��� ���	�� ����� � ���
�����
	� ����� �	��	���� � �	��"����� � ����� � ��� �������� �� ���
���� ��	�	/�� � ������ �������� 	
 ��� �	��� 	
 ��� ������ ��	 ���	����
������ �1��� � ������ ��� ������ ��� ��	 ��������� 	
 ��� ����� ������
���� ����	���� �� ����������� ��/� ��	 ���	�� ����� ��������� �� ���
��5����	 �	 ���������� ���	����� �	��	��� �� �	��
� ����� ����������
���� �� ����� ���������� ��5����	 �� ���� � ��� ������ ��������	� ������

	��� ��� ����	���� �������� �	�� �� �	��	��� ��� ��� ������� ����
������� �� �������������� �� ��� ���������� �������� ���� ��� ���	���� 	

6

51

�������������	 ��
 ����������	 �������� ��� ����� �� ��� ������ �����	 �����
�������� �����	 ������������	 ����������	 �����������

� ��������	���
��

�� ��� ��������� ��� ������
�������� �� ��������
 ����� � ������� ���������
������������ ��
 ��� ����������� ������������	 ������� ���� ��� ��

����� ����
����� �����
�
 �	 ��� ���������

�� ��� ������������������� ����
���� ��� ������������� ������ ��� ����
������ ��
 ��� ��������� ��
��� ������� ����������� �������� �����	�
�� ���

�	 ��� ���������
�������� ��
 �����
�
 �	 ��� ��������� �� ������ �� ��� ���
������������ �� ��� ����������� ����������
�����
� �����	�
�� ���
 �	 ���
��������� ��
 ����������
 �	 ��� ���������� ������ ������� ��������
 ��
� ��

������	� �� ���� ��� ��������� ��� ��
����	�
 ���� ��� ���������� �� ����
���������� �������������� ������ ���������� �� ���������
 �	 ��� ���������
������� �������� �����

���������� �� ���� �� ��� ��������� ��
���� ��� ����
������ �!��� �� ����� �� ������������ �� ���� ��� ���� �� � ����������� �����
���

��� ������������ ��� �������� ��"����� ��
 ��� ����� ��� ���� �� � ������������

�����
����� ������������ ��� �������� ��"������ #��
������������ �����������
� �

 ��� ����������� �� ��� ���������� $ ����� �����������	
������� ��
�����

�������������� �� ������ �� ��� ����� ���������� �������� �� ������ �� ���
������� �������� ��
 �� ������ �� ��� �������������� ���������� �������� %���
���������� �� ������
 �� � ��

����� ��������

%��� ��������� �� �&�����
 ����� ��� ���������� �� ���� ���������� ��� ���
�������� '����� ��������(��"����� �� ��� ��������� ��� ����������
 �	 ��� ����
��"���� '����� �������"����(����������� ���� ��������� ��� ��� ����� �����������
��� ���
������������ ����������� ��� �� ���� ����������� ��)������ �� ���
�

� ������
��

�� ������	� ��� ����� �������
 �� �&�������� �� ����� �
�������� �� ������
��������� ���
������ ���
������������ ����������� ���� * ���������� ���
�
�������� ��"��������� �������
 ��
 ��������

����� ��� ������ �� ����� ���
�����
���������� ��� �	�� �� ��)������ '���������� ��� �����������(� ��� �	��
�� �
�������� '������ ���
	����� ��� ������
��������(� ��
 ���
�!����� ���
"���������� ���+�����
��� '�������
 ���� ����� ������� ����������
��������� ��

��

����� ��� ������(�

,�� �������� �� �� ����� ���� ������ ����� �
����

����� �&�������� �� ������
������ ���� �� ��
����
 ��
 ��� ��������� ������ ������	
����
 �� ��� �������
������������� ��� �� �����������	 �� ������ ���������� ��� �&�������������������
���� ��"���� � ������������� �������	 ���� ��
������������ ���������� ���
���� ���
�!����� ���+�����
��� '���� ��� ��������� �� ��� ��
�����(���������
�	 ������ ������������ �� ��
������ ���
� �� �� ������������� ������ ���� �� ���

�� �� ����� ��
 ��
���
 �� � ���������
 ������ �	 ��� ��

����� ��
 �	 ���
��
�����
����� �&��������

-

52

������ ���������	
�	���� ���������	 �������������	

����������

��������	

���������� ��������� �	
�
�����
�
���
������ ���
���� ��	� ��� �
����� 	��
�
���� ����� ���������
������
� �� �
����

������� � �������� �� ���
����
����� �	 ������������
	�� �
��� �
�
������
��
������������ ����������
��
������
�� ���������� �	
������������ ���������

�������� � !�
��� "�����
��
�# �	
���
������ ���
��� 	�� �
��� �
�
������
�������
 $�

����������� %�
��
����
���������
�� ���
���
���� �	 ������������
��������� �� ��� �
���

�������� �� ��� ���
��
�

�����
����� �� ����������

�� ������
��� �� ���
���������

�����������

��������	

���������� &�������� �	 ����
��'��
� ��	���
����� ��	�
��
� �� ������� ��
(��
���� �������������
�� �����
��
���� �	
�
�
���� ����
����� ��	� ���������
��
���
������ ���
������ 	��
�
��� �
�
������

������� � �������� �� ���
����
����� �	 ��������
����
�	 �������
�� ��������� ����
�
��� �
�
������
�� ����
��������� ���������

�������� � &���
� �	 ����
��������� ��	���
����
�
�
������ ��
���
�� ������
��
������������� �������

$� ���� ��� ��������
������� �� ���(�� �����
��� 	�� �
���� �
����� ��
��������
���� ������ ��
���� �
��� ��
����������

�� ���������
�
��
��

�
��

����������� %�
��
����
��������� ������� ���
�

�� ������ �����
�����
��
��������� �	 ������������
��	���
���� 	�� ��������
��
�������������

����� �� ���������� 	
���	

��� ���� ��
 ���
	
�� ����
�����
	��

�� ��������	
� ������� �� ��� ������� ���������	 ��� ������� �� ��� �������

�������� ��������� ��� ��� ������ ���� ��� ����� ������������ ������������

����������� ��� ��� ������ �������� ��� ��������� ��������� ��
 ��� �� ��

���������� ���� ��� ������ �� ��� ������ ��������� �� ���� � �������������	 �

������������������ �� ��� ������ ����� �����
� ��� �����
������ �� ������

���� ��� ����� �������
��� ���� ����� �� ��������� ������ ���������� ��� ��������

��� �� ���� �������������� ������ ���������� �� ��������������������� ����

�� ���� � ������������� ��������� !� ��������	 � �������� ���������� �� ��� �������

������� �� ���� �����"����� ���������� #����	 ������� �� ��� ��� ������� ������

���������� ��������# ��� ���� ��� �� �� ������ ��� ������� �� ��� ������

��������� ��
 ���
� ����������� ��� ���������������� $������% �� ��������

����������

�� �� �����	 ��� �� ���
��� � ��	�
� �� ���������
 ������������ �� �����
 ��

�����!� �� ����� ����	
������ �� 	���� ���������� ���
������� ���������"

��!
� #$%&#'�" �
��" �	�(���")��" ��	� #**��

#� � +
��
	 ��� ,� ����
�
� �����
��	
 ��� ����������� ���������� -
���	

���

��� ��
�	 �����	� �� .
	�����
 ������!� �� ���� �������������
������ ��

����������� ������������� ��� ������������� 	 �����" .	����
��
" -���
 ������"

)��" ��� #**/�

/� 0� +	��
���� !� ������� �"�#$������ ���� �"���������� ��� ������� ����%�����������

��� ������������ �$�������� .�1 ��
���" �2.," ,	
����
" 3	���
" #**�� �� 3	
����

&

53

�� �� ������ ��	
�
������ ��� �� ������ ���������� ��� ��������� ���������
��� �������� ������� �� ��
�������� ��� � !��"���� ������� ����� ����	
��
����� "���#� $$�� �� ����� ��%�� &$$'&�(� !����)����*� ���� +,,��

-� .� ������ /� ���� ��
������� 0� �##����� ��� �� /����� �1�����% 2�3�����
�
�4�� ��#����%
��������� ��� ��������� ����� ��������� ���
������� �����	 �!�"� &5+67$�'��� +,,+�

8� �� /�##�� 2� 9��#� 2� �������� ��� �� :������� #	��� ������	$ �����	 �%
��	��� ��& �'������ ��%�"��� ������ 0����*� &;;��

(� �� ��%� �� 9����� ��� �� ��#�%��#�� �����	���"�� ��#����% �
�4�� ��"	
���#����� ��� ��������� ���!(� $&5+67&&('&-(� ���� &;;;�

<� 2� =������ ��� �� ��>�4���� ���������� ���"��
���%�#���7 �� ��������
������� � 2�3���"� ���������� ���"��� �� ���) *�� �����"�� ������������
����	
�� �� �+ ��! ��� ������! �����"��� 2� �� ������� ����� ����
+,,$�

;� /� =������� �� .�#��%�
�
������>��� ��
����� �� .����� ��	
� .��%����
��� �� ����� ������	!������ ���%��##�%� �� ���) ������� ���%�� ��
��& �'������ ������������ "���#� &+�& �� � ��� ���	 �� ������� � �� �
��%�� ++,'+�+� ����%��	:����%� �*"?�>*�?� @������ &;;(�

&,� �� �� =����� ���
� ���*�����*����� A���������� !������� � ��� ���� @��
�*���#� �� ���) ,-�
 ��� �(���	��� �� �������� �(��	 ���� ���	� ��%��
+&$'++-� ���B� /��"�� C���
�* &;;&�

&&�)� =���� A� ������ ��� /� ������� �����% ��#������� ��� A����������

���%�#��� �
�4�� ��"���#����� �� ������������ �(���	��� �� #�	�������
��& �	 ��� ����� �����	$ #��� .������� �*����� !��� +,,��

&+� �� =�������� ������������ ��������7 ��� �D& :��
���� �� �������� ����	
�������� ���� ��%�"��� &+5867�+'-,�)�"� &;;-�

&$� ��
�%���� ����%����� �� E�� @������ ��� ��#������ �������� �������������
�� ���) .�%�
 ���� ������������ �(���	��� �� ��& � ������ ���'/�� #�	'
������� ���������� ��%�� $;�'�,&� 0����%���� A�� C���
�* +,,+�

&�� .�
�##����
� �4��%� ���
� ���*�����*����� �1�����% 0��> �������"�*
���
�4�� @�� ������� �� ��� ����	 �% �
 ,0�
 ��� �(���	��� �� ��������
�(��	 ���� ���	 1����2304� ������
������ ��������!� A��� &;;-�

&-�)� �����"������� /� ��������
� ����>�� ��� /� ���� ������� � 2�3���"�
��#������	4����
�������� ������������ �� ���) ����	
�� �� �+ ���� ���
����!� ��
�� ���	� ����� �������� @������ ���� +,,,�

&8� 2� 2��"�* ��� ��
����� �4�������� �� ���������� A�#������� � ��#������	
!������ �������#�� �� ���) 5�
 ���6�.��67����8 ������������ �����"��
���%�� � "���#� +;(+ �� � ��� ���	 �� ������� � �� � ��%�� $,-'$+$�
2� �� ������� ����� ���� +,,$� ����%��	:����%�

&(�
� ���*�����*����� @����#����� �������%�� �
�4�� ��#����%� �� ���) ,0�

�(���	��� �� ���� ���	 �% #�	������� ���������� ��%�� &'(� ����������� C���
&;;8�

&<� A� ����*�
� ���#��� =� ��������� �� A�#����
� ��������� ��� �� 9������
��	
�%�% C����� ���3��� � �*��7 � 0��>�* ��������� 2�������� �����%� �*���#�
���) ,0�
 �(���	��� �� �������� �(��	 ���� ���	� &;;-�

&;�
� :������ ���"��	��� ��#�������F� ������� .��%��%�� �� ���) ��9�
 �������
���%�� �� ������ �������	 �% �������	� ������ /��#��*� ���* +,,&�

�

54

Software Adaptation in the Context of MDA

Nathalie Moreno, José Raúl Romero and Antonio Vallecillo

Dpto. de Lenguajes y Ciencias de la Computación
Universidad de Málaga, Spain

{vergara,jrromero,av}@lcc.uma.es

Abstract. MDA seems to be one of the most promising approaches
for designing and developing software applications. It provides the right
kinds of abstractions and mechanisms for improving the way applica-
tions are built nowadays: in MDA, software development becomes model
transformation. MDA also seems to suggest a top-down development
process, whereby PIMs are progressively transformed into PSMs until a
final system implementation (PSM) is reached. However, there are situa-
tions in which a bottom-up approach is also required, e.g., when re-use is
required. Moreover, many times we are not interested in the creation of
new systems but in the maintenance or evolution of existing ones. How
to deal with these issues within the context of MDA? How to adapt these
systems when we are using an MDA approach for building our final ap-
plication? In this paper we try to introduce the main problems involved
in dealing with software adaptation in MDA, identify the major issues,
and propose some ways to address them, particularly in the context of
Component-based Software Development.

1 Introduction

Component-based software engineering is an emergent discipline that promises
to reduce development costs by creating a marketplace of pre-produced compo-
nents, that can be effectively used for building applications. Since components
may use different technologies and platforms, the possibility of reuse existing
software is a difficult problem to be addressed, so existing components may
work properly within new applications. Thus, software adaptation is required to
guarantee that different components will be able to interact in the right way both
at the syntactical and at the protocol and semantical levels. In this sense, the
Model Driven Architecture (MDA) [12] has recently appeared as an interesting
approach to address software adaptation and interoperability.

MDA allows us to: describe a system independently of the platform that
will support it (Platform Independent Model, PIM); specify platforms (Plat-
form Models, PM); select one or more particular platforms for the system; and
transform the PIM into one (or more) Platform Specific Models (PSM) — one
for each particular platform. In MDA, software development becomes an itera-
tive model transformation process: each step transforms one (or more) PIM of
the system at one level into one (or more) PSM at the next level, until a final
system implementation is reached.

55

MDA seems to imply a top-down development process. However, there are
situations in which a bottom-up approach is also required. For instance, how to
use and integrate pre-developed COTS components into the application? How
to deal with pieces of legacy code, or with third-party applications? Further-
more, many times we are not interested in the creation of new systems but in
the maintenance or evolution of existing ones. How to deal with these re-use
issues within the context of MDA? How much benefit will MDA bring to those
problems?

