

Coordination and Adaptation Techniques:
Bridging the Gap Between Design and

Implementation

Proceedings of the Third International Workshop on
Coordination and Adaptation Techniques for

Software Entities.
WCAT’06

July 4th, 2006
Nantes, France

Held in conjunction with ECOOP 2006

Registered as

Technical Report TR ITI-2006-06
Dpto. de Lenguajes y Ciencias de la Computación

 Universidad de Málaga

Technical Report TR-23/06
Escuela Politécnica

Dpto. de Informática
 Universidad de Extremadura

Technical Report IBISC RR 2006-03
IBISC – FRE 2873

 CNRS / University of Evry Val d'Essonne
Genopole

Steffen Becker, Carlos Canal, Nikolay Diakov
Juan M. Murillo, Pascal Poizat and Massimo Tivoli (Eds.)

Technical Report TRCS 011/2006
Dipartimento di Informatica

 Facoltà di Scienze MM.FF.NN.
University of L'Aquila

 Editors

Carlos Canal
University of Málaga. ETSI Informática
Campus de Teatinos. 29071 Málaga (Spain)
E-mail: canal@lcc.uma.es
Web: http://www.lcc.uma.es/~canal

Juan Manuel Murillo
University of Extremadura. Escuela Politécnica
Avda. de la Universidad, s/n. 10071 Cáceres (Spain)
E-mail: juanmamu@unex.es
Web: http://quercusseg.unex.es

Pascal Poizat
IBISC - FRE CNRS 2873
University of Evry. LaMI, Tour Evry 2
523 place des terrasses de l'Agora. 91000 Evry (France)
E-mail: poizat@lami.univ-evry.fr
Web: http://www.lami.univ-evry.fr/~poizat/

Printed in Spain
July 2006
Impression supported by CICYT under contract TIN2005-09405-C02-02

Steffen Becker
University of Oldenburg. Software Engineering Group. OFFIS
Escherweg 2. 26121 Oldenburg (Germany)
E-mail: steffen.becker@informatik.uni-oldenburg.de
Web: http://se.informatik.uni-oldenburg.de/staff/Members/steffen

Massimo Tivoli
University of L’Aquila. Dipartimento di Informatica. Facoltà di Scienze
MM.FF.NN. Via Vetoio n.1. 67100 L’Aquila (Italy)
E-mail: tivoli@di.univaq.it
Web: http://www.di.univaq.it/tivoli

Nikolay Diakov
Centrum voor Wiskunde en Informatica (CWI)
SEN3, P.O. Box 94071090 GB Amsterdam (The Netherlands)
E-mail: nikolay.diakov@cwi.nl
Web: http://homepages.cwi.nl/~diakov

Preface

Coordination and Adaptation are two key issues when developing complex
distributed systems, constituted by a collection of interacting entities —either
considered as subsystems, modules, objects, components, or web services— that
collaborate to provide some functionality. Coordination focuses on the interaction
among computational entities. Adaptation focuses on the problems raised when the
interacting entities do not match properly.

Indeed, one of the most complex tasks when designing and constructing such
applications is not only to specify and analyze the coordinated interaction that occurs
among the computational entities but also to be able to enforce them out of a set of
already implemented behaviour patterns. This fact has favoured the development of a
specific field in Software Engineering devoted to the coordination of software. Such
discipline, covering Coordination Models and Languages, promotes the re-usability
both of the coordinated entities, and also of the coordination patterns.

The ability of reusing existing software has always been a major concern of
Software Engineering. In particular, the need of reusing and integrating
heterogeneous software parts is at the root of the so-called Component-Based
Software Development. The paradigm “write once, run forever” is currently supported
by several component-oriented platforms.

However, a serious limitation of available component-oriented platforms (with
regard to reusability) is that they do not provide suitable means to describe and reason
on the interacting behaviour of component-based systems. Indeed, while these
platforms provide convenient ways to describe the typed signatures of software
entities via interface description languages (IDLs), they offer a quite limited and low-
level support to describe their concurrent behaviour. As a consequence, when a
component is going to be reused, one can only be sure that it provides the required
signature based interface but nothing else can be inferred about the behaviour of the
component with regard to the interaction protocol required by the environment.

Not solely the reuse of components is important, but also the adaptation of
existing software for interaction with new systems is important for industrial projects.
Especially the afore mentioned web service technology is used regularly in this
context.
Additionally, there is the aim to built component-based systems to support a specific
level of quality. In order to be able to do so, the specifications need to include Quality
of Service oriented attributes. This feature, which is common for other engineering
disciplines, is still lacking for Component-Based Software Development.

To deal with those problems, a new discipline, Software Adaptation, is
emerging. Software Adaptation focuses on the problems related to reusing existing
software entities when constructing a new application. It is concerned with how the
functional and non functional properties of an existing software entity (class, object,
component, etc.) can be adapted to be used in a software system and, in turn, how to
predict properties of the composed system by only assuming a limited knowledge of
the single components computational behavior.

The need for adaptation can appear at any stage of the software life-cycle and
adaptation techniques for all the stages must be provided. Anyway such techniques

must be non-intrusive and based on formal executable specification languages such as
Behavioural IDL. Such languages and techniques should support automatic and
dynamic adaptation, that is, the adaptation of a component just in the moment in
which the component joins the context supported by automatic and transparent
procedures. For that purpose Software Adaptation promotes the use of software
adaptors-specific computational entities for solving these problems. The main goal of
software adaptors is to guarantee that software components will interact in the right
way not only at the signature level but also at the protocol, Quality of Service and
semantic levels.

These are the proceedings of the 3rd International Workshop on Coordination
and Adaptation Issues for Software Entities (WCAT'06), affiliated with the 20th
European Conference on Object-Oriented Programming (ECOOP'2006), held in
Nantes (France) on July 4th, 2006. These proceedings contain the 10 position papers
selected for participating in the workshop.

The topics of interest of WCAT'06 covered a broad number of fields where
coordination and adaptation have an impact: models, requirements identification,
interface specification, software architecture, extra-functional properties,
documentation, automatic generation, frameworks, middleware and tools, and
experience reports.

The WCAT workshops series tries to provide a venue where researchers and
practitioners on these topics can meet, exchange ideas and problems, identify some of
the key issues related to coordination and adaptation, and explore together and
disseminate possible solutions.

Workshop Format

To establish a first contact, all participants will make a short presentation of their
positions (five minutes maximum, in order to save time for discussions during the
day). Presentations will be followed by a round of questions and discussion on
participants' positions.
From these presentations, a list of open issues in the field must be identified and
grouped. This will make clear which are participants' interests and will also serve to
establish the goals of the workshop. Then, participants will be divided into smaller
groups (about 4-5 persons each), attending to their interests, each one related to a
topic on software coordination and adaptation. The task of each group will be to
discuss about the assigned topic, to detect problems and its real causes and to point
out solutions. Finally a plenary session will be held, in which each group will present
their conclusions to the rest of the participants, followed by some discussion.

Steffen Becker
Carlos Canal

Nikolay Diakov
Juan Manuel Murillo

Pascal Poizat
Massimo Tivoli

Workshop Organizers

Author Index

André, Pascal, 15
Arbab, Farhad, 9
Ardourel, Gilles, 15
Attiogbè, Christian, 15
Cámara, Javier, 35, 91
Canal, Carlos, 35, 91
Cremene, Marcel, 25
Cubo, Javier, 35, 91
Dery-Pinna, Anne-Marie, 71
Diakov, Nikolay, 9
Fuentes, Lidia, 43
Gross, Hans-Gerhard, 53
Martel, Christian, 25

Mauran, Philippe, 81
Murillo, Juan M., 91
Occello, Audrey, 71
Padiou, Gérard, 81
Pimentel, Ernesto, 35
Poizat, Pascal, 61
Riveill, Michel, 25
Salaün, Gwen, 61
Sánchez, Pablo, 43
Sibertin-Blanc, Christophe, 81
Tivoli, Massimo, 61
Xuan Loc, Pham Thi, 81

Contents

Software Adaptation in Integrated Tool Frameworks for
Composite Services 9

Nikolay Diakov and Farhad Arbab (The Netherlands)

Coordination and Adaptation for Hierarchical Components
and Services 15

Pascal André, Gilles Ardourel and Christian Attiogbè (France)

Towards Unanticipated Dynamic Service Adaptation 25
Marcel Cremene, Michel Riveill, and Christian Martel (France)

Dynamic Adaptation Using Contextual Environments 35
Javier Cámara, Carlos Canal, Javier Cubo and
Ernesto Pimentel (Spain)

AO approaches for Component Coordination 43
Lidia Fuentes and Pablo Sánchez (Spain)

Towards Unification of Software Component Procurement Approaches 53
Hans-Gerhard Gross (The Netherlands)

On Dynamic Reconfiguration of Behavioral Adaptations 61
Pascal Poizat, Gwen Salaün and Massimo Tivoli (France)

Capitalizing Adaptation Safety: a Service oriented Approach 71
Audrey Occello and Anne-Marie Dery-Pinna (France)

Safe Dynamic Adaptation of Interaction Protocols 81
Christophe Sibertin-Blanc, Philippe Mauran,
Gérard Padiou (France) and Pham Thi Xuan Loc (Vietnam)

An Aspect-Oriented Adaptation Framework for Dynamic
Component Evolution 91

Javier Cámara, Carlos Canal, Javier Cubo and
Juan M. Murillo (Spain)

Software Adaptation in Integrated Tool
Frameworks for Composite Services

Nikolay Diakov and Farhad Arbab

Centrum voor Wiskunde en Informatica,
P.O. Box 94079, 1090 GB Amsterdam,

The Netherlands,
{nikolay.diakov, farhad.arbab}@cwi.nl

Abstract. In this paper we present our work on the construction of
composite services for distributed computing environments. In this work
we take our theoretical results in formal techniques for exogenous coordi-
nation of software components and we apply these techniques to existing
practical approaches to distributed systems in the area of service-oriented
computing. We address major issues such as (a) the implications of syn-
chrony on the way one designs software, (b) the bridging of protocols
with fundamentally different coordination models, and (c) the enriching
of theoretically sound models so that they become usable in practical
applications. In this paper we report our progress on each of these issues
and we discuss the work that still lies ahead of us.