In this paper we introduce some problems involved in dealing with software
adaption within the context of the MDA approach. More specifically, the main
problems concerning to the reuse of COTS and legacy systems that we perceive
are: (a) the definition of the information (set of models) that needs to be pro-
vided/obtained for a piece of software in order to understand its functionality,
and how to re-use it; (b) the evaluation of the effort required to adapt it to
match the new system’s requirements; and (c) the (semi)automatic generation
of adapters that iron out the mismatches. After identifying some major issues,
we propose ways to address them in the particular context of Component-based
Software Development (CBSD).

The structure of this paper is as follows. After this introduction, Section 2
describes the major issues to be considered when reusing software pieces from
different technologies. Then, Section 3 discusses how to address some of these
issues concerning to software adaption within the context of the MDA. Finally,
Section 4 draws some conclusions and open lines of research.

2 Adaptation for re-use

Most of the existing approaches deal with software adaptation in a platform
and environment dependent way. In consequence, adaptors obtained by such
techniques do not seem to be as reusable as it is desirable. From our point of
view, this matter might be faced from a higher level of abstraction, e.g., at the
model level. In particular, MDA provides an approach for specifying a system
independently of the platform that will support it. However, several issues need
to be firstly answered, such as: What kind of information should the model of a
software system contain? How do we express such information?

Issues related to system modeling. There seems to be no consensus about
the information that comprises the model of a system, a component, or a service.
In this paper we will suppose that this information contains three main parts:
the structure, the behavior, and the choreography [14]. The former describes the
major classes or components types representing services in the system, their at-
tributes, the signature of their operations, and the relationships between them.
Usually, UML class or component diagrams capture such architectural informa-
tion. The behavior specifies the precise behavior of every object or component,
usually in terms of state machines, action semantics, or by the specification of the
pre- and post-conditions of their operations (see [10] for a comprehensive discus-
sion of the different approaches for behavior modeling). Finally, the choreography

56

defines the valid sequences of messages and interactions that the different ob-
jects and components of the system may exchange. Notations like sequence and
interaction diagrams, languages like BPEL4WS, or formal notations like Petri
Nets or the π-calculus may describe such kind of information.

Most system architects and modelers currently use UML (class or component
diagrams) for describing the structural parts of the system model. However, there
is no consensus on the notation to use for modeling behavior and choreography.
This is something that somehow needs to be resolved.

Issues related to components and legacy applications. Sometimes, com-
ponents and legacy applications also need to be integrated in systems. Thus, the
kind of information that is available from them will allow us to check whether
they match the system requirements or not. More precisely, this information
should be able to allow us to:

(a) model the component or legacy system (e.g., by describing its structure,
behavior, and choreography);

(b) check whether it matches the system requirements (this is also known as the
gap analysis problem [7]);

(c) evaluate the changes and adaptation effort required to make it match the
system requirements (i.e., evaluate the distance between the models of the
“required” and the “actual” services [11]); and

(d) ideally, provide the specification of an adaptor that resolves these possible
mismatches and differences [4, 5]).

The problem is that both COTS components and legacy applications are
usually black-box pieces of software for which there is no documentation or
modeling information at all. Even worse, if a model of a component or legacy
system exists, it may correspond to the original design but not to the actual piece
of software. The current separation between the model of the system and its final
implementation usually leads to situations in which changes and evolutions of
the code do not reflect in the documentation.

Some authors propose the use of reverse engineering to obtain the information
we require about legacy systems (basically, obtain their models from their code,
whenever the code is available). Thus, a reverse transformation would convert
the code of the legacy application into a fairly high-level model with a defined
interface that can be used to perform all the previous tasks.

But the problem is that reverse engineering can only provide a model at the
lowest possible level of abstraction. In fact, you can’t reverse engineer an archi-
tecture of any value out of something that did not have an architecture to begin
with. And even if the original system was created with a sound architecture,
very often the original architecture tends to get eroded during the development
process. So, what you usually get after reverse engineering is essentially just an
execution model of the actual software in graphical form. At that point, most of
the high level design decisions have been wiped out.

57

3 Modeling adaptors with MDA

Our proposal discusses how to address some of the problems mentioned in the
introduction concerning to software adaption within the context of the MDA,
making certain assumptions.

(1) We count with a model of the component or legacy system that we need to
re-use (e.g., structure, behavior and choreography).

(2) The PIM of the application describes the system as a set of interacting parts,
each one with the information about its structure, behavior, and choreogra-
phy. (This information can be either individually modeled, or obtained for
each element from the global PIM — by using projections, for example.)

(3) There are MDA transformations defined between the metamodels of the
notations used in the PIM for describing the system structure, behavior and
choreography, and those used in the PSM.

(4) Associated to each notation for describing structure, behavior and choreog-
raphy at the PSM level, there are a set of matchmaking operators (≤) that
will implement the substitutability tests. These tests are required to check
whether the required business component can be safely substituted by the
existing piece of software.

(5) We count on the existence of (semi)automated derivation of software adap-
tors (e.g., wrappers) that resolve the potential mismatches found by the
substitutability tests.

As shown in Figure 1, our starting point is the PIM of a business service or
component. As previously mentioned, the PIM of each business service comprises
(at least) three models with its structure, behavior and choreography.

At the right hand side of the bottom of the Figure 1 we have the piece of
software that we want to re-use (e.g., an external Web Service that offers the
financial services we are interested in). From its available information and/or
code we need to extract its high-level models, that will constitute the PSM
of the software element (and perhaps enriched with some information inferred
using reverse engineering). The Platform in this case will be the one in which
we express the information available about the element. Let us call P to that
platform, and let Ms, Mb and Mc the models of the structure, behavior and
choreography of the software element to be re-used, respectively.

Once we count with a PIM of the business service (our requirements) and
the PSM of the available software in a platform P , we need to compare them,
and check whether the PSM can serve as an implementation of the PIM in that
platform. In order to implement such a comparison, both models need to be
expressed in the same platform. Therefore, we will transform the three models
of the PIM into three models in P , using MDA transformations. Let they be
M ′

s, M ′
b and M ′

c, respectively.
Once they are expressed in the same platform and in compatible languages,

we can make use of the appropriate reemplazability operators and tools defined
for those languages to check that the software element fulfils our requirements,

58

COTS
(BLACK BOX)

COTS

 SPECIFICATION

ADAPTER

SPECIFICATION

STRUCTURE BEHAVIOR

ADAPTER

NO NO NO

BUSINESS COMPONENT

PIM

LANGUAGE

PSM

LANGUAGE

CODE

BEHAVIORAL MODEL STRUCTURAL MODEL CHOREOGRAPHY MODEL

nnnn

nnnn

MDA TRANSFORMATION/

IMPLEMENTATION

DOCUMENTATION OR

MDA TRANSFORMATION/ REV.

ENGINEERING

< ?

CHOREOGRAPHY STRUCTURE BEHAVIOR CHOREOGRAPHY

ADAPTABLE?

YES YES YES

YES

NO

NO

COMPONENT

SPECIFICATION

MDA TRANSFORMATION/

IMPLEMENTATION

GENERATED
COMPONENT

WORTH DEVELOPING?

YES

NO

REVIEW

ADAPTABLE?
NO

STRUCTURE BEHAVIOR CHOREOGRAPHY

< ? < ?

ADAPTABLE?

STRUCTURE BEHAVIOR CHOREOGRAPHY

MDA

TRANSFORMATION

MDA

TRANSFORMATION

MDA

TRANSFORMATION

Fig. 1. Integrating COTS into the MDA chain

i.e., Ms ≤ M ′
s, Mb ≤ M ′

b, and Mc ≤ M ′
c. If so, it is just a matter to use the PSM

software element as a valid transformation from the PIM to that platform.
But in case the software element cannot fulfil our requirements (i.e. its PSM

cannot safely replace the PSM obtained by transforming the PIM), we need to
evaluate whether we can adapt it, and if so, how much is the effort involved
in that adaptation. Some recent works are showing interesting results in this
area [4, 11]. The idea is, given the specifications of two software elements, obtain
the specification of an adaptor that resolves its differences. If such an adaptor
is feasible (and affordable!) we can use some MDA transformations to get its
implementation from the three models of its PSM. Otherwise, it is better to
forward-engineering the component, using MDA standard techniques from the
original business component’s PIM (left hand side of Figure 1).

Alternatively, the original PIM of the system might have to be revisited in
case there is a strong requirement of using the software element, which does not
allow us to develop it from scratch (e.g. in the cases of a financial service offered
by an external provider, such as VISA, or of a Web Service that implements a
typical service from Amazon or Adobe). In those cases, we must accommodate
the software design and architecture of our system to the existing products,
maybe using spiral development methods such as those described in [13].

59

4 Concluding Remarks

The general problem of re-use is much more complex, though. Although we
have over-simplified it, in this position paper we have discussed the major issues
associated to re-use within the context of MDA. However, how to deal with the
extra-functional requirements (e.g. robustness, usability, etc.)? Many of these
requirements are even more important than functionality when it comes to reuse
or upgrade an existing system. More specifically, we have presented an approach
to deal with COTS components and legacy code, based on a set of assumptions.
At this point, how far we currently are from achieving these assumptions ? What
work need to be carried out for making them become true?

Some of the required information is not difficult to obtain, specially at the
structure level: the signature of the interfaces of the software elements are com-
monly available (e.g. WSDL descriptions of Web Services). However, the situa-
tion at the other two levels is not so bright, and only for Web Services might
definitely be resolved in a near future. For the rest of the components there are
some small advances (see, e.g., the work by Meyer [1] on extracting contract
information from .NET components) but most of the required information will
probably never be supplied [2], unless a real software marketplace for them does
ever materialize.

Although there is no agreed notation for modeling behavior (or even consen-
sus on a common behavioral model), we expect UML 2.0 to bring some consensus
here. However, this also strongly depends on the availability of tools to support
the forthcoming UML 2.0 standard.

Regarding to MDA transformations, there are some proposals already avail-
able that provide correspondences between different languages, such as UML
(Class diagrams) to Java (interfaces), EDOC to BPEL4WS, etc. [3]. They are
still at a fairly low level, but they are very promising when considered from the
MOF/QVT perspective.

We also supposed the existence of formal operations (≤) and tools for check-
ing the substitutability of two specifications. The situation is easy at the struc-
ture level, since this implies just common subtyping of interfaces. However, there
is much work to be done at the behavior or choreography levels, for which only
a limited set of operators and tools exist (basically, the works by Gary Leavens
on Larch [9], and the works by Carlos Canal et al. for choreography [6]).

Finally, there is also plenty of work to do with regard to the (semi)automated
derivation of software adaptors (e.g., wrappers) that resolve the potential mis-
matches found by the substitutability tests. There are some initial results only,
but most of the problems seem to be unsolved yet: defining distances between
specifications [11], deciding about the potential existence of a wrapper that re-
solves the mismatches, generating the wrappers at the different levels, etc.

Acknowledgements. The authors would like to thank the anonymous ref-
erees for their helpful comments and remarks. This work has been supported by
Spanish Research Project TIC2002- 04309-C02-02.

60

References

1. K. Arnout and B. Meyer. Finding implicit contracts in .NET components. In
Formal Methods for Components and Objects (First International Symposium,
FMCO 2002), no. 2852 in LNCS, pp. 285–318, 2003. Springer-Verlag.

2. M. F. Bertoa, J. M. Troya, and A. Vallecillo. A survey on the quality information
provided by software component vendors. In Proc. of the 7th ECOOP Workshop
on QAOOSE, pp. 25–30, Germany, 2003.

3. J. Bézivin, S. Hammoudi, D. Lopes, and F. Jouault. An experiment in mapping
web services to implementation platforms. Reserach Report 04.01, University of
Nantes, 2004.

4. A. Bracciali, A. Brogi, and C. Canal. A formal approach to component adaptation.
Journal of Systems and Software, Special Issue on Automated Component-Based
Software Engineering, 2004.

5. A. Brogi, C. Canal, E. Pimentel and A. Vallecillo. Formalizing web services
choreographies. In Proc. of the 1st Intl. Workshop on Web Services and Formal
Methods (WS-FM’04), vol. 86 of ENTCS, pp. 1–20, Italy, 2004. Elsevier.

6. C. Canal, L. Fuentes, E. Pimentel, J. M. Troya, and A. Vallecillo. Adding roles to
CORBA objects. IEEE Trans. Softw. Eng., 29(3):242–260, 2003.

7. J. Cheesman and J. Daniels. UML Components. A simple process for specifying
component-based software. Addison-Wesley, 2000.

8. ITU-T. SDL: Specification and Description Language. Intl. Telecommunications
Union, Switzerland, 1994. ITU-T Rec. Z.100.

9. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design.
In Behavioral Specifications of Businesses and Systems, pp. 175–188. Kluwer
Academic Publishers, 1999.

10. A. McNeile and N. Simons. Methods of behaviour modelling, 2004.
http://www.metamaxim.com/download/documents/Methods.pdf.

11. R. Mili, J. Desharnais, M. Frappier, and A. Mili. Semantic distance between
specifications. Theoretical Comput. Sci., 247:257–276, 2000.

12. J. Miller and J. Mukerji. MDA Guide. Object Management Group, 2003. OMG
document ab/2003-05-01.

13. B. Nuseibeh. Weaving together requirements and architectures. IEEE Computer,
34(3):115–117, 2001.

14. A. Vallecillo, J. Hernández, and J. M. Troya. New issues in object interoperability.
In Object-Oriented Technology: ECOOP 2000 Workshop Reader, no. 1964 in
LNCS, pp. 256–269. Springer-Verlag, 2000.

61

Using Interaction Patterns for Making Adaptors among
Software Components

Miguel A. Pérez Toledano1, Amparo Navasa Martínez1,
Juan M. Murillo Rodríguez1

1 University of Extremadura (Spain),

Department of Computer Science, Quercus Software Engineering Group,
{toledano, amparonm, juanmamu}@unex.es

Abstract. Recycling components reduces the development cost and time during the
creation of a software system. Nevertheless, combining components is not a simple
task. It demands to the candidate components to be adequate and then to be adapted
inside the environment where they are going to be integrated. For this, it is necessary
to study the existing relationships among the services offered by one selected compo-
nent and the services required by the system. Sometimes, these relationships need the
use of adaptors in order to allow us to establish the correct correspondence among the
elements involved. Without these adaptors, the interoperability among these compo-
nents could be impossible. This paper presents the synthesis of the interaction patterns
obtained from UML sequence charts and their codification by means of cycling ori-
ented labeled graphs. This kind of patterns offers some innovations like the inclusion
of options like horizontal composition, coregions, gates and fragments. These options
will facilitate the tasks of systems verification and systems simulation. The results ob-
tained from these simulations, will be used to facilitate the creation of adaptors
among components that have difficulties to interoperate.

1 Introduction

The creation of a software system by means of recycling components reduces the cost and
duration of its development improving the software process. Nevertheless, combining com-
ponents is not a simple task. The composition of a system starting from components in-
volves the search and the selection of those providing the required services inside the sys-
tem. Apart from this, it is necessary to establish a syntactic verification allowing us to
prove the coherence between the syntax of these services and their requirements. In spite of
this, it is possible that new problems derived from integration arise [1] as a consequence of
incompatibilities among the integrated elements. Studying the compatibility of a compo-
nent inside a system requires testing the coherence of the behaviour of this component with
the environment in which this component is going to be integrated; that is, testing if both
interaction patterns are compatible. However the detection of incompatibilities among
components does not mean a candidate component is necessarily inadequate to be inte-
grated inside a system. Many situations only require the creation of adaptors in order to
facilitate the communication among components. This document explains the idea of using
interaction patterns for detecting incompatibilities among components, and in the event of

63

any incompatibility arising, proposing the use of these interaction patterns trying to build
adaptors among them.

The interaction patterns of a software component are the ordered sequence of events and
restrictions that describe its correct behaviour. There exist different approaches to model
and to verify these patterns, from the use of specific formal languages to several kinds of
formalism, such as state machines, Petri nets, process algebra, temporal logic, reuse con-
tracts and ontologies. But first of all, the representation of the interactions of a component
by means of any of these techniques hinders the intuitive understanding of the obtained
specifications. Secondly, these techniques are not integrated as one more task inside the
modelling of a system. Finally, many of them require the knowledge of complex specifica-
tion tools. One of the objectives of our work consists of obtaining the integration of pat-
terns as one additional task within the design of a system by using UML and without the
production of additional descriptions during the process of modelling. Sequence diagrams
will be used because they have some interesting characteristics. They are a graphical tool
that generates simple specifications. They are easy to understand and besides, they are
integrated inside a widely accepted modelling language: UML.

To obtain patterns, each one of the needed sequence charts is described for representing
interactions among the involved components of the system. Once this task is finished, the
projections of each component are obtained (interactions in which the component is in-
volved) and the resulting information is organized. This information is synthesized by
means of cycling oriented labeled graphs. Once the pattern of each component involved in
the system is obtained, model checking and simulation operations can be achieved, in order
to verify the system built. The possible deadlocks will be described by means of traces that
express the state of each one of the participants in the moment they were detected. This
feature facilitates the understanding of the situation that caused them. All this information
is used in the building of adaptors among components generating new sequences of interac-
tions that will successfully combine the execution of the components involved. To facilitate
this task, it is wise to use messages with synchronous notification. The use of synchronic
messages is useful for representing, in an unequivocal way, the order in which messages
follow inside a system, simplifying operations of pattern compatibility among different
components.

The difference among this work and other related involves the information coded inside
patterns. This work is focused on synthesizing the new functionalities described in MSC-
2000 and used in UML sequence charts. Options like horizontal composition, inline opera-
tions, coregions and gates, allow us to add to the patterns some information about critical
regions or parallelism, information that other patterns lack. This will offer new possibilities
in verification operation about the system built.

To present our work, this paper is structured into the following points: Section two ex-
plains the related works; in Section three, the interaction pattern syntax is shown; the fourth
Section presents an example; the fifth Section contains the conclusions of this paper and
finally, the consulted bibliography is listed.

2 Related Works
Currently, there exist several works allowing us to synthesise the operational behaviour of
one component, described inside a set of scenarios. This work is different to them in the
way they related the disperse behaviour among different scenarios and the synthesis ob-

64

tained. Thus [4] obtains UML state charts starting from sequence charts by means of arrays
of state variables. Also [5] obtains UML state charts starting from sequence charts, but
now, it requires the interaction with the user during the process of synthesis. [6] obtains
OMT states machines, by means of using conditions associated to messages. [4] synthesises
MSC and obtains states machines by using conditions labels. In order to relate the different
scenarios [8] uses HMSC. The synthesis algorithm creates labels at the beginning and at the
end of the life line of each participant. But these labels do not express the state of the com-
ponent and all of them are the same for the components of the same scenario. The work
introduced in this article, synthesises the information from UML sequence charts by means
of using state labels in the same way done by [4]. However, unlike the works commented
before, our proposal allows us to synthesise UML 2.0 options, similar to MSC-2000 ones,
like fragments (alternative, loop, critical, ...), horizontal composition, coregions and gates.
The inclusion of all of these options causes that during the process of synthesis, a cyclic
labeled oriented chart to be generated.

The charts obtained are composed by nodes that contain the information about system
variables (set “V”), the state of the transition in which the component is in this moment
(variable “ST”), and a series of internal variables (obtained during the synthesis of charts
fragments), that have positive integer values and describe the order (“ord”), the parallelism
(“par”) and the critical regions (“crit”). Besides, each edge of the chart can contain three
types of different information: conditions, events and actions. Conditions are used to repre-
sent the different options represented in the fragments of the sequence charts (“alt”, “opt”,
“break”, “loop”). Events represent the messages of the charts. Finally, actions are useful for
initialising and increasing the counters required to describe the iterations of the fragment
named “loop”.

These interaction patterns are methodologically used to achieve verification operations
during the creation and maintenance of systems based on components. Also, our proposal
allows components to be grouped in order to obtain interaction patterns adequate to groups.
In [9] several composition operations among interfaces are achieved. In order to do this,
some automata are created. These automata describe the correct sequence of events that
must to be invoked in each one of the interfaces. Also, they describe the way to achieve the
operations among these automata, including every service described inside these interfaces.
The proposal presented in this work, is focus on the composition of patterns among com-
ponent that interoperate, creating a new pattern that removes internal references among
grouped components. This feature will facilitate the different operations of integration and
will increase the granularity of reused elements.

As regards the obtaining of adapters, there exist works like [10,11,12] that synthesise
adapters automatically starting from the descriptions obtained from MSC and HMSC.
These adapters can be used later to check the properties of the system. The main differ-
ences with this works are based on the information coded inside the patterns. In our case,
this codification includes restrictions over the edges of the graphs, and information about
the system in the nodes. All these characteristic will allow us to increase model checking
operations about the system built.

3 Interaction patterns syntax
In this section the syntax of interaction patterns is going to be described in order to better
understand the example introduced in section four. Interaction patterns are extended states

65

machines, with labels placed in the edges and information placed in the nodes. Labels en-
able us to represent sending or reception messages, execution restrictions and counters. On
the other hand, each node consists of a tupla containing information about the state of the
described transition.

Definition 1. An interaction pattern is a graph in the way (V, E, I, Condition, Label, Ac-
tion, Initial_Node, Ending_Node_Set) such that:

• V is a set of nodes and E is the set of edges.
• I is a relation that associates to each edge e ∈ E two nodes <u,v>∈ V, named the

ends, such that u=origin(e) y v=destination(e).
• Condition: E → CondEdge is an injective function that associates one condition to

each edge of the graph, where CondEdge is the finite set of condition labels, that
are corresponding with the conditions produced in the fragments used for describ-
ing the interaction pattern of the software element. One condition cond ∈ Cond-
Edge can present null values if there does not exist any condition associated to
some edge of the graph.

• Label: E → LabelEdges is an injective function for label, where LabelEdges is the
finite set of labels that identify the set of messages that can be received or sent, in
what concerns the software element that is being described. One label labela ∈
LabelEdges, can present null values if there does not exist any message associated
to some edge of the graph.

• Action: E → ActEdges is an injective function that associates one action to each
edge of the graph, where ActEdges is the finite set of labels that are corresponding
to the counters produced in the fragments used for describing the interaction pro-
tocol of the software element. One action a ∈ ActEdges can present null values if
there does not exist any action associated to some edge of the graph.

• Initial_Node ∈ V is the initial node of the graph and Ending_Node_Set ⊂ V is the
set of ending nodes of the graph.

Definition 2. If GI is an interaction pattern, and if cond ∈ CondEdge is one condition dif-
ferent from empty, then cond is evaluated as a Boolean and must complete the following
syntax:

Expression ID | NAT

| Expression ’[’ Expression ’]’| ’(’ Expression ’)’
| Expression ’++’| ’++’ Expression | Expression ’--’
| ’--’ Expression| Expression AssignOp Expression
| UnaryOp Expression | Expression BinaryOp Expression
| Expression ’?’ | Expression ’!’| Expression ’.’ ID

UnaryOp ’-’ | ’!’ | ’not’
BinaryOp ’<’ | ’<=’ | ’==’ | ’!=’ | ’>=’ | ’>’ | ’+’ | ’-’| ’*’

| ’/’ | ’and’ | ’or’
AssignOp ’:=’ | ’+=’ | ’-=’ | ’*=’ | ’/=’

Definition 3. If GI is an interaction pattern, each label labela ∈ LabelEdges different
from empty label is composed by a pair < n, t >, where n is the name of the message (n ∈
N, where N is the finite set of system messages) and t describes the type of event (“!” for
representing sending or “?” for representing reception).

Definition 4. If GI is an interaction pattern and a ∈ Actions is an action, different from
empty action, then a must complete the syntax described in Definition 2.
66

Definition 5. If GI is an interaction pattern and v ∈ V is a node of the graph, then v is a
tupla in the way <par, ord, crit, st, variables> where par, ord y crit are positive integer
variables used for representing parallelism, sequences and critical regions; st is an string
variable, used for describing the state in which the component is, and variables is a set of
strings used for describing the variables used in the conditions and iterations represented in
the graph.

4 Example
In order to better understand our proposal, an example is going to be introduced. This ex-
ample tries to explain the functioning of a drink machine. To simplify the example (figure
1), this functioning is limited to two situations: “sell drink” and “machine maintenance”. In
them, three initial components have been identified: requests input board, drinks depot and
change purse with money collected. In the first situation “sell drinks”, once the request is
received, it is necessary to check if the requested drink is available; then, the collection is
produced (we suppose that exact price has been inserted) and the drink is delivered. The
second situation, “machine maintenance”, adds drinks to the depot and collects the money.
In this example, a simple sale has been represented, although the specification could have
been completed with other scenarios that describe other possible situations.

Figure 1. Sequence diagrams used for describing the operation of a drink machine.

sd maintenance

board purse depot

waiting ready waitp
initiate

locked

add-drinks

ok-add

init-purse
ok-purse

ok-init

ready waiting waitp

filling

 Alt drinks > 0

waiting

service

ready waitp
petition

check-drink

waiting ready

ok-pet
ok-give
give-drink

ok-charge

charge-drink
ok-drink

not-drink

no-pet

waitp

drinks = 0

charge

sd selling

board depot purse

67

As regards the modelling of component states involved, the board component is initially
in a “waiting” state and it only leaves this state when it receives a message for replacing the
machine, and then it changes to “locked” state. The Depot component starts with “ready”
state when it receives the drinks changes to “filling” state and when it serves a drink to
“service” state. Finally, the purse component is initially in “waitp” state and it only evolves
when it collects the money for a drink, the “charge” state.

Starting from the scenarios described in figure 1, it is possible to build the interaction pat-
terns of the components involved in the system (board, depot y purse) by completing the
syntax described in the previous section. To facilitate the simulations, a new interaction
pattern has been added to existing interaction patterns. It is the actor (customer) that exe-
cutes the inputs and receives the outputs of the system. Figure 2 represents the patterns
obtained. The representation of the information associated to each one of the nodes has
been avoided in them, to simplify the understanding of the figures.

Figure 2. Interaction patterns from the example drink machine.

Once the four state machines are obtained, the simulations of the system built and the de-
tection of the possible deadlocks can be achieved (in this case, UPPAAL tool has been
used). To provide the evidence of deadlocks and to create adaptors, it is possible to suppose
in the example that the component purse is replaced by another component purse2, whose
interaction pattern lacks the sending of “ok_purse!”. To facilitate this task, our proposal
allows us to group the different components. In this way, the analysis of incompatibilities
can be achieved by having on the one hand the interaction patterns of a set of components
and on the other hand the interaction pattern of the component to be integrated. In this case,
the simulation of the system would produce a deadlock and it would return as a result a
trace explaining the situation achieved. In figure 3 it can be observed that the component
all is locked waiting for the sending of the “ok_purse”.

This situation can be repaired by adding an adaptor between purse2 y board that monitors
the messages of both components and generates the correct sequence. This new component
can be included inside the system and can be designed in the same way as the rest of the
components of the system. In figure 4 the interaction pattern of the new component adapter
is represented. It can be observed that when the component adapter intercepts the messages

68

from the component board, it is redirected to the component purse2, and in order to avoid
the system’s locking, it sends the acceptance message “ok_purse”.

Figure 3. Interaction patterns of purse2 component, grouped components and trace with deadlock

produced.

In the proposal introduced, event names have been used in an implicit way in order to
synchronise the patterns simulations. This feature causes the necessity of renaming events
during the creation of adaptors, among the adaptor and some of the components in order to
avoid errors during the simulation.

Figure 4. Interaction pattern of component adapter between all and purse2 components.

5 Conclusions and future research.
In this paper, the synthesis of UML sequence charts has been exposed in order to obtain
adequate interaction patterns for each one of the components of a software system. To
achieve this synthesis options like horizontal composition, inline operations, coregions and
gates have been used. These options enrich the pattern information and facilitate the simu-
lation and model checking operations of a system. Also, these patterns have been used in
order to study the integration and replacement of software components and replacement.
For this, the idea of using the simulations from the interaction patterns has been proposed.
In this way, the creation of adaptors for removing the incompatibilities among interactions
from the components of the system is easier.

In our future research, we would like to complete this proposal with the inclusion of time
concept inside the model. We are working on time counters in order to complete these
cyclic directed labeled graphs by adjusting them to represent time restrictions obtained
from sequence charts.

References
1. C. Gacek, B. Boehm: Composing Components: How Does One Detect Potencial Architectural

Mismatches?. Position paper to the OMG-Darpa-MCC Workshop on Compositional Software. Ja-
nuary, 1998.

69

2. M.A. Pérez, A. Navasa, J.M. Murillo. Conversión de la Información obtenida a partir de diagramas
de secuencia de UML en grafos de comportamiento. Technical Report: TR-22/2004. Universidad
de Extremadura.