1 Background

Many companies have started experimenting with opening online interfaces to
their business services. Technologically, the adoption of the Web Services (WS)
standard by the major players in the software industry served as the main drive
behind this phenomenon. In such environment of available atomic services, con-
struction of composite services becomes an important issue. Standardization
efforts have started in this direction resulting in languages, such as WS-BPEL
[7].

Nevertheless, current technologies implementing service compositions do not
take full advantage of the capabilities of distributed systems. Difficulties to han-
dle concurrency and parallelism inherent in distributed systems account to a
large extent for this limitation. For example, WS-BPEL does not sufficiently
address compositionality at the level of its formal semantics and its dynamic
execution model.

Connector-based component composition has demonstrated great potential
to provide efficient utilization of distributed resources. Some technologies (Spring
[6]) already use connectors in the form of declarative dependency injection. To
go further, to arbitrary complex compositions in a distributed environment, one
needs a declarative approach utilizing proper models that can handle concur-
rency in a compositional way. Formal techniques, like Reo [8], allow doing that.

2 Motivation

In this paper we look at the integration of a formal technique for coordination
with an existing and practical technology, such as Web Services. A suitable
framework for doing that should provide an environment for construction of
composite services that allows integration of third-party services. We discuss
the following major issues:

2.1 Bridging foreign coordination models

In our approach to integration of a formal method with a practical technique, a
designer needs to deal with bridging two conceptually different models: a formal
coordination model on the one hand and a simpler practical coordination model
of a proven technology. While formal models often encompass a huge amount of
possible cases, e.g., for reasons of expressive power, practical models usually fo-
cus on several simple but recurring patters of use, often reinforced by redundant
(from a theoretical point of view) but useful interfaces. Typically, such integra-
tion requires a lot of manual work. Automatic adaptation through generation of
adapters or through universal adapters can considerably reduce the amount of
manual work in these cases.

2.2 Modularization of synchrony

In an earlier work we examined in detail the importance of synchrony for busi-
ness modeling ([10]). We concluded that synchrony represents a crosscutting
concern, which we need to consider during the integration of a formal model for
connector-based composition (such as Reo) with a technology, such as a com-
mon component model. In order to allow synchronous integration of arbitrary
components in a generic way, one needs to augment every component to fulfill
a minimum set of requirements, which we defined as a particular interface that
the integrator needs to implement. Software adaptation helps in this respect.

2.3 Enriching of simplified formal models

To understand complex issues, researchers often abstract away “irrelevant” de-
tails from their theoretical models. Nevertheless, for the practical reason of mak-
ing something usable, we often need to reintroduce the omitted details back into
the model. We call this process enriching of a formal model. Enriching of a co-
ordination language requires the introduction of useful data types, sets of basic
components, persistent language specifications to save to disk, verification and
validation features linked to existing commercial (not only theoretical) testing
frameworks, and so on. This again requires a lot of manual work, often repeated
for every different model described in the coordination language. Software adap-
tation can offer a lot here too.

10 Nikolay Diakov and Farhad Arbab

3 Integrated tool frameworks and software adaptation

One can easily spot the recurrence of the phrase “manual work” in our brief
analysis. We opt for a solution in which integrators use a set of specially crafted
tools to assist in the process of integration of a formal coordination method with
other technologies. Building of these tools may prove particularly difficult. Be-
low we illustrate the different type of tools and their possible relationships: From

��������
	

�

���	�������
������

�
����	
�
��������	�
��

�����

�������
��������	�
��

�����

�������	

������	�� ������	��

�
����� ��
����� �

���	

�
�����!��"��
���	��
��	���

�
�����!��"���
�����	����
�	

#�	�	

������	
�
���	!������	�
��

���	

��	���	����

�������

������	�
��

	����
� �����$�

������	��

���	�

�������
�

�
���
%�&������
�'�	���

���	

(�
��������
���������
	����	��

�������������)��	����	!�
��!�

������	�
�

������	����

�����	�
��

��������	�
�

��	!��
����

�!��"���

����������

���
'���	
��	�
��

���	���

���
'���	
���

���	 ���	

��	����	���

�� *�

%� ��
����	

%��	
��

������	
��������	
��

�!��"���

���
'���	

�!��"���

������	�
�

��
%

�'�	!����

�'�	!���+��

�'�	!�����
��

�
����	
����
�

	!�������

#�	�	

Fig. 1. Integrated environment for software adaptation

our experience, development of formal models for analysis of issues as difficult
as concurrency and compositionality, often follows a heavily iterative process.
Developing tools in such an environment may lead to developing a whole applica-
tion, just to throw it out completely in the next iteration. Therefore, we strongly
encourage a model-driven approach (MDA [5]). Such approach initially invests
on modeling the domain of the tools under development, but this investment
subsequently pays off because the framework supports automatic generation of
the tools and of round-trip re-integration of small to medium changes in the core
model in such tools.

 Software Adaptation in Integrated Tool Frameworks for Composite Services 11

4 A framework for construction of composite Web
Services

In this section we report on our ongoing work following the approach we outlined
in the previous section. We use the Eclipse platform [4] to develop an integrated
development environment for designers of composite Web Services based on a
subset of the Reo coordination language called WS-Reo. We speak of a subset,
because Reo while a powerful and general theoretical framework, gives us quite
some problems to implement efficiently in its entirety. So until we figure out all
the intricate details of a full Reo implementation, we work on a subset, which
we evolve as we learn more. For this reason we also find particularly useful the
model-driven approach.

WS-Reo offers several basic channels only: Sync, LossySync, FIFO1, and
SyncDrain. We also integrate into WS-Reo three kinds of components: Java
components (as we use Java to implement the framework), OS processes (through
a universal Java adapter), and Web Services (mix of universal adapters and
generated adapters).

One can invoke Web Services in different ways. When invoked in an RPC-
style, a Web Service operation behaves as a method or procedure call from plain-
old programming languages. The RPC protocol used takes care of coordination
between the two independent hosts involved in the invocation. We integrate Web
Services in two ways: asynchronously and synchronously. For the asynchronous
approach, we create a special universal adapter that makes a Web Service op-
eration appear as a single component with an input and an output that do not
block the writer on the input while waiting for a reader to take from the output.
For the synchronous approach we use the synchronous f(x) channel [10]; how-
ever, this currently allows us to universally adapt stateless Web Services only.
Stateful ones need to implement a special transactional protocol to comply with
Reo’s notion of synchronous behavior. Furthermore, Web Services typically use a
hierarchical data typing system based on XML. The SOAP standard defines one
such typing system. For the types that a Web Service understands as declared
in its WSDL definition, we generate special utility components that the designer
can use to manipulate data within a connector. This way we provide adaptation
for the data within a composition.

To implement our tool framework, we use the GMF technology [2] from the
Eclipse family of technologies [4]. This technology uses a model-driven approach
for generation of visual editors using EMF [3] for model description, and GEF [1]
for graphical interfaces. After a steep learning curve, this allowed our developers
to create a full visual editor after one man month of effort, in a model-driven
way. This allows further to reduce the cost of changes in the tools, through
customization of the generation models, re-generation of the tool and filling
in the compartments of the changes in the new code. We integrated into our
framework a Java-based Reo simulator – ReoLite [9]. This allows for integrated
testing of multiple designs, as well as their debugging through monitoring.

To date, we have enough of our framework operational to support all WS-
Reo nodes and channels, and coordinate OS processes as well as internal Java

12 Nikolay Diakov and Farhad Arbab

Fig. 2. Integrated environment for software adaptation

components. Presently, we work on, and shall soon have, integration of Web
Services, which will include browsing of UDDI repositories, importing of live
services through their definition, generation of WS-Reo components for parsing
the custom XML data types of services to allow their integration in WS-Reo
circuits on screen with simple dragging from a component palette, and dynamic
invocation of imported Web Services during simulation.

In the long run we plan to work on: the distributed deployment of WS-Reo
circuits(and a tool for this); the distributed WS-Reo middleware that allows such
deployments; integration of model checking activity within the environment, e.g.,
tools for design of test cases, and a model-checker that can work them out on
WS-Reo circuits.