3. M.A. Perez, A. Navasa, J.M. Murillo, C.Canal. Desarrollo de Sistemas Basados en Componentes
Utilizando Diagramas de Secuencias. In Proceeding of the Workshop IDEAS 2005.

4. J. Whittle and J. Schumann: Generating Statechart Designs From Scenarios. Proceedings of
OOPSLA 2000 Workshop: Scenario based round-trip engineering, October 2000.

5. E. Mäkinen, T. Systä: MAS – An Interactive Synthesizer to Support Behavioral Modeling in UML.
In 23rd IEEE International Conference on Software Engineering (ICSE '01), (Toronto, 2001), 15-
24.

6. K. Koskimies, E. Mäkinen. Automatic Synthesis of State Machines from Trace Diagrams. Journal
Software—Practice and Experience, Vol. 24(7), 643–658 (July 1994).

7. I.Krüger, R. Grosu, P. Scholz, M. Broy. From MSCS to Statecharts. Proceedings of the Interna-
tional workshop on Distributed and parallel embedded systems. 1998.

8. S. Uchitel, J. Kramer, J. Magee: Synthesis of Behavioural Models from Scenarios. IEEE Transac-
tions on Software Engineering, 29 (2). 99-115. 2003.

9. L. Alfaro, T. Henzinger. Interface Automata. Proceedings of the Ninth Annual Symposium on
Foundations of Software Engineering (FSE), ACM Press, 2001, pp. 109-120.

10. P.Inverardi, M.Tivoli. Failure-free Connector Synthesis for Correct Components Assembly,
Proceedings of the Specification and Verification of Component-Based. September 1-2, 2003.
Helsinki, Finland

11. Massimo Tivoli and Marco Autili. SYNTHESIS : a tool for synthesizing correct and protocol-
enhanced adaptors. Journal L’Object edit. 2005.

70

A Three Level Framework for Adapting

Component-Based Systems

Nicolas Pessemier1, Olivier Barais1, Lionel Seinturier1, Thierry Coupaye2, and
Laurence Duchien1

1 INRIA Futurs, USTL-LIFL,Jacquard, Villeneuve d’Ascq, France
{pessemie, seinturi, barais, duchien}@lifl.fr

2 France Telecom R&D, France
thierry.coupaye@rd.francetelecom.com

Abstract. This paper deals with the issue of software adaptation. We
focus on Component-Based Software Development including Architec-
ture Description Languages, and clearly identify three levels of adapta-
tion. We argue that capturing functional and non-functional changes in
a system requires various types of adaptation tools working at different
granularities and times in the system lifecycle, with various actors.

1 Introduction

Adaptation has always been an important challenge for software engineering.
Systems have to be continuously revised to address new functional or non-
functional requirements, changing environment. The need for adaptation may
appear at any time in the software lifecycle: development, deployment, supervi-
sion and maintenance (evolutive, corrective). Changes that can be anticipated
at development and deployment time are referred to as static adaptation, and
changes applied at execution time without stopping the system, as dynamic
adaptation. Maintenance changes can be done statically or dynamically.

Researchers have come with various solutions to address the issue of adap-
tation. These include model transformations in Model Driven Engineering [1],
approaches based on reflection [2], adaptive agent platforms [3], object and
component-based approaches that propose open containers in EJB and CCM
models [4], component assembly reconfiguration [5, 6], adaptors for component
[7], and Aspect Oriented Programming techniques (AOP) [8, 9].

In this position paper, we propose a multi-level model that aims at captur-
ing static and dynamic changes in a Component-Based Software Development
(CBSD) and Architecture Description Languages (ADLs) context. We promote
the use of AOP techniques to enable the integration for both functional and non-
functional adaptation. Context-aware and auto-adaptive mechanisms are out of
the scope of this paper.

The paper is structured as follows. Section 2 identifies the different adaptation
levels, and describes the adaptation techniques currently available at each level.
Section 3 shows how our recent work integrating components and aspects, Fractal

71

Aspect Component (FAC) [10] addresses one of the levels identified in Section 2.
Section 4 explains how we envision a framework that captures all of these levels.
Finally, Section 5 gives conclusions and future work.

2 Three levels of adaptation

Numerous component models have emerged the last two decades, targeting ap-
plications, systems, middleware and operating systems. In this paper, we focus
on Component-Based Software Development (CBSD), which is concerned with
the assembly of highly reusable and configurable software components [11], in-
cluding Architecture Description Languages (ADLs) [12], which clarify and ease
the description of component assemblies.

This section identifies the entities that need to be adapted because of changes
in functional and non-functional requirements. In the CBSD and ADLs contexts,
one may want to adapt a component access points, the bindings between het-
erogeneous components, the composition of a composite component, or some
programs that represent component behavior. We identify three separate lev-
els of adaptation, each of them working at various granularities: architecture,
component and program levels of adaptation.

Architecture level adaptation A system architecture defines a plan that
clearly represents the system structure, indicating how components are bound
together, as well as the nesting relationship between components. Architecture
adaptation relies on reconfiguration and recomposition of the component assem-
bly: adding or replacing a component, inserting connectors between heteroge-
neous components, changing the component hierarchy, and so on.

By considering a software architecture description as a model, model trans-
formation approaches based on Model Driven Engineering (MDE) adapt the
architecture through successive transformations. For example, TranSAT is a
framework for adapting a software architecture to new concerns through trans-
formations [13].

Transformation is not the only adaptation mechanism. To deal with the as-
sembling of heterogeneous COTS components, connectors that adapt the in-
coming and outcoming component operations are generally used. For example,
Unicon proposes specific adaptors that are connectors, which mediate interac-
tions among components by specifying protocols [14].

Component level adaptation A component is a unit for the management
of configuration, security, faults, etc., i.e., a functional entity together with a
set of associated non-functional properties. These non-functional properties are
typically handled by so-called ”containers” in component models such as En-
terprise JavaBeans or the CORBA Component Model, or ”membranes” in the
Fractal component model which embody interception-based mechanisms such as
reflection or AOP.

72

Various techniques based on the interception of the original component be-
havior are employed to adapt components, such as K-Component [5], the open-
container approach [4]. The K-Component model relies on a specific adaptation
language (Adaptation Contract Description Language) and an adaptation man-
ager that is aware of any changes and can adapt the base system through struc-
tural reflection. The open-container approach enables new technical services to
be added to EJB and CCM containers.

Program level adaptation At this level, we consider programs as entities
encapsulated by components. Numerous techniques exist to perform program
adaptation, such as AOP [8, 9], reflection [2], program transformation [15], e.g.
Java byte-code transformations (e.g. ASM [16]).

3 Dynamic component adaptation with FAC

This section presents our solution to the dynamic component adaptation issue
with our most recent work, Fractal Aspect Component (FAC), which introduces
AOP concepts into the Fractal component model [6]. A previous paper [10]
presented the basic elements of the first version of FAC. This Section sums up its
features and discusses the issue of software adaptation with FAC. Our previous
work on JAC [9] and TranSAT [13] covers the program and architecture levels,
respectively.

The first subsection introduces the Fractal component model, then its exten-
sion FAC for AOP. Finally, we present how FAC addresses adaptation at the
component level described in Section 2.

3.1 Fractal

Fractal [6] is a general software component model with the following mean fea-
tures:

– dynamic components, interfaces and bindings: components are runtime en-
tities that do exist at runtime and can be manipulated as such for man-
agement purpose. Components communicate through bindings between in-
terfaces, which are the only access points to components. A binding is a
communication channel between a client interface and a server interface.

– hierarchical components: composite components contain recursively primi-
tive components at arbitrary levels to provide a uniform view of software
systems at various levels of abstraction.

– shared components: a (sub)component can be contained in several (super)
components,. This is very useful typically to model resources which are in-
trinsically shared.

– reflexive components: architectural introspection for system monitoring and
intercession for dynamic reconfiguration.

73

– openness: the model is defined as a set of concepts (component, interface,
binding, membrane, controller, etc.) embodied in an API. It typically pro-
poses some APIs to configure components assemblies by means of binding
(between client and server interfaces), containment and lifecyle (start, stop).
Controllers that are optional, can be specialized and extended at will, and
of course new controllers can be defined.

Interestingly here, a Fractal component is composed out of a membrane and
a content. The content is either a primitive component in an underlying pro-
gramming language or a set of components. The membrane embodies most of
the reflexive capabilities by means of controllers that can export or not control
interfaces. In Julia, a Java execution support for Fractal components, a mixin-
based mechanism is used to build controllers that are composed, if needed, with
interceptors to build membranes that control the encapsulated components. In
AOKell, another Java execution support for Fractal component under develop-
ment by the authors, (AspectJ) aspects are used to program membranes.

3.2 FAC

FAC is an extension of Fractal, which integrates the notion of aspects into the
Fractal model. It aims at capturing the crosscutting properties of a system. In
FAC, aspects are Fractal components, called Aspect Components, with a specific
server interface implementing the AOP Alliance API3.

Aspect Components are woven and unwoven at run-time. The process of
weaving is very similar to the process of binding a functional client interface
and a server interface in Fractal. We call a crosscutting binding the interaction
between a set of components and an aspect component. Crosscutting bindings
are defined by an API or at the ADL level. Pointcuts are defined through reg-
ular expressions when a crosscutting binding is defined. A pointcut selects the
components, interfaces and methods on which the aspect component will apply.
FAC allows structural and behavioral pointcuts as we will see in the following
subsection.

3.3 Runtime adaptation with FAC

In FAC adding a new behavior consists of writing the new behavior in an as-
pect component and defining where this new behavior applies. The way the new
behavior will be triggered can be expressed with structural or behavioral speci-
fications.

Structural elements, such as a method signature, a functional interface, or a
component, can be used as joinpoints in the system. Each required or provided
operation defined by a component can potentially be intercepted and augmented
with new features.
3 AOP Alliance http://sourceforge.net/projects/aopalliance is an open-source initia-

tive to define a common API for AOP frameworks. The API is implemented by
Spring and JAC [9].

74

FAC allows an aspect to be triggered on a specific sequence of external com-
ponent interactions. Each component interaction is captured by the aspect com-
ponent that will be triggered if the sequence of interactions matches. Cflows
in JAsCo [8], EAOP [17] and AspectJ can similary trigger aspects on proto-
cols. These approaches work at the program level, whereas FAC works at the
component level.

4 Towards an integration of the three levels

Our objective is to build a three level model (architecture, component, program),
which captures any functional and non-functional changes at any time in the
software lifecycle. In our vision, the model needs to address the following issues:

– who realizes the modifications: the architect, the programmer, the adminis-
trator,

– when are the modifications applied: static or dynamic adaptation,

Different actors are involved in a system lifecycle. Each actor needs to per-
form adaptation at the level he works with. For example, an architect would
perform architecture and component level adaptation; a programmer would per-
form program adaptation. The important point here is that each actor needs a
way to adapt the system at a step of the lifecycle. The three levels can fulfill
these needs. The issue of who will adapt the system when changes need to be
performed remains open.

The three levels need to capture both static and dynamic adaptation. Pre-
dictable changes can be defined through adaptation policies. If static adaptation
is important, unpredictable changes might appear during run-time. Currently
runtime changes are addressed by FAC at the component level.

Our objective is to extend FAC to the architecture and the program levels.
Previous works around TranSAT and JAC will inspire the extension.

5 Conclusions & future work

We have proposed a three-level model for adaptation in a component-based
context. We have shown that in order to capture any changes in a component
system, different granularities have to be considered.

The architecture is likely to evolve through transformations and reconfigu-
rations of components interactions and composition. Component interfaces fre-
quently need to be adapted to new requirements. Finally, when changes apply
to specific part of a program encapsluted into a component, only this part needs
to be updated or intercepted.

Our proposal uses AOP techniques at the three levels due to its ability to
ease the integration of crosscutting concerns.

75

Open issues For the moment, only the component level is fully integrated
into the Fractal component model. When assembling the three levels, we are
likely to run into consistency issues. The connection between each level is a true
challenge. For example, what happens to a previously adapted component when
the architecture is restructured.

The model allows various actors to add aspects at the three different levels.
The architect defines a set of transformation rules. The programmer indepen-
dently introduces aspects at the lower (program) level. The question of the ad-
ministrator remains undefined. More likely, he will have to deal with aspects at
the three levels.

The question of applying changes at design time or runtime is still open. For
example, the question of adapting architecture at run-time through transforma-
tions certainly requires precautions.

6 Acknowledgment

This work was partially funded by France Telecom under the external research
contract number 46 131 097.

References

1. OMG MDA specification. http://www.omg.org/mda/specs.htm.
2. P. Maes and D. Nardi, editors. Meta-Level Architectures and Reflection. Elsevier

Science Inc., New York, NY, USA, 1988.
3. P. Mathieu, JC. Routier, and Y. Secq. Principles for dynamic multi-agent organi-

zations. In Kazuhiro Kuwabara and Jaeho Lee, editors, PRIMA, volume 2413 of
Lecture Notes in Computer Science, Tokyo, Japan, August 2002. Springer.

4. A. Popovici, G. Alonso, and T. Gross. Spontaneous Container Services. In ecoop,
2003.

5. J. Dowling and V. Cahill. The k-component architecture meta-model for self-
adaptive software. In A. Yonezawa and S. Matsuoka, editors, Metalevel Architec-
tures and Separation of Crosscutting Concerns 3rd Int’l Conf. , LNCS 2192, pages
81–88. Springer-Verlag, September 2001.

6. E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J-B. Stefani. An open
component model and its support in Java. In Proceedings of the International
Symposium on Component-based Software Engineering, Edinburgh, Scotland, May
2004.

7. S. Becker and R. H. Reussner. The impact of software component adaptors on
quality of service properties. In Carlos Canal, Juan Manuel Murillo, and Pascal
Poizat, editors, Proceedings of the First International Workshop on Coordination
and Adaptation Techniques for Software Entities (WCAT 04), June 2004.

8. W. Vanderperren and D. Suvee. JAsCoAP: Adaptive programming for component-
based software engineering. In Karl Lieberherr, editor, 3rd International Confer-
ence on Aspect-Oriented Software Development (AOSD-2004). ACM Press, March
2004.

9. R. Pawlak, L. Seinturier, L. Duchien, G. Florin, F. Legond-Aubry, and L. Martelli.
JAC : An aspect-based distributed dynamic framework. Software Practise and
Experience (SPE), 34(12):1119–1148, October 2004.

76

10. N. Pessemier, L. Seinturier, and L. Duchien. Components, ADL & AOP: Towards a
common approach. In Workshop on Reflection, AOP and Meta-Data for Software
Evolution at ECOOP’04, June 2004.