5 Conclusions and discussion

In this paper we discussed the use of adaptation in tool framework for coor-
dination of composite services. We have successfully laid the foundations for a
framework for Web Services composition and coordination.

Other researchers have also addressed WS composition in a similar approach.
One particularly interesting approach we find in JOpera [11] - an framework
for visual composition of Web Services. This framework also utilizes Eclipse,
and a model-driven approach to tool generation, although not the latest GMF

 Software Adaptation in Integrated Tool Frameworks for Composite Services 13

development. Nevertheless, JOpera offers an asynchronous flow-based definition
and execution of composite services, without a strong formal execution semantics
or formal model-checking capabilities.

Earlier, we discussed that a successful integration of a formal coordination
model may lie in the right balance between the level of abstraction and the
level of practicality in a modeling language. We consider the precise balance a
worthwhile subject to discuss in the coordination community. In this respect we
suggest the following topics:

– Composition with synchrony - we find this very useful, but determining the
right level of abstract interfaces to expose to designers of third-party com-
ponents seems quite non-trivial. Furthemore, Aspect Oriented Programming
(AOP) can perhaps help in the integration of the support of synchrony with
existing component models.

– Enriching of abstract formal models for practical purposes - we identified at
least one practical element: adapters for work with existing common data
types. What other elements have modelers abstracted away that practition-
ers need back?

– Integrated tool frameworks - What benefits does a model-driven approach
bring to software adaptation? We found at least one in the form of round-trip
change management when our formal methods evolved.

References

1. Eclipse Graphical Editor Framework. http://www.eclipse.org/gef/.
2. Eclipse Graphical Modeling Framework. http://www.eclipse.org/gmf/.
3. Eclipse Modeling Framework. http://www.eclipse.org/emf/.
4. Eclipse Platform. http://www.eclipse.org/.
5. Model-Driven Architecture. http://www.omg.org/mda/.
6. Spring framework. http://www.springframework.org/.
7. Web Services Business Process Execution Language. http://www.oasis-open.

org/committees/tc_home.php?wg_abbrev=wsbpel.
8. F. Arbab. Reo: A channel-based coordination model for component composition.

Mathematical Structures in Computer Science, 14(3):329–366, June 2004.
9. David Clarke. ReoLite. http://homepages.cwi.nl/~dave/reolite/.

10. Nikolay Diakov and Farhad Arbab. Adaptation of software entities for synchro-
nous exogenous coordination: An initial approach. In Proceedings of The Sec-
ond International Workshop on Coordination and Adaptation of Software Entities,
WCAT’2005, July 2005.

11. Cesare Pautasso and Gustavo Alonso. Visual composition of web services. In
Proceedings of the 2003 IEEE Symposia on Human Centric Computing Languages
and Environments (HCC 2003), October 2003.

14 Nikolay Diakov and Farhad Arbab

Coordination and Adaptation for Hierarchical

Components and Services

Pascal André, Gilles Ardourel, Christian Attiogbé

LINA CNRS FRE 2729 - University of Nantes
F-44322 Nantes Cedex, France

(Pascal.Andre,Gilles.Ardourel,Christian.Attiogbe)@univ-nantes.fr

Abstract. Software coordination and adaptation is intimately related
to software (modular) pieces and access points. These pieces (components
or services) may be complex, dissimilar (various models) and designed
at different granularity levels. In order to allow interoperability we need
rich interface descriptions including service hierarchisation, flexible dec-
larations and precise specifications. In this position paper, we investigate
the adaptation and coordination for Hierarchical Behavioural IDL. We
introduce modelling techniques within hierarchy (precision, layering and
flexibility) and we discuss how they influence adaptation.

1 Introduction

Coordination is the process of building programs by gluing together active (soft-
ware) pieces [11]. Usually the glue adheres on access points and when it does
not, we use adaptation techniques to make it adhere. Software adaptation [24,
15, 6] includes the detection of mismatches and the correction, if possible, of the
mismatches. This correction can be a dynamic adaptation (flexible adaptation)
or the insertion of a static adapters (transformers).

Whatever you consider a piece and an access point makes the coordination
and adaptation problem difficult or not. There are two main perspectives : a
component perspective and a service perspective. In the component perspective
(the Component Based Software Engineering approach) [23, 17, 14] the pieces
are components and the access points can be interfaces, ports, services or op-
erations. In the service perspective (the Service Oriented Computing approach)
[18, 4]. the pieces are services and the access points can be interfaces, services
or operations. In a wide acceptance, a software architect would integrate pieces
from any provider and therefore with a non-restricted range of models. It means
that the pieces can be components or services, assuming that there are many
different component models and many service models. In such a context, the soft-
ware architect needs a language that help him to define clearly what he needs,
that help him to find pieces on the shelf and mechanisms for adaptation. Usu-
ally, such a language applies at an interface level and should be abstract to hide
model specific features and implementation considerations, expressive to provide
enough information for both the component designer and the component client

 Pascal André, Gilles Ardourel, Christian Attiogbé

(the architect), formal to avoid confusions and to support the verification of
properties such as service or component composability, flexible to allow partial
use of components, partial descriptions of services, optional use of subservices,
etc.

In this position paper, we propose a high level interface model for software
pieces that covers component and service approaches, called Hierarchical Be-
havioural IDL and we investigate adaptation and coordination issues for such a
model.

2 Hierarchical Behavioural IDL

The main way to achieve interoperability is to define a common interface lan-
guage. As quoted by [21] formal and abstract descriptions are invaluable. The
Corba Interface Definition Language (IDL) is one minimal language to get in-
teroperability. Recently several authors introduced Behavioural IDL (BIDL) in
the component interfaces [24, 5, 19]. In the BIDL approaches, the interface spec-
ifies more details on the ordering of operation invocations, using for example a
component (behaviour) protocol which can be a state transition system [19], a
regular expression [20], or a non-regular process type [22].

We propose to go one step beyond, still being abstract, towards Hierarchical

BIDL (HBIDL), where the operations can themselves be services (with an inter-
face). In this vision, a service is like a formal operation with a signature (name
and parameters), a contract (pre/post conditions), an interface (with required
and provided services that infers a service hierarchical structure) and an HBIDL
(that describes the dynamic evolution of the service). The advantages are first
to allow a common model for components and services, second to provide a for-
mal description which hides the implementation details (abstraction) and can
support verification of software assemblies. The hierarchy is related to service
composition and not to a hierarchy of compatibility as in [3] that considers a four
level hierarchy for interfaces (syntax, behaviour, synchronisation, and quality of
service). Nevertheless we consider four levels of service compatibility (signature,
assertion, recursive interface, behaviours).

As starting point we consider a component model that supports high level
service description, which is a gateway to service oriented models. In such a
model, a component is a structuring unit that encapsulates services and allows
a fine control of when and by which services they can be called. Basically, a
service encodes a functionality while a component is a structuring unit for a
system model (some abstract service provider). The separation between services
and components allows system models with partially supported services: some
services work and others do not. While many component approaches focus on the
structural aspects of component composition and coordination, we insist on the
functional (services) and dynamic (behaviour) aspects of the components because
they are an important criterion for component reuse. In this perspective, related
works deal with the behavioural compatibility for simplified abstract component
models [10, 2]. There are mechanised approaches such as Tracta [12] or SOFA

16

Adapting Component Services

[20] but their component models only associate behaviours to components and
not to services (the latter provides a finer description of the component usage).

The interface hierarchisation is useful to support various levels of interoper-
ability and documentation. For example, at a component level a protocol defines
how the provided services of an interface can be used. At a service level, a ser-
vice compatibility can be defined at four levels: signature matching (related to
name and parameters), enhanced signature conformity (including sub-services),
contract fulfilment (ensuring assertions), behavioural compatibility (the interac-
tions -waiting for data, synchronisation- between the caller and called services
are correct).

<<delegates>> :ATM

:Customer

withdrawal
:ATM_CORE

:LocalBank:AAC

authorizationsqueries

authorization

ask_authorization

balance

ask_account_balance

local transactions deposit

IBAN

remote transactions

query_
account

transfer

customers

requests

behaviour

account
_query

:USER_INTER
FACE

<<delegates>>

ask_for_money

withdrawal ask_for_money

amount

code

ask_amount

ask_code
+ messages+ messages

zoom

Fig. 1. A UML Component Model for the ATM

Figure 1 shows such a hierarchical extended UML Component Model for a
bank ATM. To coordinate a client component with a provider component whose
model does not define behaviours such as basic IDL should be always possible.

The interface and behaviour hierarchisation is more explicit in the following
metamodel. The hierarchisation applies to both components (as a component
composition) and services (as a service composition). Component composition is
exclusive (whole-part) while service composition is a shared relation (aggregation
in UML). A subservice can be invoked as part of several services.