11. C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., 2002.

12. N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. IEEE Transaction on Software Engi-
neering, 26(1):70–93, January 2000.

13. O. Barais, L. Duchien, and A-F. Le Meur. A framework to specify incremental
software architecture transformations. In 31st EUROMICRO CONFERENCE on
Software Engineering and Advanced Applications (SEAA). IEEE Computer Soci-
ety, September 2005 (to appear).

14. M. Shaw, R. DeLine, and G. Zelesnik. Abstractions and implementations forar-
chitectural connections. In ICCDS ’96: Proceedings of the 3rd International Con-
ference on Configurable Distributed Systems, page 2, Washington, DC, USA, 1996.
IEEE Computer Society.

15. E. Visser. A Survey of Rewritting Strategies in Program Transformation Sys-
tems. In Electronic Notes in Theoretical Computer Science, editor, first Workshop
on Reduction Strategies in Rewritting and Programming (WRS’2001), volume 57.
Elsevier Science, May 2001.

16. ASM web site. asm.objectweb.org.
17. R. Douence and M. Südholt. A model and a tool for event-based aspect-oriented

programming (EAOP). Technical Report 02/11/INFO, Ecole des Mines de Nantes,
2002.

77

AO approaches for Component Adaptation

Lidia Fuentes and Pablo Sánchez

Dpto. de Lenguajes y Ciencias de la Computación
University of Málaga, Málaga (Spain)

{lff,pablo}@lcc.uma.es

Abstract. CBSD has been an emergent development technology in the
last years, trying to make easier and faster the development of new appli-
cations by reusing prefabricated components. However, components not
always fit well, being necessary their adaptation. AOP has solved suc-
cessfully some of this problems. In this position paper, several AOP plat-
forms, which apply aspects to components, dealing with interoperability
issues, are described. A review of potential mismatches in component
interoperability is shown and, for each one AOP solutions are provided,
and contributions from previous platforms are commented briefly.

1 Introduction

Modern software development techniques have focused on increase software reusa-
bility specially the component technologies. Following the CBSD (Component-
based software development) approach [1] applications are developed by assem-
bling prefabricated reusable components, usually implemented by third-parties
and which are available in binary form. However, components do not always fit
well, making Software Adaptation [2] still an open issue.

Interoperability can be defined as the ability of two or more entities to com-
municate and cooperate despite differences in the implementation language, the
execution environment, or the model abstraction [3]. When two components can
not interoperate properly because of some mismatches, the construction of a
third entity, called adapter, able to solve the potential mismatches should be
incorporated as part of the application architecture. Several works treat how
deriving adapters automatically from component interfaces [4][5][6].

When an adapter is needed in order to communicate a component A with
a component B, neither component A nor B should know that they are be-
ing adapted. In this sense, AOP (Aspect-Oriented Programming) [7] has been
demonstrated to be a powerful tool for working with obliviousness [8]. In this
sense, an application could be understood as a collection of components commu-
nicating among them where adaptation code is introduced transparently adding
aspects to components.

Interoperability can be required at different levels, from little syntactical dif-
ferences to complex semantics ones. Several works have identified potential inter-
operability errors [9][10]. In this paper, the classification presented in [10], where
six potential mismatches are identified, is used as guideline. Section 2 describes

79

ReservID ReserveRoom(DBID db, RoomID room, DateTime start,DateTime
end)

throws RoomBlockedException;
void CancelReservation(DBID db, ReservID id);
--
void OpenDatabase(DBID db);
ReservID Reserve(ResourceID res, DateTime start, TimeSpan duration)

throws RoomBlockedException;
void Cancel(ResourceID res, DateTime start) throws NoReservationFound;
void CloseDatabase(DBID db);

Fig. 1. Provided (upper) and required (lower) interfaces of components to adapt

a set of platforms managing aspects and components and that makes some con-
tributions to the adaptation field. Each section from 3 to 6 covers one identified
mismatch, AOP solutions are shown and brief comments about solutions used
by the previously described platforms are added. Each mismatch is described
using the required and provided interfaces from the example of Figure 1. The in-
terfaces contain some methods to make and cancel room reservations in a hotel.
However, although playing the same role, both interfaces differ in some points,
as method names, number of arguments, sequence of method invocation, etc. At
last, At last, sections 8 and 9 present some conclusions and open issues

2 AO component platforms

Recently, several works have proposed to combine AOP and CBSD approaches
with success. Aspects are used to implement crosscutting-concerns that, in other
way, spread over several components, making more difficult application main-
tainability and evolution. Typical examples of aspects are security, transactions,
persistence,. . . An aspect basically executes a piece of code (advice) when a
condition (denoted by a pointcut) is satisfied during an application execution.
These execution points where the normal execution of an application can be
intercepted, to execute an advice, are called joinpoints. A pointcut is, usually, a
regular expression that is satisfied by a set of joinpoints. Each platform offers its
own set of joinpoints. When aspects are applied to components, common joint-
points are component creation/destruction, getter/setter interception, message
incoming/outcoming interception, event throwing,. . . Jointpoints should just re-
fer to the behaviour exposed by the component through its public interface,
following a non-invasive model, where internal component execution can not be
intercepted. Aspects, depending on each platform, are applied to all instances of
a component (deployed per class), or to each one (deployed per instance), and can
keep their states between executions (stateful aspects). In order to apply aspects
on the joinpoints satisfying the pointcuts, advice and application code must be
weaved. Weaving, in some languages and platforms, require modify source code,
but this approach is not suitable for components, which are usually only avail-
able on binary form. Weaving, in some platforms, could require modify source
code, which it is not suitable for components, which are usually only available

80

in binary form. Some platforms perform the weaving of components and aspects
statically at compile time, and others do it dynamically since aspects are ap-
plied at load-time or even at run-time. In addition, platforms providing dynamic
weaving may allow add and remove aspects at run-time (even modify the order
in which these aspects are executed). Applying AOP, an adapter can be easily
constructed detecting the points of an application execution where interoper-
ability errors succeed, and writing the adaptation code as an advice over those
point expressed by means of pointcuts. In this Section, some AO component plat-
forms are described. The criteria for selecting these platforms has been: (1) Be
able to apply aspects to components and (2) make contributions to component
adaptation area.

CAM/DAOP [11][12] performs components and aspects composition dy-
namically. Components can communicate using role names in a loosely couple
way. Aspects are applied at runtime, where pointcuts are mainly message in-
coming or outcoming, as well as events. The architecture of a DAOP applica-
tion is described using the architectural language DAOP-ADL [13], and it is
stored inside the platform, keeping up the architectural information until de-
ployment time. CAM/DAOP offers a special kind of aspect, the coordination
aspect thought to solve problems regarding component interoperability. This as-
pect can use many of the information provided by DAOP-ADL and available in
the platform at runtime.

PacoSuite [6] is a visual component composition environment. PacoSuite
introduces composition patterns as first class and reusable connectors between
components. Components are documented in order to describe their interac-
tions with other generic components, called environments, using a special kind
of MSC [14]. A composition pattern describe a set of roles performing a collabo-
ration. One component must fulfill a role in order to take part of a composition.
If interoperability mismatches between real components interfaces and roles ap-
pear but can be solved, glue-code is generated. PacoSuite introduces as well
the concept of composition adapter [15] to encapsulate crosscutting concerns
in a separable and reusable entity. If the composition adapter is suitable to be
introduced inside a composition, glue-code for the whole set is automatically
generated.

PROSE/MIDAS [16] implements the concept of spontaneous containers [17].
A spontaneous container adapts the container technology ideas to interoperate
with mobile computing, where services appear and disappear arbitrarily and
nodes to interoperate probably will not be known in advance. A MIDAS sce-
nario is as follows: A MIDAS community is composed by several nodes, fixed
or mobiles, offering several services. These services are offered under some con-
straints, such as clients are able to recover their states, communicate using en-
cryptation,. . . Each constraint is understood as an extension and implemented
by means of aspects. Each community has a special node, which detects the
arrival of a new node. Immediately after this node sends the required extensions
to the newcomer, which adds them to its context. When the node leaves the

81

community, the extensions are removed, being ready to join other community
accepting new extensions.

WSML [18] is a middleware layer for dynamic integration, selection, com-
position and client-side management of Web Services in client applications. Al-
though WSML manages web services we include it also, since web service com-
position deal with the same issues. All web service related code is taken out of
the client application and placed inside the WSML. Individual services can be
extended with several policies, implementing non-functional concerns like traf-
fic optimisation, security, . . . Client applications make request of services over a
virtual stub implementing a service type. This service type maps to one or sev-
eral real web-services, being WSML responsible for selection and management
of these services.

3 Signature mismatch

Signature mismatch has already been solved successfully in several ways. This
kind of adaptation implies reifiying messages in order to solve syntactical differ-
ences in method names, argument ordering and data conversion. Coming back
to the example of Figure 1, to make a reservation we have to translate the re-
quired method name from ReserveRoom to Reserve,and calculate the duration
argument, from the provided interface, by the difference between start and end
arguments, available on the required interface.

AOP can solve this errors obliviously. Most of AO component platforms are
able to intercept a message, and have access to message signature and arguments
values, being able to translate it and make all conversions that were needed. Al-
though there are other solutions offering obliviousness, (classical adapters are
able to redirect messages) they are not so clean or non-invasive as AOP, get-
ting some problems with component identity, cross-references, consistency man-
agement,. . . Broad information about problems with classical techniques can be
found in [19].

4 Method Specific Quality Mismatch

Component designers know what the component does (its functionality) but
they do not know either the users or the application where a component will be
used. So, it is necessary to clearly separate between the functional part of the
components and other requirements such as synchronization, distribution, real
time,. . . For example, a maximum response time can be claimed over Reserve
method in order to support multiple concurrent requests.

AOP has been proved as a very clean way of adding extra-functional proper-
ties, that in other way spread over multiple components, making more complex
its design. AOP allows designers to focus on business logic of components, adding
extra-functional requirements by means of aspects. These aspects can be coded
in a reusable way, encapsulating its code into an advice, and making the binding
between pointcuts, advice, deployment model, . . . using an external configuration

82

file, usually an XML file. So, for Reserve method supporting multiple request,
load-balancing and replication aspects could be added.

PacoSuite introduces composition adapters, as a way to modify interaction
between components in order to add extra-behaviour. PacoSuite authors have
used them to introduce time checking constraints over component methods, in-
side a previously designed component application. In WSML non-functional be-
haviour, resource and policies management are added to composition of web
services by means of aspects. CAM/DAOP and PROSE/MIDAS can intercept
individual component methods call or reception, adding new behaviour inside
aspects.

5 Protocol Mismatch

The next class of interoperability errors can arise on a dynamic view. A com-
ponent offering an interface or service, has a specific ordering for calling its
methods. The ordering between the messages accepted by a component and sent
by a client must be the same. For example, a call to OpenDatabase should be
made by the client component before invoking Reserve method. However, if it
existed, and adapter could be automatically constructed[4]

AOP platforms are not still taking in account this kind of error. Solving
protocol mismatching involves extend interfaces in order to provide information
about its behaviour. If an adapter could be constructed, this could be easily
implemented using a stateful aspect, which would be applied per instance to
a component and could keep and modify its state in function of in/outcoming
messages to/from components. With this approach, both components are not
knowing that are being adapted. This stateful aspects can be understood and
managed like PROSE/MIDAS extensions.

PacoSuite solve protocol interoperability problems adding MSC’s in order
to describe individual component interactions. The interactions of compositions
are described later, and adapters are derived automatically to adapt components
to its role in a composition pattern. In WSML an intermediate layer between
the requested and the provided interface is added. The client make requests
over the required interface, that would be considered as a service type, which
would be mapped to the right requests to the provided interface, or composition
of provided interfaces. Therefore, potential protocol mismatches can be solved
transparently hidden the adaption in a intermediate layer, which is responsible
of dealing with all adaptation details.

6 Domain Constraints

This kind of mismatch are related with the domain where an application is exe-
cuted, and are issues not directly related to the functionality of the components
but to additional specific constraints of the application domain. For example, a
business company could required all its communications being signed in a special
way or agreed to its own protocol.

83

This kind of mismatch is close to covered in Section 4. The solution is simi-
lar to the proposed there, but generalized to the whole component, implying in
many cases the use of stateful aspects. Prose/MIDAS is designed to accept com-
ponents arriving to community with some restrictions, being these restrictions
automatically injected inside components by the community.

7 Mismatches not solved

However, there are some mismatches where AOP can not still provide a clean
solution, and probably there will not be any adequate solution in a near future.

7.1 Interface Specific Quality Mismatch

In opinion of [10], interfaces from Figure 1 were designed with a different reuse
idea in developer’s mind, and to improve its reusability additional methods
Open/CloseDatabase were added to one of them. An interface design influ-
ences in reusability and maintainability. This field seems closer to semantics of
components and good practices in interface design. In this sense, AOP can help
reducing component logic to its business logic, adding extra-functional proper-
ties later, avoiding that they polute interfaces. However, there is not an optimal
solution yet.

7.2 Domain Objects

This mismatch is produced by a different understanding of the underlying do-
main. For example, Resource concern can mean more than a hotel room, for
example a conference room, which could support several reservations during a
day. This kind of adaptation is more complex than previous ones, and benefits of
AOP are not so clear as before. However, when an adapter can be derived, this
could be implemented as an aspect, or set of aspects, performing conversions,
maybe semantic ones, in order to preserve the underlaying domain model.

8 Conclusions

In this paper, some AO component platforms has been described and potential
mismatches has been outlined, following the classification exposed in [10]. By
each potential mismatch, how AOP can help to deal with it, is commented, and
some references to platforms suitable to solve it are added.

AOP has important advantages to implement adapters: (1) AOP offers obliv-
iousness, so components can communicate between them without any knowledge
in the way they are being adapted. Obliviousness can be achieved by several other
mechanisms, but, in authors’ opinion, AOP offers a more clean and non-invasive
solution. One of the advantages of AOP approach to component adaptation is
that component identity is preserved: the client component refers directly to

84

the server component, as any mismatch were not taking place. A broad discus-
sion about problems with classical techniques, as design patterns like wrapper,
decorator and role objects is shown in [19]. (2) AOP is a lightweight method
of implementing adapters (3) Non-functional behaviour can be reused, so fit-
ting components could be reduced to select the right components and, later, the
adequate aspects for the desired extra-behaviour. (4) Most advanced platforms
allow adding and removing of aspects at runtime, making them very suitable for
mobile computing, open systems, pervasive services, etc.

AOP could seem very similar to container technology, but there are some
important differences: (1) In container technology, services offered are not man-
aged homogeneously; (2) available services are not modifiable or extensible; (3)
the set of available services is fixed and provided by the platform, (4) developers
can not add new services.

9 Open issues

There has been a lot of research about AOP since it appeared. Many fields have
tried to get important benefits using this approach, including CBSD. However,
there are some open issues where several solutions are still under research.

Some mistmaches could not be properly solved using AOP, but it does not
mean AOP is not able to solve that kind of problems. These problems are hard,
and maybe could not have a general solution. For example, misunderstanding
of domain objects could not solved using AOP. In Section 7.2, an example with
room concern was provided. In that example, a room could be a place where
you sleep, or a place where you attend a conference. Ontologies could help to
solve this kind of problems, offering the way to choose the right components.
However, components could be adapted, in order to convert a conference room
in a sleeping room, allowing reusability, but this kind of adaptation could be, in
some cases, harmful. However, where adaptation were possible, AOP is a good
way to implement it.

Another interesting issue is that several aspects can be applied to the same
component on the same joinpoint. This arise an interesting question. How the
different aspects influence over each others? In case we consider aspects as black
box entities like components, how aspects interdependencies could be managed?
should we allow aspects to have direct references between them ? An interesting
reference about this topic is [20]

10 Acknowledgements

This work is supported by European Commission grant IST-2-004349: Euro-
pean Network of Excellence on Aspect-Oriented Software Development (AOSD-
Europe), 2004-2008.

85

References

1. Szyperski, C.: Component Software. Beyond Object-Oriented Programming. 2 edn.
Addison-Wesley / ACM Press (2002)

2. Yellin, D.M., Strom, R.E.: Protocol specification and component adaptors. ACM
Transactions on Programming Languages and Systems 19(2) (1997)

3. Wegner, P.: Interoperability. ACM Comp. Surveys 28(1) (1996) 285–287
4. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.

Journal of Systems and Software 74(1) (2005) 45–54
5. Inverardi, P., Tivoli, M.: Automatic synthesis of deadlock free connectors for

COM/DCOM applications. In: ESEC/FSE2001, ACM Press (2001)
6. Vanderperren, W., Wydaeghe, B.: Towards a new component composition process.

In: ECBS 2001 Int Conf. Washington, USA. (2001)
7. Aspect-Oriented Software Development web site. (http://www.aosd.net)
8. Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and

obliviousness. In Filman, R.E., Elrad, T., Clarke, S., Akşit, M., eds.: Aspect-
Oriented Software Development. Addison-Wesley (2005) 21–35

9. Vallecillo, A., Hernndez, J., Troya, J.: Component interoperability. Technical Re-
port Technical Report ITI-2000-37, Dept. Lenguajes y Ciencias de la Computación,
University of Málaga (2000)

10. Becker, S., Overhage, S., Reussner, R.: Classifying software component interoper-
ability errors to support component adaption. In: CBSE 2004, Edinburgh (UK).
(2004) 68–83

11. Pinto, M.: CAM/DAOP: Component and Aspect Based Model and Platform, PhD
thesis. Dpto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga
(2004) Available only in Spanish.

12. Pinto, M., Fuentes, L., Troya, J.M.: A dynamic component and aspect platform.
(The Computer Journal) Accepted for publication.

13. Pinto, M., Fuentes, L., Troya, J.M.: DAOP-ADL: An Architecture Description
Language for Dynamic Component and Aspect-Based Development. In: GPCE,
(Erfurt, Germany)

14. ITU-TS: ITU-TS recommendation z.120: Message sequence chart (msc) (1993)
15. Vanderperren, W.: Localizing crosscutting concerns in visual component based

development. In: SERP, Las Vegas, USA. (2002)
16. Popovici, A., Frei, A., Alonso, G.: A proactive middleware platform for mobile

computing. In: 4th ACM/IFIP/USENIX International Middleware Conference,
Rio de Janeiro, Brazil (2003)

17. Popovici, A., Alonso, G., Gross, T.: Spontaneous container services. In: ECOOP,
Darmstadt, Germany (2003)

18. Verheecke, B., Cibrn, M.A., Vanderperren, W., Suvee, D., Jonckers, V.: AOP
for dynamic configuration and management of web services in client-applications.
JWSR 1(3) (2004)

19. Truyen, E.: A critical analysis of traditional object-based composition. In: Dy-
namic and Context-Sensitive Composition in Distributed Systems, PhD thesis.
K.U.Leuven, Belgium (2004)

20. Douence, R., Fradet, P., Südholt, M.: A framework for the detection and resolution
of aspect interactions. In: GPCE’02. (2002)

86

Coordination Languages: Back to the Future
with Linda

George Wells

Department of Computer Science, Rhodes University,
Grahamstown, 6140, South Africa

G.Wells@ru.ac.za

Abstract. The original Linda model of coordination has always been
attractive due primarily to its simplicity, but also due to the model’s
other strong features of orthogonality, and the spatial- and temporal-
decoupling of concurrent processes. Recently there has been a resurgence
of interest in the Linda coordination model, particularly in the Java com-
munity. We believe that the simplicity of this model still has much to
offer, but that there are still challenges in overcoming the performance
issues inherent in the Linda approach, and extending the range of appli-
cations to which it is suited. Our prior work has focused on mechanisms
for generalising the input mechanisms in the Linda model, over a range
of different implementation strategies. We believe that similar optimi-
sations may be applicable to other aspects of the model, especially in
the context of middleware support for components utilising web-services.
The outcome of such improvements would be to provide a simple, but
highly effective coordination language, that is applicable to a wide range
of different application areas.

1 Introduction

This paper is based on more than a decade of experience with the Linda1 model,
and a number of projects, both developing and using Linda-like systems. This
introductory section briefly describes the Linda programming model, outlines the
history of Linda, and summarises our experience. The second section summarises
some of the developments in this area in recent years. This is followed by a more
detailed presentation of our eLinda system, and particularly the development of
flexible matching mechanisms for input operations. This leads into a discussion
of the open issues in this field.

1.1 The Linda Programming Model

The Linda programming model has a highly desirable simplicity for writing par-
allel or distributed applications. As a coordination language it is responsible
solely for the coordination and communication requirements of an application,
1 Linda is a registered trademark of Scientific Computing Associates.

87

relying on a host language (e.g. C, C#, or Java) for expressing the computa-
tional requirements of the application (this aspect is discussed in more detail in
Section 1.2 below).

The Linda model comprises a conceptually shared memory store (called tuple
space) in which data is stored as records with typed fields (called tuples). The
tuple space is accessed using five simple operations2:

out Outputs a tuple from a process into the tuple space
in Removes a tuple from the tuple space and returns it to a process, blocking

if a suitable tuple cannot be found
rd Returns a copy of a tuple from the tuple space to a process, blocking if a

suitable tuple cannot be found
inp Non-blocking form of in — returns an indication of failure, rather than

blocking if no suitable tuple can be found
rdp Non-blocking form of rd

The input operations specify the tuple to be retrieved from the tuple space
using a form of associative addressing in which some of the fields in the tuple
(called an antituple, or template, in this context) have their values defined. These
are used to find a tuple with matching values for those fields. The remainder of
the fields in the antituple are variables which are bound to the values in the
retrieved tuple by the input operation (these fields are sometimes referred to
as wildcards). In this way, information is transferred between two (or more)
processes.

Fig. 1. A Simple One-to-One Communication Pattern

A simple one-to-one message communication between two processes can be
expressed using a combination of out and in as shown in Fig. 1. In this case
("point", 12, 67) is the tuple being deposited in the tuple space by Process 1.
The antituple, ("point", ?x, ?y), consists of one defined field (i.e. "point"),
which will be used to locate a matching tuple, and two wildcard fields, denoted
by a leading ?. The variables x and y will be bound to the values 12 and 67

2 A sixth operation, eval, used to create an active tuple, was proposed in the original
Linda model as a process creation mechanism, but can easily be synthesized from
the other operations, with some support from the compiler and runtime system, and
is not present in any of the commercial Java implementations of the Linda model.

88

respectively, when the input operation succeeds, as shown in the diagram. If
more than one tuple in the tuple space is a match for an antituple, then any one
of the matching tuples may be returned by the input operations.

Other forms of communication (such as one-to-many broadcast operations,
many-to-one aggregation operations, etc.) and synchronization (e.g. semaphores,
barrier synchronization operations, etc.) are easily synthesized from the five basic
operations of the Linda model. Further details of the Linda programming model
can be found in [1].

1.2 The Past

Linda was originally developed at Yale University by David Gelernter and his
colleagues in the mid-1980’s[2]. This novel approach to the coordination and com-
munication between concurrent processes spawned many other research projects
(see, for example, [3, 4]). The research at Yale also led to the establishment of a
commercial company (Scientific Computing Associates) to develop and exploit
these ideas[5].

Coordination Linda was the first coordination language, and the term coor-
dination language appears to have been used for the first time in Gelernter and
Carriero’s 1992 paper “Coordination Languages and Their Significance”[6]:

“We introduced this term [i.e. coordination language] to designate the
linguistic embodiment of a coordination model. The issue is not mere
nomenclature. Our intention is to identify Linda and systems in its class
as complete languages in their own rights, not mere extensions to some
existing base language. Complete language means a complete coordina-
tion language of course, the embodiment of a comprehensive coordination
model.”[6, p. 99].

In this paper they draw a distinction between the computation model, used
to express the computational requirements of an algorithm (described in the
previous section as the host language), and the coordination model used to ex-
press the communication and synchronisation requirements. They point out that
these two aspects of a system’s construction may be embodied in a single lan-
guage (and much of their discussion is focused on refuting comments espousing
this approach[7]), or may be embodied in two separate, specialised languages —
their preferred approach.

Advantages of Coordination Languages This paper also gives a good expo-
sition of what the originators of Linda perceived as the unique strengths of their
approach. In essence, these are orthogonality and generality. They go to some
lengths to defend the position that computation and coordination are orthogonal
activities, and best supported by different languages. With respect to generality,
they suggest that the concept of a general-purpose coordination language arises

89

from the principle of orthogonality, and the comparison with general-purpose
computation languages. This separation has advantages of portability (in the
sense that a “Linda programmer” can adapt his/her knowledge of coordination
and concurrent programming to new computation languages easily), and support
for heterogeneity, which arises from portability:

“we make it easier . . . to switch base languages, simplify the job of teach-
ing parallelism, and allow implementation and tool-building investment
to be focused on a single coordination model”[6, p. 101].

In the case of coordination, they define generality as the ability to cover
the entire spectrum of concurrent activities: from multi-threaded applications
executing on a single processor, through tightly-coupled, fine-grained parallel
processing applications, to loosely-coupled, coarse-grained distributed applica-
tions. They cite the advantages of conceptual economy (or simplicity), flexibility
and “intellectual focus” for the generality in a coordination language. In support
of flexibility, they present a real example of a complex system, and then ask the
following question:

“Why should we accept three toolboxes, one for parallel applications
(say, message passing), one for uniprocessor concurrency (for example,
shared memory with locks), and one for trans-network communication
(say, RPC), when logically Linda works well in all three cases?”[6, p.
104].

In summary then, their article is an impassioned plea for a simple, flexible,
orthogonal approach to the construction of systems for a wide range of problems
requiring concurrency at many different levels, and a presentation of Linda as a
solution to this problem.

Adaptive Parallelism and Reuse Due to the temporal- and spatial-decoupl-
ing of communicating processes in the Linda model, it is an attractive platform
for adaptive systems, where processing nodes may come and go during the life-
time of some system. The Yale Linda group did considerable work on this as-
pect, developing a Linda-based system for adaptive parallelism called Piranha[8,
9]. This was also produced as a commercial product by Scientific Computing
Associates.

The decoupling of processes coordinated through a Linda tuple space also
supports reuse, as a common tuple structure is all that is required to provide
effective communication between components in a parallel or distributed process-
ing system. If data-type conversions are handled by the Linda system, then the
possibility of constructing heterogeneous processing systems becomes possible
too.

1.3 Linda Today

After a great deal of initial enthusiasm for the Linda concurrency model, interest
in this approach waned during the mid-1990’s. However, in the late 1990’s there

90

was a resurgence of interest as a number of companies began to develop com-
mercial implementations of Linda in Java. Among these was Sun Microsystems,
which developed the JavaSpaces specification[10–12] as a component of the Jini
system[13]. This specification has been adopted by a number of other companies,
including GigaSpaces Technologies and Intamission, with their products, Giga-
Spaces[14] and Autevospaces[15], respectively. In addition, Scientific Computing
Associates have developed a Java implementation of Linda called JParadise[16].

Sun’s JavaSpaces specification provides for a Linda-like tuple space for data
storage. There are a number of extensions present in JavaSpaces, in addition
to the basic input and output operations, which have different names to the
original Linda operations, but provide essentially the same functionality. These
extensions are mainly focused on improving support for commercial applications,
and include transaction support, leases for tuples (essentially a time-out, or
expiration mechanism) and asynchronous event notification.

Independently, IBM developed a Linda system in Java, called TSpaces[17,
18]. This is similar to JavaSpaces in that it offers many of the same features for
the support of commercial applications, but the implementation is considerably
simpler and easier to use. The basic input/output operations have also been
extended to include support for advanced matching (using named “index” fields,
AND and OR operations), multiple-tuple operations and XML content.

In addition to these commercial developments, there are numerous recent and
current research projects investigating various aspects of the Linda programming
model, or using it as a platform for research in concurrent programming. A small
selection of these projects may be found in the reference list[19–24].

1.4 Our Experience

Interest in the Linda model began at Rhodes University around 1990[25], with
the local development of a Linda implementation, called Rhoda, for a Transputer
cluster[26]. This was followed by the development of a platform for adaptive
parallelism called Remora[27, 28], which was modeled on Yale’s Piranha system.

In the mid-1990’s, the author began the development of an extended Linda
system, again targeting Transputer clusters, and with parallel rendering of photo-
realistic computer graphics as an application area[29, 30]. To support this re-
search, an initial proof-of-concept system was developed using the Parallel Vir-
tual Machine (PVM)[31]. Around 1997, it became apparent that the Transputer
would no longer be developed or supported by the manufacturers, and a change of
focus was required. Accordingly, the concepts that were embedded in the initial
proposals were incorporated into a Linda-like system developed in Java[32–37]
with additional support for multimedia applications. This system, called eLin-
da, was the central focus of the author’s Ph.D. thesis[38]. The eLinda system is
described in more detail below, in Section 2.