17

 Pascal André, Gilles Ardourel, Christian Attiogbé

provided

Composition

owner
links

Service

name : String
originalservice : String
parameters : ArrayList
returnType : String
pre : String
post : String

eLTSServiceInterface
<<Interface>>

1

-serviceInterface

Component

name : HashMap
properties : HashMap
types : HashMap
variables : HashMap

0..*

0..*

+components

-composition

0..*

1
-services

-owner

RequiredService

0..*

0..*

-calrequired

0..*

0..*

-extrequired

0..*

0..*

+intrequired

ComponentInterface
<<Interface>>

1

1

0..*

0..*

-required

ProvidedService

1..1 0..1

-owner -behavior

0..* 0..*
0..*

-subprovided

0..*

0..*

0..*

-provided

-subprovided
Service hierarchy

-subprovided

Component
hierarchy

Fig. 2. A UML metamodel for Hierarchical Interface and Behaviours

UML does not support interface hierarchisation. In order to overview the
issues and solutions we switch to another component model, called Kmelia.

The Kmelia model [1] is a simple, formal and abstract component model based
on these principles. The coordination is based on hierarchical links: assembling
Kmelia components consists in linking required services to provided services. A
link is an implicit channel between the services that support communication ac-

tions on services or messages. A composition is the encapsulation of an assembly
into a component. A component composition is projected on services by promo-
tion links. Promotion links relate the composite services to the inner component
services. The semantics of the links is quite complex because it must handle the
service interface (via sublinks) and the enhanced service interface. The sublink

makes explicit the relation between the service dependencies declared in the in-
terfaces of the services involved in a Link. Assembling components requires four
levels of the above (service-)composability.

It is important to detect the defects which could lead to a faulty behaviour
of the developed system early in the development. A bad interaction between a
called service and the appealing one (from a component) may lead to a blocking
of the whole system. To ensure a good level of correctness of the components
and their assemblies, the formal verification of the service descriptions with re-
spect to the desired properties of the component is necessary. Consequently, the
specifications of components and their service behaviours should be abstract and

18

Adapting Component Service

formal. The use of an abstract formal model also makes it possible to hide the
implementation details of the components in order to have general reasoning
techniques which are adaptable to various implementation environments.

Fig. 3 is an example of Kmelia model for a bank Automatic Teller Machine
(ATM). The component usage is quite flexible: an assembly may be valid for one
service only, since its dependency chain is fulfilled. The USER INTERFACE

component offers the (provided) code service only in the interface of the be-

haviour service; it means that the USER INTERFACE only gives its code dur-
ing a withdrawal operation that it has initiated. Note that the USER INTERFACE

may also call a withdrawal service that does not require its code.

aac : AAC

lb : LOCAL_BANK

ui : USER_INTERFACE
ac : ATM_CORE

ask_id

as : ATM_SYSTEM

service link

subservice link

service call
 calrequires extrequires

caller service call

provided subservice
subprovides

debit
eject_card
swallow_card
display

ask_
authorizationask_

autho
rization

ask_
account_balanceask_

account_
balance

balance

authorization

account_update

withdrawal

account_query

ask_code

ask_amount

deposit

transfer

ident

behaviour

ask_for_money

code

amount

query_account

behaviour

required service

provided service

Fig. 3. Assembly for an ATM System

This work discusses various modelling techniques and concepts that influence
adaptation: levels of precision, layering and flexibility. We therefore argue on
related topics such as interoperability, static checking and transformation.

3 Adaptation for Hierarchical Behavioural IDL

We assume here an architectural model with heterogeneous components where
components have hierarchical behavioural interface definitions in such a way
that the hierarchical level may vary from one component to another. Our model
uses extended LTS (eLTS) for hierarchically describing behaviours. While the
adaptation problems stemming from different levels of granularity or hierarchy
are quite general and also occur when using component models without HBIDL,
limiting ourselves to models supporting it allows for flexible solutions. We also
assume the matching between names (of different components, services or mes-

19

 Pascal André, Gilles Ardourel, Christian Attiogbé

sages) has already been established, either manually or automatically (e.g. by
ontology-based approaches).

In this context, adaptation should manage hierarchical access points (com-
ponents, interface, protocols, services, subservices) and interoperability (various
component models). The problems to solve are (i) to enable flexibility and lay-
ering in the modelling of entities and connections, (ii) to enable heterogeneous
entities and interoperability, (iii) to have tools to detect coordination errors and
last (iv) to have algorithms and techniques to adapt the failing connections.
Flexibility lies in the introduction of adaptation features in the modelling lan-
guage to support evolving behaviours. Interoperability includes the coordination
of various services and component models. Tools are related to practical aspects
of the language. Last the techniques can be the modelling of dynamic adaptation
or the instantiation of correction patches (or patterns) in the assemblies.

Depending on the constraints of the system, the adaptation can take several
forms: a component inserted between two mismatching components, a proxy
service delegating to one of the services, or an alternative interpretation of a be-
haviour. We also distinguish implicit adaptation, which is related to the compo-
nent language flexibility, from automatic adaptation that needs specific adapters.

We name implicit adaptation the inherent ability of a service or a compo-
nent to adapt itself to different services or components. At a message or service
signature level, implicit adaptation focuses on optional arguments, default values,
compatible subtypes for arguments and result. At an enhanced service interface
level, it includes optional subservices, implicit linking to services or subservices.
At a service assertion level, it means that the compatibility between provided
and required pre/post conditions is ensured via repercussions from the previous
levels. At a service behaviour level, all the above adaptations apply together with
possible alternate behaviours (w.r.t. observational equivalence). For example, in
Kmelia, the branching states are provided services optionally available in some
state of a service behaviour.

An automatic adaptation is a transformation that ensures compatibility
between a provided and a required service, usually with an adapter preserving
the initial description. At a message or service signature level, it works on type
compatibility, arguments order and renaming. At an enhanced service interface
level, it works on service inference (how to find the good service), hidden subser-
vices and service interface enrichment. At a service assertion level, it means that
pre/post conditions can be deduced, strengthened or weakened. At a service be-
haviour level, the techniques of dynamic adaptation of flat behaviours can apply
[9, 7, 5, 16].

The hierarchisation leads to adaptation problems coming from granularity

mismatch described below in the following way: first we mention a sample prob-
lem and the earliest compatibility level where it is detected; then we explain
how we could try to generate a corresponding behaviour from one of the sides
of the communication and we check its compatibility with the other using veri-
fication techniques described in [1]. Last, we specify which part of the generated

20

Adapting Component Services

behaviour will be used to automatically create the adapter if the compatibility
has been obtained, then we precise if implicit adaptation could have been used.

Parameters vs messages. Based on a different interpretation of an impre-
cise textual specification such as ”The client must communicate a name and an
account number to the service account query”, one service could use parameters
while another could use message sends. Given that the correct data is ”com-
municated”, the communication have to be adapted when a client of a service
account query use different interpretations. This problem is a variant of the Mul-

tiple action correspondence[5]. An extension of this problem is that structured
data have to be decomposed before being sent (or the opposite). This problem is
detected at level 1: signature mismatch. A solution is to try to match the param-
eters with calls; if they match then we have to generate the LTS corresponding
with the service that lacked them. If the behaviour of the message-based service
is compatible with the newly generated LTS, then we can generate an adapter
using only the messages added to the LTS and delegating the rest of the be-
haviour to the original service. A limited implicit adaptation at the service level
is possible.

Multiple vs Single Context. Being designed with different granularity
levels in mind, a client service could consider that exchanges made during iden-
tification are in the context of an ident service and that further exchanges made
after concern a request service from the same component; another service could
consider that all the exchanges are made in the context of a unique, bigger ser-
vice. This problem is detected at level 2: a enhanced service interface mismatch.
A solution is to create the unique service needed by one of the interlocutors by
expanding all subservices and removing the ”start services or call services” that
match missing services; then we need to find which messages receptions in the
caller match the service results. It can be done by hand or by checking the be-
havioural compatibility (which would fail), identifying the deadlocks caused by a
missing reception of a service result, then attempting to replace the service result
by a message sending corresponding to the message receptions that caused the
deadlocks. If the behavioural compatibility is verified then we can generate an
adapter. Implicit adaptation is possible using one of the more flexible branching
points of Kmelia.

Bad message ordering. A behaviour mismatch may issue from a bad ex-
change order (in one service or one subservice). For example, the client should
communicate a name and later an account number to the service account query

but communicates the number and then the name. If the global interaction LTS
shows that no side effect action or guard occur between the two communications,
the adapter may store the information and treat differently the sequence. In this
category, we put every eLTS local transformation that avoid deadlocks without
changing the service semantics. Using hierarchisation structures the specification
and simplifies the needed dependency detection.

Beyond the extension of existing adaptation techniques to HBIDL, the inte-
gration of static and functional verification is needed to ensure that the adapters
preserve semantics. Another open issue is related to the complexity of the com-

21

 Pascal André, Gilles Ardourel, Christian Attiogbé

ponent model (multiple protocols, tied to interfaces or not, flexibility. . .) and the
capitalisation of the adaptation knowledge: should the adapted behaviour be a
new component, a new protocol for the component, a new service or a change of
the original service’s behaviour ?

References

1. P. André, G. Ardourel, and C. Attiogbé. Checking Component Composability.
In 5th International Symposium on Software Composition, volume 4089 of LNCS.
Springer, 2006.

2. P. C. Attie and D. H. Lorenz. Establishing Behavioral Compatibility of Software
Components without State Explosion. Technical Report NU-CCIS-03-02, College
of Computer and Information Science, Northeastern University, 2003.

3. S. Becker, S. Overhage, and R. Reussner. Classifying Software Component Inter-
operability Errors to Support Component Adaption. In I. Crnkovic, J. A. Stafford,
H. W. Schmidt, and K. C. Wallnau, editors, CBSE, volume 3054 of LNCS, pages
68–83. Springer, 2004.

4. D. Beyer, A. Chakrabarti, and T.A. Henzinger. Web service interfaces. In 14th in-

ternational conference on World Wide Web, WWW’05, pages 148–159, New York,
NY, USA, 2005. ACM Press.

5. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-
tion. Journal of Systems and Software, 74(1):45–54, 2005.

6. A. Brogi, C. Canal, and E. Pimentel. On the specification of software adaptation,
2003. In FOCLASA’03, ENTCS, 90 (in press).

7. C. Canal. On the dynamic adaptation of component behavior. In Canal et al. [8].
ISBN : 84-688-6782-9.

8. C. Canal, J. M. Murillo, and P. Poizat, editors. Issues on Coordination and Adapta-

tion Techniques, Oslo, Norway, June 2004. Technical Report. ISBN : 84-688-6782-9.
9. C. Canal, P. Poizat, and G. Salaün. Adaptation of Component Protocols using

Synchronous Vectors. Technical Report ITI-05-10, University of Malaga, dec. 2005.
10. L. de Alfaro and T. A. Henzinger. Interface Automata. In Ninth Annual Symposium

on Foundations of Software Engineering, FSE’01, pages 109–120. ACM Press, 2001.
11. D. Gelernter and N. Carriero. Coordination languages and their significance. Com-

mun. ACM, 35(2):96, 1992.
12. D. Giannakopoulou, J. Kramer, and S.C. Cheung. Behaviour Analysis of Dis-

tributed Systems Using the Tracta Approach. ASE, 6(1):7–35, 1999.
13. T. Gschwind, U. Aßmann, and O. Nierstrasz, editors. Software Composition, 4th

Int. Workshop, SC 2005, Edinburgh, UK, volume 3628 of LNCS. Springer, 2005.
14. G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. A. Szyperski, and

K. C. Wallnau, editors. Component-Based Software Engineering, 8th International

Symposium, CBSE’2005, volume 3489 of LNCS. Springer, 2005.
15. G. T. Heineman and H. Ohlenbusch. An Evaluation of Component Adaptation

Techniques, 1999. Technical Report WPI-CS-TR-98-20, Worcester Polytechnic
Institute, February.

16. D. Hemer. A Formal Approach to Component Adaptation and Composition. In
Twenty-eighth Australasian conference on Computer Science, CRPIT’38, pages
259–266. Australian Computer Society, Inc., 2005.

17. N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework
for Software Architecture Description Languages. IEEE Transactions on Software

Engineering, 26(1):70–93, january 2000.

22

Adapting Component Services

18. M. P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and
Directions. In WISE, pages 3–12. IEEE Computer Society, 2003.

19. S. Pavel, J. Noyé, P. Poizat, and J.C. Royer. A Java Implementation of a Compo-
nent Model with Explicit Symbolic Protocols. In Gschwind et al. [13].

20. F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. IEEE

Transactions on SW Engineering, 28(9), 2002.
21. P. Poizat, J.-C. Royer, and G. Salaün. Formal Methods for Component Description,

Coordination and Adaptation. In Canal et al. [8]. ISBN : 84-688-6782-9.
22. M. Südholt. A Model of Components with Non-regular Protocols. In Gschwind

et al. [13], pages 99–113.
23. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addi-

son Wesley Publishing Company, 1997.
24. D.M. Yellin and R.E. Strom. Protocol Specifications and Component Adaptors.

ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

23

Towards Unanticipated Dynamic Service
Adaptation

Marcel Cremene1, Michel Riveill2, and Christian Martel3

1 Technical University of Cluj-Napoca, Romania, cremene.marcel@com.utcluj.ro
2 University of Nice, France,riveill@unice.fr

3 University of Savoie, France, christian.martel@univ-savoie.fr

Abstract. Most service adaptation solutions follow an anticipated ap-
proach: the adaptation control is based on predefined service-specific
rules and strategies. These solutions will not work correctly in a context
that was not taken into account by predefined rules and strategies even
if a large context diversity was considered. This paper presents a solu-
tion based on a context-service common representation that enables us
to discover the adaptation rules and strategies rather than to fixe them
a priori.

1 Introduction

Component based software represents an important trend lately. A service is
provided by a software component architecture.

Service dynamic adaptation is necessary because the context (user profile,
physical resources and other elements) may change while the service is running.
We have chosen a forum service example in order to get a better image of this
problem. Let us suppose that the forum service was initially designed and built
for a specific context: the users speak the same language (English) and are able
to use a graphic interface (standard users), the terminal is a desktop PC (14-inch
screen at least), a pre-installed web browser and a stable Internet connection are
also available.

If the context does not fit in the initial hypotheses, the forum service will
not work correctly or it will become completely unusable. The following contexts
are such examples and assume dynamic changes: the user may have difficulties
to write messages in English and for the long phrases he may prefer to use his
native language, the user may be unable to watch the screen all the time because
his view might be busy sometimes, the terminal may be changed while using the
service, the user is traveling and his geographical/social changes as his interest
too.

The current service adaptation approaches require the prediction of all these
contexts and specify rules for each possible situation, and the service cannot
work outside these predictions. We call these approaches ”anticipated”.

Current approaches and their limitations. After analyzing several adaptation
platforms such as: ”Rainbow” [GCH+04], ”MobiPADS” [CC03], ”Gaia” [Rom03],
”Odyssey” [NSN+97], ”Xmiddle” [CEM01], ”Molene” [SA00], ”NAC” [Lem04],
”DACIA” [LP00], ”CESURE” [MR00], ”Chisel” [JV03], ”K-component” [DC01]
and others the conclusions were:

- Existent adaptive architectures are in general specialized but all present
three main parts: a)the adapted system including reconfigurable elements,
b)an observation part that monitors the context and the service state and
c)control part based on rules and strategies. This architecture model is de-
picted in figure 1; the unanticipated approach requires a service-context
meta-description and general rules and strategies.

- Existent adaptation control part follows an anticipated approach: the adap-
tation rules are service specific and the adaptation strategies are predeter-
mined; adding new rules and strategies demands user intervention.

- We have found service models and context models [W3C], [RGL04], [Bre03]
but not a unified service-context model that shows how the service and the
context interact.

- We have found numerous and diverse adaptation techniques making possible
to reconfigure dynamically the service architecture but these do not affect
the unanticipated character which is determined mainly by the adaptation
control part.

Control

Generic Rules

Observation

Service-context
description Generic Strategies

Execution platform

Service
Component
repository

Fig. 1. Proposed architecture for unanticipated adaptation

2 Unanticipated service adaptation.

Our objective is to find a solution for unanticipated and dynamic service adap-
tation. The solution must enable the service to evolve as the context evolve,

26 Marcel Cremene, Michel Riveill and Christian Martel

without stopping the service and without adding manually adaptation rules and
strategies. The figure 2 depicts a comparison between the anticipated and the
unanticipated approaches.

Anticipated adaptation (classical
approach)

Unanticipated adaptation (our
objective!)

Adaptation strategies are predetermined The best strategy is searched
Adaptation rules are service specific Adaptation rules are general and service

independent
Service architecture built to deal with
any possible and anticipated context

Service architecture evolve only if the
context change

Context evolution requires an
architecture redeployment

Context evolution is possible while the
service is running

The service developer role is complex: he
needs to anticipate and specify rules and
strategies for each adaptive service

The service developer role simplified: he
just assembles the service; any service is
adaptive and may evolve

Fig. 2. Comparison between the anticipated and the unanticipated approaches

A closer proposal to the unanticipated approach is, for instance, the semantic
component model ”CoSMoS” and the service composition platform ”SeGSeC”
proposed in the paper [FS04a,FS04b] by K. Fujii and T. Suda. The platform
takes as input a natural language service request, selects the components based
on the words semantic and connect them according to the phrase structure.
Unfortunately this proposition does not take into account a dynamic context.

The unanticipated adaptation requires to solve two technical issues:

A. Propose a ”semantic” knowledge representation about the service and its
context which describes how the service work in a specific context.

B. Propose algorithms for analyzing the previous knowledge representation in
order to discover the adaptation problems and find solutions.

3 Service-context knowledge representation

The first requirement for unanticipated adaptation is to have a service-context
description that ”explains” how the service and the context interact. In order to
make this possible we introduce the profile concept. The profile most important
role is to describe how the different entities, either logical: the components or
physical: the context elements such as users, terminals, networks, physical places
interact each other. For instance, if a user interacts with a service it would be
normal to use a same language and information type (visual, voice).

In the figure 3 we present a three layers model that describes a forum service
functioning in a context composed by a several users and a terminal. The model
is described from the point of view of a certain user.