Recent work has also involved the use of the commercially-developed TSpaces
system for a bioinformatics data-mining application[39, 40]. This research pro-
duced some very pleasing performance results, and quite coincidentally demon-
strated some of the strengths alluded to by Gelernter and Carriero in the paper

91

referred to in Section 1.2[6], such as the use of Linda for simplifying quite differ-
ent aspects of the system (in this case, both distributed network communication
and single-processor interprocess communication).

2 The eLinda Project

The initial goal of the eLinda research project was to investigate techniques for
efficient communication in fully-distributed tuple space models (i.e. where any
tuple can be stored on any processing node, with the possibility of duplication).
This involved adding a new output operation to the Linda model, wr, which is
intended for use with the rd input operation to suggest that broadcast com-
munication is required. A secondary goal was to explore efficient support for
multimedia communication, built upon the Java Media Framework (JMF)[41].
A later goal, which became the major focus of the project, was to generalise the
associative matching technique used for the input operations in Linda. This led
to the development of the Programmable Matching Engine (PME).

2.1 The Programmable Matching Engine

One of the weaknesses of the original Linda model is the simple associative
matching technique that is used to locate suitable tuples for the input operations.
This relies on exact matching (type and value) of any specified fields, and type-
matching for the undefined fields (often called wildcard, or formal fields). This
makes some simple input operations difficult to express efficiently. For example,
if a tuple is required with the minimum value of a particular field, then the
application must retrieve all matching fields (using inp), sort through these to
find the one with the minimum value, and then return the remaining tuples to
the tuple space. While this procedure is performed, other processes cannot access
the tuples, potentially restricting the degree of parallelism that can be exploited.

The Programmable Matching Engine allows the programmer of an applica-
tion to specify a custom matcher that is used internally during the retrieval
of tuples from the tuple space. This can easily implement operations such as
retrieving the minimum value. When the tuple space is fully-distributed, the
PME allows the matching to be distributed. In the example above, the segments
of tuple space held on each separate processor would be searched for the local
minima and these returned to the processing node which originated the input
operation. The matcher on this node is then responsible for selecting the global
minimum from the resulting set of tuples.

There are still situations where a “global view” of the tuples in tuple space
is required. A simple example of this is where the tuple with the median value
of some field is required. In this case, a single matcher requires the values of the
field in all the tuples in order to select the matching tuple. However, the PME
still provides improved efficiency, as it is possible for a customised matcher to
gather only the specified field values in order to determine the median value
and then request this tuple from the processing node that holds it. These field

92

values can also be communicated using a single network message. Both of these
optimisations provide for more efficient network usage than if the application
were to handle the problem explicitly without using the PME.

The development of new, customised matchers is supported by a simple li-
brary of support functions, providing developers with the ability to interact
directly with the tuple space, and communicate with distributed components
of the tuple space. The matchers themselves are written to conform to a simple
Java interface, which requires only two methods to be written: the first to search
the tuples currently in tuple space, and the second to be used when an input
operation is blocked, as new tuples are added to the tuple space (this may simply
do nothing if blocking input operations are not supported by the matcher).

2.2 Applications of eLinda

The benefits of the PME have been demonstrated by applying it to the problem
of parsing graphical languages[42]. For this application four new matchers were
developed. Two of these were general purpose, allowing for the retrieval of tuples
where a field matches one of a set of possible values, and for retrieving a list of
tuples that match some criterion, respectively. The other two were specific to
the application, allowing for the input of tuples describing graphical components
of the language that meet specified criteria (e.g. containment in a specified two-
dimensional area). The Java classes implementing these matchers range in size
from 67 to 130 lines of heavily-commented code, which, while not an accurate
reflection of complexity, indicates the relative simplicity of using the PME.

Another application that was developed was a simple video-on-demand sys-
tem[42]. A client program could search for a video, potentially retrieving a num-
ber of matching tuples from a number of suppliers. As implemented, a customised
matcher allowed the retrieval of a video with the minimum value of the cost field.
More complex matchers that took into account factors such as quality-of-service,
available bandwidth, etc. could also be provided for such an application. The ex-
perience gained in developing this application suggested that the Linda model
may be useful in supporting service-oriented architectures, and, more specifically,
“web services” (see Section 3.1).

3 Open Issues

The underlying “open issue” that has motivated our previous research, and much
of the other research on Linda, is the performance question: can a coordination
model with a high level of abstraction provide reasonable efficiency for practical
applications? Our experience, and the recent interest in Linda systems in Java,
suggest that the Linda model is coming into favour, specifically as a mechanism
for distributed applications running on general-purpose networks of worksta-
tions.

93

3.1 Linda for Heterogeneous Web Services

Our testing of eLinda, TSpaces, JavaSpaces and GigaSpaces revealed that the
performance of these systems is not ideal for relatively fine-grained parallel-
processing applications, such as parallel ray-tracing[33, 36]. Focusing on distrib-
uted applications, and the current interest in web-services (or, more generally,
service-oriented architectures) for distributed processing, suggests that the im-
plementation of the Linda model as middleware for web-services would be a use-
ful avenue of exploration. The ease-of-use of the Linda model and the spatial-
and temporal-decoupling that it provides would be extremely beneficial as a mid-
dleware layer for applications based on web services. This appears to be largely
unexplored territory at present, except for the work of Lucchi and Zavattaro[23],
who focus specifically on the security of a tuple space web-service.

Our intention is to reimplement the eLinda system as an XML-based web
service. This raises a number of questions, as yet unanswered, as to the best
approach to take. The web-services community appears to be divided between
the use of RPC models, based on protocols and standards such as SOAP and
WSDL, and the direct use of XML and the basic World Wide Web protocols
and standards (an approach referred to as Representational State Transfer, or
REST)[43, 44]. The relative simplicity of the REST approach is appealing, but
there are questions around issues such as security and reliability, which require
investigation before implementation commences. The opportunity will also be
taken to redesign some of the fundamental features of the eLinda system, which
should also produce some general performance improvements.

As a central issue in redeveloping the eLinda system as middleware for web
services, we plan to investigate language interoperability issues, specifically com-
paring the use of C# and Java for client and server implementations, and het-
erogeneous system configurations, but not limited to these two languages. This
will support an investigation of the interoperability issues between applications
developed in different programming languages making use of a common Linda
tuple space service, and will also permit comparative performance studies. In-
teroperability of data-types expressed in XML is a thorny issue and we expect
to face considerable difficulty in this regard. However, we believe that the Linda
web-service approach has great promise for supporting component reuse and
simplifying the development of complex systems composed of web-services. In
particular, Linda’s spatial decoupling provides a platform for the simplification
of problems such as service discovery.

If the language interoperability problems can be solved, then we will poten-
tially have a very useful mechanism in place to allow for heterogeneous system
components to be combined in very flexible ways. The strongly-decoupled nature
of Linda may be particularly useful for solving problems involved in adaptation.
It is hoped that this aspect can be explored further during the workshop discus-
sions.

94

3.2 Improved Flexibility

Comparison of the Programmable Matching Engine with related features of other
extended Linda dialects (particularly TSpaces[17, 45] and I-Tuples[46]) suggests
that there may be some benefit to be had from applying similar techniques to
output or update operations[38]. The extended update operations are intended
to optimise the common sequence of retrieving a tuple, modifying a field’s value,
then returning the tuple to tuple space. For simple operations, such as incre-
menting a numeric field, there may be considerable efficiency gains to be had
if the operation is carried out by the server, directly in tuple space, minimising
the network communication required. Extended output operations are typically
quite simple (e.g. TSpaces’ multiWrite command), but may provide useful re-
ductions in the load imposed on the network.

The Programmable Matching Engine in eLinda was developed specifically
as a mechanism for increasing the flexibility of the matching process used for
input operations. Despite this, it can be used, albeit awkwardly, to emulate the
update and extended output operations of these other Linda systems. Providing
a better design for the handling of output or update operations would be a useful
extension to the demonstrated benefits provided by the PME.

Our plan is to implement new update operations analogous to the existing
flexible input operations provided by the eLinda PME. This will be followed by
application development and testing to assess the benefits of these new oper-
ations. Extended, flexible output operations will also be considered, but these
should be relatively simple to implement and test. These extensions will be com-
pared, both quantitatively and qualitatively, with the existing commercial and
research systems that have adopted similar extensions. Formal modeling of the
PME and these new extensions would also be extremely desirable. As always,
the goal will be to assess whether the enhancements can improve the flexibility
and performance of Linda systems, while preserving the fundamental simplicity
of the model.

The wide-spread commercial development of Linda implementations in Java
indicates that there is still much interest in the original Linda model of coordi-
nation. However, research (our own, and that of others) also indicates that there
is considerable scope for improving both the performance and flexibility of use
of the Linda programming model. While our prior research has addressed some
specific issues in these areas, much remains to be done.

In summary, our hypothesis is that there is considerable scope for the adop-
tion of the original Linda coordination model, with some extensions, as a simple,
flexible coordination mechanism for distributed applications running on general-
purpose networks of workstations. In particular, we envisage a place for Linda
as middleware for heterogeneous, spatially-decoupled components executing in a
web-services environment. This hypothesis needs to be tested by in-depth quan-
titative and qualitative investigation of the implementation and use of a Linda
system in such an environment.

95

Acknowledgments

The eLinda research project is supported by the National Research Foundation
(NRF) of South Africa, and by the Distributed Multimedia Centre of Excellence
in the Department of Computer Science at Rhodes University, with funding from
Telkom SA, Business Connexion, Comverse, Verso Technologies and THRIP. The
author particularly wishes to thank Alan Chalmers of the University of Bristol,
and Peter Clayton for their valuable advice and support over many years, and
Peter Wentworth for the many thought-provoking discussions on these topics.

References

1. Carriero, N., Gelernter, D.: How to Write Parallel Programs: A First Course. The
MIT Press (1990)

2. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7 (1985) 80–112

3. Banâtre, J., Métayer, D.L., eds.: Research Directions in High-Level Parallel Pro-
gramming Languages. Volume 574 of Lecture Notes in Computer Science. Springer-
Verlag (1992)

4. Wilson, G.: Linda-like systems and their implementation. Technical Report 91-13,
Edinburgh Parallel Computing Centre (1991)

5. Scientific Computing Associates: Home page. URL: http://-

www.lindaspaces.com/index.html (2004)
6. Gelernter, D., Carriero, N.: Coordination languages and their significance. Comm.

ACM 35 (1992) 97–107
7. Kahn, K., Miller, M.: Technical correspondence. Comm. ACM 32 (1989) 1253–

1255
8. Carriero, N., Gelernter, D., Kaminsky, D., Westbrook, J.: Adaptive parallelism

with Piranha. Technical Report 954, Yale University (1993)
9. Kaminsky, D.: Adaptive Parallelism with Piranha. PhD thesis, Yale University

(1994)
10. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns, and Practice.

Addison-Wesley (1999)
11. Sun Microsystems: JavaSpaces service specification. (URL: http://-

java.sun.com/products/jini/2.0/doc/specs/html/jsTOC.html)
12. Bishop, P., Warren, N.: JavaSpaces in Practice. Addison Wesley (2002)
13. Sun Microsystems: Jini connection technology. (URL: http://www.sun.com/jini)
14. GigaSpaces Technologies Ltd.: GigaSpaces. URL: http://www.gigaspaces.com/-

index.htm (2001)
15. Intamission Ltd.: AutevoSpaces: Product overview. URL: http://-

www.intamission.com/downloads/datasheets/AutevoSpaces-Overview.pdf

(2003)
16. Scientific Computing Associates: Virtual shared memory and the Paradise sys-

tem for distributed computing. Technical report, Scientific Computing Associates
(1999)

17. Wyckoff, P., McLaughry, S., Lehman, T., Ford, D.: T Spaces. IBM Systems Journal
37 (1998) 454–474

18. IBM: TSpaces. (URL: http://www.almaden.ibm.com/cs/TSpaces/index.html)

96

19. De Nicola, R., Ferrari, G., Meredith, G., eds.: Proc. 6th International Conference
on Coordination Models and Languages, COORDINATION 2004. Volume 2949 of
Lecture Notes in Computer Science. Springer-Verlag, Pisa, Italy (2004)

20. Carbunar, B., Valente, M.T., Vitek, J.: Coordination and mobility in CoreLime.
Math. Struct. in Comp. Science 14 (2004) 397–419

21. Bruni, R., Montanari, U.: Concurrent models for Linda with transactions. Math.
Struct. in Comp. Science 14 (2004) 421–468

22. Charles, A., Menezes, R., Tolksdorf, R.: On the implementation of SwarmLinda.
In: ACM-SE 42: Proc. 42nd Annual Southeast Regional Conference, New York,
NY, USA, ACM Press (2004) 297–298

23. Lucchi, R., Zavattaro, G.: WSSecSpaces: a secure data-driven coordination service
for web services applications. In: SAC ’04: Proc. 2004 ACM Symposium on Applied
Computing, New York, NY, USA, ACM Press (2004) 487–491

24. Cheung, L., Kwok, Y.: On load balancing approaches for distributed object com-
puting systems. J. Supercomput. 27 (2004) 149–175

25. Wells, G.: An implementation of Linda. In Cilliers, C., ed.: Proc. Fifth Computer
Science Research Students’ Conference, Katberg (1990) 302–307

26. Clayton, P., de Heer Menlah, F., Wells, G., Wentworth, E.: An implementation
of Linda tuple space under the Helios operating system. South African Computer
Journal 6 (1992) 3–10

27. Rehmet, G.: Remora: Implementing adaptive parallelism on a heterogeneous clus-
ter of networked workstations. Master’s thesis, Rhodes University (1995)

28. Clayton, P., Rehmet, G.: Implementing adaptive parallelism on a heterogeneous
cluster of networked workstations. In: Proc. 1995 International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’1995).
(1995) 571–580

29. Wells, G., Chalmers, A.: Extensions to Linda for graphical applications. In: Proc.
International Workshop on High Performance Computing for Computer Graphics
and Visualisation. (1995) 174–181 Reprinted in [47].

30. Wells, G., Chalmers, A., Clayton, P.: An extended version of Linda for Transputer
systems. In O’Neill, B., ed.: Parallel Processing Developments (Proc. 19th World
Occam and Transputer User Group Technical Meeting), IOS Press (1996) 233–240

31. Wells, G., Chalmers, A.: An extended Linda system using PVM. In: Proc. 1995
PVM Users’ Group Meeting. (1995) URL: http://www.cs.cmu.edu/Web/Groups/-
pvmug95.html.