 Towards Unanticipated Dynamic Service Adaptation 27

Components
layer

Profiles
layer

Context
layer

HMI S

V

C
F

PU

PT

PS

PV

PC
PF

Co1

Co2

Fig. 3. Service and context description - the three layers model

Context layer. The context layer contains elements such as: users, termi-
nals, networks, environment and others. In order to simplify the service-context
unification, we extend the component concept also for the context elements, for
instance a user is a component providing HMI.

Components layer. The component’s layer contains the services/components
described using existent models: CCM (CORBA Component Model) [Gro99] and
FractalADL [BCS02]. The composition is recursive (Fractal model [BCS02]). The
forum service S is composed by three components: C is composer or message ed-
itor, V is message viewer and F is forum server. The components Co1, Co2 are
observer components or context detectors. The service HMI (Humain Machine
Interface) is composed by the C HMI and the V HMI.

Profiles layer. The profiles layer unifies service context models. The profile
model was determined starting from the interactions that may exist between
entities (components and context elements). Two aspects were revealed being
the most relevant: the resources (memory, screen surface, network connections)
and the information that is exchanged between entities. The profile model is
depicted in the figure 4, it’s elements are:

- Global attributes, i.e. memory, OS type,
- Flows of information between an input port and an output port of the com-

ponent. A flow example is a message created at the HMI port and as event.
- Flow attributes associated with the information, i.e. message language, stream

encoding, file type, etc.

Each profile attribute have: a name, a definition domain, a composition op-
erator and a validation operator. For instance, we may have: attribute name
”langue”, domain {FR, ED, DE, , *, ?}, composition attribute ”:=” (because

28 Marcel Cremene, Michel Riveill and Christian Martel

Component
attributes

Flow (IN)
attributes

Flow (OUT)
attributes

Flow

Fig. 4. Profile model

the value is transferred from one component to another), comparison attribute
”=” (because two entities are compatible if they use a same language).

An automatic profile composition is necessary in order to create the service-
context description. A component ’C’ composed by a component ’A’ and a com-
ponent ’B’ will have a profile given by the profiles of A and B. The figure 5
depicts the profile attribute composition that is done attribute by attribute.

Profiles

PU

PT

PS

PV

PC
PF

« memory »

+
<

« language »

:=
=

T
C

V
F

offers

consumes

consumes

consumes

Uin
Vin Vout

Cin Uout Cout Fin

Fout

EN FR
EN

Fig. 5. Profiles composition

The ’memory’ is a global attribute. We use a graph that has as nodes the
entities (components, context elements) related to memory. The arcs correspond
to the relation existent between the entities from the memory point of view:
components placed on a machine will consume machine memory. In our case the
components C and V are installed on the client and F is installed on the server

 Towards Unanticipated Dynamic Service Adaptation 29

machine. The graph has a recursive structure: a node may be expanded because
an entity described by a profile may be composed by other entities.

The ’language’ is a flow attribute. We use another graph where the nodes
are associated with the component’s ports and the arcs indicate the information
flows. If the profile does not change the attribute value, we keep and propagate
the initial value through the graph arcs.

4 Adaptation analyze and solution search algorithms

The second issue of unanticipated adaptation is to use the service-context knowl-
edge representation in order to discover the adaptation problems and find so-
lutions. The adaptation control supposes the following three steps: a) profile
validation, b) strategy selection, c) strategy application.

Dysadaptation problems that may exist between the service and the context.
They are verified using the validation operators described in figure 5. Our exam-
ple uses ’=’ for the attribute ’language’ and ’<’ for the attribute ’memory’. If
the service consumes MS bytes and the terminal offers an MT bytes space then
the composition is valid only if MS < MT. The validation procedure is applied
attribute by attribute. We build the attribute graph and, for each arc in the
graph that connects a context node with a service node, we apply the validation
operators. A problem list is created finally, each problem being specified by: an
attribute name, attribute values, validation operator.

The strategy selection takes into account a finite set of service-independent
strategies that imply the following operations over the components: parametriza-
tion, insertion, replacement, elimination and migration. The automatical selec-
tion between strategies is not yet solved in our proposition, a solution may be
to check all the possibilities and to select the less expensive (time, resources).

We have tested the insertion and the replacement strategy. The insertion
requires to solve two problems: a)decide what component needs to be inserted
and b)determine the insertion point. In order to solve the problem a) we use the
problem list resulted from the validation procedure and, for each problem we
search all the components that may solve that problem. If we have a problem
defined by: attribute ’language’, context value ’FR’, service value ’EN’, operator
’=’ we need to add an information treatment that transforms an ’FR’ input to
an ’EN’ output. The insertion point is determined using a search algorithm that
analyzes the attribute graph, figure 6.

The algorithm tries to insert the solution component by checking the com-
ponent interfaces compatibility. In this case, if it is no possible to insert the
component between the first two components (the user HMI and the service
HMI) the algorithm goes deeply into the service structure and tries to insert
the solution component between other existent components, following the graph
branches.

The control part, figure 7, uses a service-independent table containing the
attributes definitions and operators for composition and validation.

30 Marcel Cremene, Michel Riveill and Christian Martel

« language »

:=
=

Uin
Vin Vout

Cin Uout Cout Fin

Fout

EN FR
EN

Fig. 6. Adaptation validation and resolution for a ”language” related problem

=:={FR, EN,.. ?,*} language

<+0…Max memory ∩≠Ø∩{voice, graph..} Ihm_type

=:={FR, EN,.. ?,*} language

<+0…Max memory ∩≠Ø∩{voice, graph..} Ihm_type ∩≠Ø∩{voice, graph..} Ihm_type

Execution platform

Service

Controller:
- profile validation
algorithms
- strategy selection
- strategy application and
solution search

Component
profiles updating

Fig. 7. Functioning and extensibility

Each component must have a profile. The component profiles must be spec-
ified by the component developers and the adaptation depends on the profiles
content: if an attribute is not present in the profile we cannot take this attribute
in account for the adaptation process. The extension requires to add new lines
in the attribute table and to update the existent component profiles that is still
a drawback of our approach because both operations requires intervention of a
human operator.

5 Prototype

The figure 8 depicts the forum GUI. The user log in, the platform detects a
conflict between the user profile (previously stored) an the service profile because
the user language and the service language are different.

The platform proposes to user two possibilities: use a translator or leave the
service unchanged. Supposing the user chose to use the translator from French
to English, his messages are translated. The prototype has two versions: in the
first one the user language is supposed to be stored in a database, in the second
the language is detected at each message.

 Towards Unanticipated Dynamic Service Adaptation 31

a) b) c)

Fig. 8. Forum UI

6 Conclusions and perspectives

In this paper we have proposed a solution for unanticipated and dynamic service
adaptation. The majority of the existent adaptation platforms use an anticipated
approach: the adaptation rules and strategies are service specific and specified a
priori by a human expert. This fact is a service autonomy limitation.

In our proposal the service and the context are described using a unified
model that allows the machine to reason about their interactions and possible
dysadaptation. We propose: a profile model describing components and context
elements behavior, composition operators that make possible to compute auto-
matically the profiles of a composite component and validation operators that
allow us to detect the dysadaptation problems. Based on detected problems
description we search for external components as possible solution. Until now
we have tested only the component insertion. A drawback is that the profiles
updating still need human operator intervention.

The proposed solution is an alternative to the service specific adaptation
control used in the majority of the existent proposals and use service independent
rules and strategies.

In perspective we intend to focus on the following problems: strategy selec-
tion, algorithms improvement, test more complex examples, develop the profiles
algebra, introduce AI tools such as logical systems, inference engines, feedback
based learning and others.

References

[BCS02] E. Bruneton, T. Coupaye, and J. B Stefani. Recursive and dynamic software
composition with sharing. In ECOOP Workshop on Component-Oriented

32 Marcel Cremene, Michel Riveill and Christian Martel

Programming, pages ??–??, Malaga, Spain, 2002.
[Bre03] P. Brezillon. Context-based modeling of operators practices by contextual

graphs. In 14th Mini Euro Conference: Human Centered Processes, pages
129–137, May 2003.

[CC03] Alvin T. S. Chan and Siu Nam Chuang. Mobipads: A reflective middle-
ware for context-aware mobile computing. IEEE Trans. Software Eng.,
29(12):1072–1085, 2003.

[CEM01] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. Reflective middle-
ware solutions for context-aware applications. In Third International Con-
ference on Metalevel Architectures and Separation of Crosscutting Concerns,
pages 126–133, Springer-Verlag London, UK, 2001.

[DC01] J. Dowling and V. Cahill. The k-component architecture meta-model for
self-adaptive software. Technical report, Trinity College Dublin, Computer
Science Department, Dublin, Ireland, 2001.

[FS04a] Keita Fujii and Tatsuya Suda. Component service model with seman-
tics (cosmos): A new component model for dynamic service composition.
In International Symposium on Applications and the Internet Workshops
(SAINTW’04), pages 348–355, Tokyo, Japan, 2004.