32. Wells, G., Chalmers, A., Clayton, P.: An extended version of Linda for distributed
multimedia applications. In: Proc. SAICSIT ’99. (1999)

33. Wells, G., Chalmers, A., Clayton, P.: A comparison of Linda implementations in
Java. In Welch, P., Bakkers, A., eds.: Communicating Process Architectures 2000.
Volume 58 of Concurrent Systems Engineering Series. IOS Press (2000) 63–75

34. Wells, G., Chalmers, A., Clayton, P.: Extending Linda to simplify application
development. In Arabnia, H., ed.: Proc. International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’2001). CSREA Press
(2001) 108–114

35. Wells, G., Chalmers, A., Clayton, P.: Extending the matching facilities of Linda.
In Arbab, F., Talcott, C., eds.: Proc. 5th International Conference on Coordination
Models and Languages (COORDINATION 2002). Volume 2315 of Lecture Notes
in Computer Science., Springer (2002) 380–388

36. Wells, G., Chalmers, A., Clayton, P.: Linda implementations in Java for concurrent
systems. Concurrency and Computation: Practice and Experience 16 (2004) 1005–
1022

97

37. Wells, G.: New and improved: Linda in Java. In Gibson, P., Power, J., Waldron,
J., eds.: Proc. Third International Conference on the Principles and Practice of
Programming in Java (PPPJ 2004). ACM International Conference Proceedings
Series, Las Vegas (2004) 67–74.

38. Wells, G.: A Programmable Matching Engine for Application Development in
Linda. PhD thesis, University of Bristol, U.K. (2001)

39. Akhurst, T.: The role of parallel computing in bioinformatics. Master’s thesis,
Rhodes University (2004)

40. Wells, G., Akhurst, T.: Using Java and Linda for parallel processing in bioinfor-
matics for simplicity, power and portability. In: Proc. IPS-USA-2005, Cambridge,
MA, USA (2005)

41. Sun Microsystems: Java Media Framework API. (URL: http://java.sun.com/-
products/java-media/jmf/index.html)

42. Wells, G.: New and improved: Linda in Java. Science of Computer Programming
(2005) In press.

43. Asaravala, A.: Giving SOAP a REST. URL: http://www.devx.com/DevX/-

Article/8155 (2002)
44. McMillan, R.: A RESTful approach to web services. URL: http://-

www.networkworld.com/ee/2003/eerest.html (2003)
45. IBM: The TSpaces programmer’s guide. (URL: http://www.almaden.ibm.com/-

cs/TSpaces/html/ProgrGuide.html)
46. Foster, M., Matloff, N., Pandey, R., Standring, D., Sweeney, R.: I-Tuples: A

programmer-controllable performance enhancement for the Linda environment.
In Arabnia, H., ed.: Proc. International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’2001). CSREA Press (2001)
357–361

47. Chen, M., Townsend, P., Vince, J., eds.: High Performance Computing for Com-
puter Graphics and Visualisation. Springer-Verlag (1996)

98

Adaptation management in multi-view systems

Nesrine Yahiaoui1, 2, Bruno Traverson1, Nicole Levy2

1 EDF R&D 1 avenue du Général de Gaulle F-92140 Clamart France
2 UVSQ PRiSM 45 avenue des Etats-Unis F-78035 Versailles France

nesrine.yahiaoui@prism.uvsq.fr, bruno.traverson@edf.fr, nicole.levy@prism.uvsq.fr

ABSTRACT. The information systems must constantly adapt to changes of
software environment or of functional domain. In RM-ODP standard
(Reference Model for Open Distributed Processing), a system may be described
according to five viewpoints (enterprise, information, computational,
engineering, technology) that are complementary, but also not fully
independent. In this multi-view system, the changes can occur in one view, and
may impact the other views. This paper proposes a generic framework for
modelling evolutionary systems according to the five RM-ODP viewpoints in
order to manage the impact when an evolution occurs. This framework is based
on rules and links established between the various views of the system.

Keywords: Adaptation management, viewpoints, multi- view systems, RM-ODP

Introduction

In the real world, a three dimensional object may be mapped according to several
viewpoints or angles of sight (front face, back face, left face, right face). The result of
the projection of an object according to a viewpoint is called a view of the object. For
example, if we project a cube on its six faces, we observe that each view is a square;
the six squares that we obtained are identical because it is the property of the cubic
object. If we modify, for example, the size of the square, we must modify also the
other views (squares), in order to preserve the constraint of the cube. The various
views are not independent, since the global constraint must be respected in the various
views.

The concept of viewpoint also exists in the computer science world. A system may
be described according to several viewpoints. A viewpoint allows to break up the
system and to focus on a particular aspect of the system. A viewpoint introduces
specific concepts which take into account the aspect considered by the viewpoint.
These concepts are used to design the system from this perspective. A model based on
these concepts is called a view.

99

For instance, RM-ODP system can be constructed according to five viewpoints:
enterprise (objective, business rules, QoS, etc.), information (data), computational
(functional decomposition), engineering (communication and deployment) and
technology (hardware and software infrastructure). The obtained views must be
consistent, i.e. the specification of a view should not conflict with the specification of
another view.

When a modification occurs on a view, it may involve a modification on other
views in order to preserve the consistency of the system.

The aim of this article is to show the benefits of using links in evolutionary multi-
view systems. First of all, links allow to bind explicitly the elements which describe
the same properties but that are expressed in different viewpoints. Then, links may be
used to inform about the impacted elements when there is a modification on a view.

This article is structured in five parts. The first part presents the RM-ODP standard
that we use to describe multi-view systems. The second part establishes the
characteristics of multi-view systems. The third part presents our design framework
that handles evolutionary multi-view systems, the fourth part quotes related work.
Finally we conclude and draw some perspectives of future work in the fifth part.

RM-ODP

RM-ODP (Model Reference - Open Distributed Processing) [ISO96a] [ISO96b]
[ISO98] is an international standard published by ISO/IEC. It provides a reference
model for the specification of open distributed applications.

The RM-ODP model can describe a system according to five viewpoints; each
viewpoint is interested in a particular aspect of the system. These viewpoints are:

Enterprise. It introduces the concepts necessary to represent a system in the
context of an enterprise on which it operates. It is interested to the objective and the
policies of a system. A system is then represented by a community which is a
configuration of enterprise objects formed to achieve a goal.

Information. It is focused on the semantics of information and the treatment
carried out on information. A system is then described by information objects,
relationships and behavior. The description is expressed through the use of three
diagrams named invariant, static and dynamic.

Computational. It allows a functional decomposition of the system. The various
functions are fulfilled by objects that interact thanks to their interfaces. The basic
concepts define the type of the interfaces which the computational objects support, the
way in which the interfaces can be bound, and the forms of interaction which can take
place.

100

Engineering. It is focused on the deployment and communication of a system. It
defines communication concepts like channel, stub, skeleton and deployment
concepts like cluster, capsule, etc.

Technology. It describes the implementation of a system in term of configuration
of technical objects representing the hardware and software components of the
implementation. The goal of such a description is to provide additional information
for the implementation and the test, by selecting standard solutions for the
components and the communication mechanisms.

Characteristics of multi-view systems

In this section, we define the concepts generally used in the design of multi-view
systems, and we establish the differences between related concepts.

Viewpoint vs. view

In the design of multi-view systems, like RM-ODP, the concept of viewpoint and
view are distinguished. [Fig. 1] illustrates the difference which exists between them.

Fig. 1. Viewpoint and view.

In [Fig. 1], the system has an enterprise view (Enterprise-v) which is modeled
according to an enterprise viewpoint (Enterprise-VP). This viewpoint defines
concepts (Enterprise-Concept).

In other words, viewpoint is constituted by a set of concepts (Enterprise-Concept).
The view is constructed using instances of concepts (Enterprise-Instance_Concept)
defined by viewpoint.

101

Rule and link

The views are not independent because they address the same system. The system
must have the same properties in the different views. These properties may be
expressed differently according to the considered view.

So, in order to express consistency of the system, we must bind the concept or
instances of concepts that express the same propriety.

We distinguish two levels of binding. The binding at the level of a viewpoint is
named rule, and the binding at the level of a view is named link [Fig. 2].

Rule. A rule is a predicate between concepts of different viewpoints. These rules
must be checked whatever the modelled system. For instance, in RM-ODP, a rule sets
up that the enterprise role corresponds to one or more computational objects that
assume the role.

Link. A link binds explicitly instances of concepts of different views. The linked
instances express the same property. The links must enforce the rules established
between viewpoints concepts. For example, for a particular RM-ODP system
constituted by enterprise and computational views, there is a link between instance of
action named requestsubscription in Enterprise view and instance of interaction
named subscription, because it represents the same behavior.

Fig. 2. Rule and link

RM-ODP provides some rules across the viewpoint concepts in order to achieve a
consistent set of views, and establishes that the link must ensure that what is defined
in one view is consistent, with what is defined in another view.

However, there is no link concept which permits to relate the various different
views within the five basic RM-ODP viewpoints. This concept may be introduced
either by extending each concept in RM-ODP so that each instance of concept can

102

refer to other instances with which it can be related, or by introducing a new concept
that refers to instances of concepts to be related.

The introduction of this concept enables to preserve the consistency of the system
and permits to find the instances of concepts of the other views which are related to a
particular instance of a view.

Design framework of evolutionary multi-view systems

The system specification is not static and may evolve in order to answer new
requirements. Instead of entirely designing again the system, the stakeholder takes old
designs and makes modifications by adding, removing and modifying instances of
concepts. In RM-ODP system, the stakeholder has to manipulate five views. Each
view can change according to the concern considered by the views. The stakeholder
must modify the other views if he changes one view, so that the consistency of the
multi-view system is preserved. If the views are not explicitly linked, the stakeholder
cannot know the elements of the other views that have a relation with the modified
elements and the management of adaptation will be impossible.

For designing evolutionary multi-view system, we propose a design framework
that is used as follows:

1. Establishment of the various views of a given system.
Each stakeholder designs his view according to the viewpoint concepts. In our
solution, we consider a viewpoint as a meta-model that describes in MOF
(Meta Object Facility) [MOF02] the concepts and the associations which exist
between them. This meta-model is implemented with an UML profile
[UML04]. Each view is considered as a package stereotyped by the considered
concern. The package is constructed according to the UML profile.

2. Establishment of the links between the instances concepts that are in
different views.

Once the different packages are designed, the stakeholder must import them in
a single package stereotyped, for example, ODPsystem, which represents the
entire system. Thanks to the introduced concept of link, he can bind the
elements belonging to different views that are related.

3. Possibility to change each view.
 Once the views are linked, each view may be modified by adding, removing or

modifying instances of concept. In order to manage the modification on the
other views, an impact manager of views must be introduced in the framework.
This manager must act on the other views according to the modification
carried out and will retrieve the links in order to know the elements that are
impacted.

103

Related Work

Many research teams focus on dynamic architectures reconfiguration and
evolution. Following our evolutionary systems study, we propose in [NYAH04] a
classification. This classification states that there are functional and technical kinds of
evolution, each one being manual, automatic, non-intrusive and open. The
architecture of the evolutionary system uses techniques like event, reflection, aspect
and contract, in order to achieve its kinds and characteristics of evolution.

However, the majority of these systems are interested only in technology
viewpoint. A new vision in evolutionary systems appeared which focused on multi-
viewpoints approach. The works are interested to define the concepts which enable to
describe consistency in multi-views systems. According to Akehurst [DHAk04],
relations that link concept between viewpoints must be defined. But Dijkman
[RMDI03] [RMDI04] defines a basic viewpoint. The enterprise and computational
view are projected into basic views. The system is consistent if there is a refinement
relation between these two basic views.

Conclusion and open issues

This paper illustrates the idea of using links in order to manage evolutionary multi-
view systems. It proposes also a generic design framework of evolutionary multi-view
systems that follows a three step approach: establishment of the various views of a
given system, establishment of the links between the instances concepts that are in
different views, and possibility to change each view that results in management of
impact in other views.

The approach of specifying links between views in order to manage adaptation in
multi-view system represents an initial idea. It generates a numbers of issues and
problems that are discusses below:

Rules. How to describe the rules that exist between the different concepts
of viewpoints?

Link. How to describe the concept of link? The link must permit to relate
different instances of concept of different views. It must also respect the
set up rules, and inform the reason that relates the instances.

Impact Manager. How retrieve a link of particular modified elements.
The Impact Manager requires an infrastructure that:

1. intercepts the management requests which are generated when
elements of a view are modified

2. chooses a scenario of impact according to the management request.
3. restores links, if the impact modifies other elements of other views.

104

References

DHAk04 D.H.Akehurst. Proposal for a Model Driven Approach to Creating a Tool to
Support the RM-ODP. WODPEC04 (Workshop on ODP for Enterprise
Computing). In conjunction with EDOC 2004, California 2004.

ISO96a ISO/IEC 10746-2.Information technology -- Open Distributed
Processing Reference Model: Foundations. 1996.

ISO96b ISO/IEC 10746-3.Information technology -- Open Distributed
Processing Reference Model: Architecture. 1996.

ISO98 ISO/IEC 10746-1.Information technology -- Open Distributed
Processing Referencemodel: Overview. 1998

MOF02 Object Management Group. Meta Object Facility (MOF) Specification, version
1.4. http://www.omg.org. 2002.

NYAH04 N.Yahiaoui, B.Traverson, N.levy. Classification and Comparison of Dynamic
Adaptable Software Platforms. First international Workshop WCAT04
(Workshop in Coordination and Adaptation Techniques) in conjunction with
ECOOP04. Oslo 2004.

RMDI03 R.M.Dijkman, D.A.C. Quartel, L.F.Pires, M.J.van Sinderen. An Approach to
Relate Viewpoints and Modeling Languages. Seventh International Enterprise
Distributed Object Computing Conference (EDOC'03). Australia. 2003.

RMDI04 R.M.Dijkman, D.A.C.Quartel, L.F.Pires, M.J.van Sinderen. A Rigorous
Approach to Relate Enterprise and Computational Viewpoints. Eighth IEEE
International Enterprise Distributed Object Computing Conference
(EDOC'04). California. 2004.

UML04 Object Management Group. Unified modelling Language (UML) Specification,
version 1.5. http://www.uml.org. 2004.

105

http://www.omg.org
http://www.uml.org

http://www.daneprairie.com

	P3.pdf
	Sin título