[FS04b] Keita Fujii and Tatsuya Suda. Dynamic service composition using semantic
information. In 2nd International Conference on Service Oriented Comput-
ing (ICSOC 04), pages ??–??, New York City, NY, USA, 2004.

[GCH+04] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley R. Schmerl,
and Peter Steenkiste. Rainbow: Architecture-based self-adaptation with
reusable infrastructure. IEEE Computer, 37(10):46–54, 2004.

[Gro99] Object Management Group. Corba components : Joint revised submission.
Technical report, Sun Microsystems Inc. 2550 Garcia Avenue, Mountain
View, CA 94043, http://java.sun.com/beans, August 1999.

[JV03] Keeney John and Cahill Vinny. Chisel: A policy-driven, context-aware,
dynamic adaptation framework. In Proceedings of IEEE 4th International
Workshop on Policies for Distributed Systems and Networks, pages 3–13,
Lake Como, Italy, June 2003.

[Lem04] Tayeb Lemlouma. Architecture de Ngociation et d’Adaptation de Services
Multimedia dans des Environnements Heterogenes. PhD thesis, L’Institut
National Polytechnique, 2004.

[LP00] Radu Litiu and Atul Prakash. Challenges in using a mobile component
framework to develop adaptive groupware applications. In Proceedings
of CBG2000, the CSCW2000 workshop on Component-Based Groupware,
Philadelphia, Pennsylvania, USA, December 2000.

[MR00] Philippe Merle Michel Riveill. La programmation par composants. Tech-
niques de l’Ingnieur - Informatique, H2759, December 2000.

[NSN+97] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric
Tilton, Jason Flinn, and Kevin R. Walker. Agile application-aware adapta-
tion for mobility. In Sixteen ACM Symposium on Operating Systems Prin-
ciples, pages 276–287, Saint Malo, France, 1997.

[RGL04] Gustavo Rossi, Silvia Gordillo, and Robert Laurini. Gnration de services
dpendant du contexte pour des applications mobiles. In Proceedings of Mo-
bilit et Ubiquit 2004, Premires Journes Francophones, pages 3–13, Nice,
Sophia-Antipolis, Essi (Ecole Suprieure en Sciences Informatiques), June
2004.

[Rom03] Manuel Roman. An Application Framework for Active Space Applications.
PhD thesis, University of Illinois at Urbana-Champaign, 2003.

 Towards Unanticipated Dynamic Service Adaptation 33

[SA00] M.T. Segara and F. Andr. A framework for dynamic adaptation in wireless
environments. In Proceeding of TOOLS Europe 2000, Mont St. Michel, St.
Malo, France, June 2000.

[W3C] W3C. Recommendation 15 january 2004, composite capability/preference
profiles (cc/pp): Structure and vocabularies 1.0. Technical report, WWW
Consortium.

34 Marcel Cremene, Michel Riveill and Christian Martel

Dynamic Adaptation Using Contextual Environments *

Javier Cámara, Carlos Canal, Javier Cubo, Ernesto Pimentel

Dept. of Computer Science, University of Málaga (Spain)
{jcamara,canal,cubo,ernesto}@lcc.uma.es

Abstract. By dynamic adaptation, we mean the ability to modify a specifica-
tion at run-time. This provides a system with the skill to dynamically alter its
behaviour while it is running, depending on the (changing) conditions of the
environment. In this work we show how to perform dynamic adaptation by
means of contextual environments, which define flexible adaptation policies.
Thus, our main goal is to describe a context-dependent mapping between the
interfaces of the components being adapted, as opposed to static mappings pre-
sented in previous works. We present a case study in order to illustrate the pro-
posal. We also discuss the improvements that our current proposal represents in
comparison with previous works, as well as some open issues.

1 Introduction

Software Adaptation (SA) is a key issue for the development of a real market of com-
ponents for the advance of software reuse. The main aim of Software Adaptation is to
enhance the flexibility and maintainability of systems [8]. The old notion of develop-
ing a system by writing code has been replaced here by assembling existing compo-
nents. Thus, in an ideal scenario, component-based systems would be built from pre-
produced Commercial-Off-The-Shelf (COTS) components, by plugging together per-
fectly compatible components, which in conjunction achieve the desired functional-
ity. However, it turns out that the constituent components often do not fit one another
when they are going to be reused, and adaptation has to be done to eliminate the re-
sulting mismatches [2]. Therefore, the software composition always requires a certain
degree of adaptation [14], and its purpose is to ensure that conflicts among compo-
nents are minimised.

Here, we consider the problem of adapting mismatching behaviour that compo-
nents may exhibit. The notion of adaptor was introduced formally in [17], being de-
fined as a software entity capable of enabling components with mismatching behav-
iour to interoperate. Component-oriented platforms like CORBA, J2EE or .NET ad-
dress several adaptation issues, allowing a certain degree of interoperability between
software components. Indeed, they provide convenient ways to describe signatures
using Interface Description Languages (IDLs), but they offer a quite limited and low-
level support to describe the concurrent behaviour of components, since solving all
signature problems does not guarantee that the components will suitably interoperate.
In fact, mismatch may also occur at the protocol level, due to the ordering of ex-
changed messages, and also to blocking conditions [15], that is, because of behav-

* This work has been partly supported by the project TIN2004-07943-C04-01 funded
by the Spanish Ministry of Science and Technology (CICYT).

ioural mismatch of the (possibly) heterogeneous software components involved. Fur-
thermore, component interoperability should be studied in general at the semantic
level, but this is quite an ambitious and broad problem, very difficult to tackle in full.
As a first target, recent research effort [1,7,13] concentrates on the interoperability of
reusable components at the behavioural level, since the basis for the verification of
system properties consisting on two or more heterogeneous components is a well-
defined formal description of component behaviour.

Our current proposal focuses in defining flexible adaptation policies by means of
contextual environments, providing a system with the ability to dynamically alter its
behaviour during its execution depending on the (changing) conditions of the envi-
ronment. This is a broader scenario than that presented in our previous works [4,5],
where the mapping was static or immutable. Hence, it could not control the dynami-
cally changing conditions of the system. It is interesting mentioning, that by dynamic
adaptation, we mean the ability to change a specification at run-time.

The structure of this paper is the following: In Section 2, we briefly present the
module calculus we use, and we draw a formal notation that defines our proposal.
Section 3 presents a case study in order to illustrate our approach, indicating the im-
provements in comparison with previous works. Finally, Section 4 draws up the main
conclusions of this paper and sketches some future tasks that will be accomplished to
extend its results.

2 Overview of the proposal

Recent works in the field of Software Adaptation have addressed several problems
related to signature and behavioural mismatch. In this section, we outline an approach
for dynamic software component adaptation.

The first step needed to overcome behavioural mismatch is to let behaviour in-
formation be explicitly represented in component interfaces. Typing component be-
haviour and service specification applied in recent works [1,6,10,11,12] have been
described both in terms the process algebra and of session types, with their uses, ad-
vantages and drawbacks discussed in works as [5,16]. A suitable formalism to express
adaptor specifications is also required. The desired adaptation will be expressed by
simply defining a set of (possibly non-deterministic) correspondences between the
actions provided by the two (or more) components to be adapted.

A limitation of the adaptation technique described in [4] is that it is somewhat
rigid, in that it only succeeds if there is an adaptor that strictly satisfies the given
specification. Indeed, in many situations an adaptor could be nevertheless deployed
by weakening some of the requirements stated in the specification. Hence, we ex-
tended the aforementioned methodology precisely to overcome this limitation and
presented the results in [5,6]. The idea was featuring a secure, soft adaptation of third-
party software components when the given adaptation requirements could not be fully
satisfied. Technically this was achieved by exploiting the notion of subservice (substi-
tution of a service for another one which features only a limited part of its functional-
ity) to suitably weaken the initial specification when needed. Correspondingly, com-
ponent interfaces are extended with a declaration of their subservice relations as well

36 Javier Cámara, Carlos Canal, Javier Cubo and Ernesto Pimentel

as with the access rights needed to access the component services. But a pending
question in that approach was how to deal with access rights that may change dy-
namically.

2.1 A module calculus for dynamic adaptation

In this proposal, we briefly describe context-dependent flexible mappings in order to
solve the problem of dynamic component adaptation, overcoming the limitations of
static mappings presented in [4,5,6]. Indeed, this work aims to achieve a richer ex-
pressiveness and flexible mappings in contrast with the reduced expressiveness of
immutable mappings from previous works. For that purpose, our proposal is based on
the module calculus presented in [3]. The main goal is to obtain a dynamic mapping
through the use of contextual environments.

The module calculus defines a small set of operators over environments and mod-
ules, designed to express various encapsulation policies, composition rules, and ex-
tensibility mechanisms. Using these operators, it is possible to specify a set of module
combinators (composing and manipulating modules) that capture the semantics of
modules in different object-oriented programming languages. This module calculus
employs the primitive notion of environment (mapping from some domain D to an
extended range { }*R R= ∪ ⊥), and modules are abstractions over environments.

We employ the module calculus in order to define the formalism to express adap-
tor specifications. Aforementioned, we propose a methodology, briefly presented in
the following section, to obtain dynamic mappings depending on the changing condi-
tions of the environment, which will permit to approach the problem of dynamic
component adaptation using contextual environments and modules.

2.2 Drawing the proposal

This Section is devoted to outline a brief description of our proposal. The defini-
tion of the set of operators over environments and modules, mentioned in Section 2.1,
falls out of the scope of this work, and it is already presented in [3]. Table 1 shows an
informal definition which describes the approach we use in order to obtain a context-
dependent dynamic mapping between the interfaces of the components being adapted.

In our proposal, we suppose that the behavioural interface of the components will
be given by agent process specifications in some process algebra, although there are
other alternatives for the representation of behavioural interfaces, such as Labelled
Transition Systems (LTS) [9], we have chosen process algebras because they allow
the specification of behavioural interfaces concisely, and at a higher level. Our adap-
tor specifications will map message names (actions), contextually depending on the
agent for which they are defined. Correspondences between messages in both com-
ponents are established. We have different options in order to map these correspon-
dences: a message in one part (component) may have no correspondence in the other
part (component); or one or more messages that belong to one of the components may
correspond to either only one action or different actions in the other component.
Then, it is necessary defining an environment as a function mapping from 2L (parts of

 Dynamic Adaptation Using Contextual Environments 37

L) to 2R (parts of R), where L and R are the alphabets used by the components. With
the objective of simplifying the notation, when there is a single action mapped we
will denote it without {}. The symbol⊙ represents function composition.

Table 1. Adaptor specifications using the module calculus described in [3].

Actions and Agents
Actions I/O , , ,...a b c

Agents (), , , ,...P Q R S Agent∈

Environments and Modules
Environment

() 2 2
L REε ∈ = →

Contextual Environment
(mapping)

() 2 2
L R

Agentγ ∈ Γ = → → Γ⊙

() ()() () ()
()

 2
 /

L
if

if E Agent
if Agent

ε α α
γ ε µ γ α

µ α α
 ∈∈Γ ∃ ∈ ∧ ∈ → Γ =

∈

Module (mapping) () *

m ∈ Μ = Γ → Γ

We represent environments as finite sets of mappings. For example:

{ } { }{ } 1, 2, 3, 4 , 5a b cε = ֏ ֏ ֏ ֏

is an environment that maps a to 1, b to 2, c to 3 and 4, and defines no correspon-
dence for 5.

On the other hand, we represent contextual environments as functions taking either
2L or an Agent as domain, and returning 2R or a contextual environment as image
(note that this responds to recursive definition). An example is the following:

{ }{ }{ }{ }{ } 1, 3, 6, 4,5 , 2a Q c R S a c bγ = ֏ ֏ ֏ ֏ ֏ ֏ ֏ ֏

is an contextual environment where Q, R and S are agent (process) definitions in the
behavioural specification of the components being adapted. This contextual environ-
ment maps a to 1. In the context of Q: c is mapped to 3; and in the context of R:
within the context of S, a is mapped to 6, and c to 4 and 5. Out of those contexts, b is
mapped to 2.

Finally, we represent modules as functions taking a contextual environment and re-
turning a contextual environment. Note that this definition is extended using *Γ as
image since a contextual environment may be empty (it defines no correspondences
between messages). This will be represented by {}. For instance:

{ }{ } . 1, 3, ,m a Q c R b Qcλγ γ γ= ֏ ֏ ֏ ֏ ֏

As we see inm, theγ parameter makes it possible for entries in a module to look
up other bindings in the parameter contextual environment. In this case, the mapping
is the following: a is mapped to 1 (everywhere); within the context of Q, c is mapped
to 3, and within the context of R is mapped to the contextual environmentγ . Last, b
is mapped to the result applying within the contextual environment the mapping for c
in the context of Q (if the action c has no correspondence in the context of Q within
the contextual environmentγ , then c will be mapped to {} (empty)).

38 Javier Cámara, Carlos Canal, Javier Cubo and Ernesto Pimentel

3 Case study and comparison to previous works

We present a simple case study in order to illustrate the methodology of this proposal,
and then we discuss the improvements this work purports in comparison with previ-
ous ones. The example consists on a simplified Video-on-Demand (VoD) system
taken from [5], which is a Web service providing access to a database of movies. In
Table 2, we present the VoD behavioural specification and the client interface. We
assume a typical scenario where a Client component wishes to use some of services
offered by the VoD system.

Table 2. Specifications of VoD service: system behaviour interface and client interface.

VoD: behaviour specification
() () ()

()
? . ? . ! .

 . .

VoD login id search title list movies

Guest Fullτ τ
=

+

()
()

()

? .

 ? .

 ? . 0

Guest view item Guest

subscribe id Full

logout id

=

+

+

()
()

()
()

? .

 ? .

 ? .

 ? . 0

Full view item Full

download item Full

unsubscribe id Guest

logout id

=

+

+

+

Client: adaptation specification
() ()!(). ! . ? . '

' !(). '

 !(). '

 !(). '

 !(). 0

Client hello id menu info list Client

Client play title Client

record title Client

switch id Client

quit id

=
=
+
+
+

In the VoD system, there are two different profiles of clients depending on certain

access rights. Thus, there exist registered and unregistered users. The latter (guest) are
only allowed to search for a movie in the VoD catalogue, view it, and quit the system,
while the former are those paying a regular fee (full clients) and they can also
download a movie in addition to allowed actions for guest users. We will take the two
profiles as the contexts of the system. The client privileges could be changed through
actions switch (the client requests to the VoD system the modification of its privi-
leges); and the respective either subscribe (the client is subscribed to the full profile)
or unsubscribe (the client goes back to the guest profile).

The client will ask for the VoD interface, and then submit its service request in the
form of an adaptor specification. A correspondence series between actions belonging
to the server and the client will be established, by means of a contextual mapping as
described in Section 2.1. For each request, a session (Guest or Full) is opened accord-

 Dynamic Adaptation Using Contextual Environments 39

ing to the user privileges. When a client opens a session with the VoD system, it fol-
lows a connection procedure which associates the session with one of the two profiles
described, depending on the identity of the client which will be given by the mapping
from hello to login. The “id” parameter will indicate the user identifier, containing
also the information about privileges (it would be also possible hasτ as authentica-
tion). Then, a Guest or Full session is thrown and the Client could perform any per-
mitted action (play, record), or it could also dynamically change its access rights
(switch), obtaining a new context with a different behavioural interface. Finally, the
client ends its session (quit). When this session has finished, the VoD server waits for
a new client connection.

For example, once a specific movie has been selected for viewing, guest users
might start its visualization (view), while full users might also decide to record it
permanently in their computers (download). Thus, if a client begins its execution with
guest profile (Guest context in Table 3), this will only have certain privileges, but if it
changes its profile to full client, it will acquire new permissions corresponding to the
Full contextual environment (represented in Table 3). Finally and following the se-
quence, the process (Guest/Full) finalizes its session.

In the mapping shown in Table 3, we presented the contextual adaptation between
both components: VoD service and Client. Associations among messages of the com-
ponents are established. Action play is always mapped to view; within the context of
Guest process (agent), record is mapped to view, and switch to unsubscribe. On the
other hand, within the context of Full process, record is mapped to download, and
switch to subscribe. Therefore, the access rights can change at run-time (actions
switch and unsubscribe/subscribe), depending on Client context (Guest, Full), and
accordingly it will dynamically change the mapping.

Table 3. Dynamic adaptation with contextual environments (client profiles).

Mapping: correspondence of actions (and data)
() (){
() ()

() ()
() ()

() (){

 . ! ? ,

 ! ? " " ,

 ? ! ,

 ! ? ,

 ! ? ,

M hello id login id

menu search

info string list string

play title view item

Guest record title view item

λγ= ֏

֏

֏

֏

֏ ֏

() ()}
() (){

() ()}
() ()}

 ! ? ,

 ! ? ,

 ! ? ,

 ! ?

swith id unsubscribe id

Full record title download item

switch id subscribe id

quit id logout id

֏

֏ ֏

֏

֏

An improvement of the notation proposed in this paper in comparison with previ-

ous works is that this new technique intends not only to get a dynamic adaptation by
the fact the system alters its behaviour at run-time, but also because of the adaptation
(mapping) changes during the execution of the system, depending on changing condi-
tions of the environment (in this case, depending on client profiles). Therefore we

40 Javier Cámara, Carlos Canal, Javier Cubo and Ernesto Pimentel

obtain an adaptation in which a message is mapped to different actions, according to
the state of the environment (context). However, in [4,5] the mapping was static, so a
command was always translated to the same sequence of messages (actions).

4 Conclusions and open issues

We have presented throughout this paper a description of a formal notation for con-
textual component adaptation. The purpose of this new technique is to obtain dy-
namic mappings between the interfaces of the components being adapted, through
contextual environments that define flexible adaptation policies. In our previous
works, this idea was already presented, although from a different point of view (sub-
service and access right). With this approach, we intend to overcome some of our
previous constraints, making a significant advance to find a solution by contextual
adaptation, for issues like dynamic access rights (user privileges).

We have employed a module calculus defined in [3] to achieve the expressiveness
required for that message translation between the components changes depending on
the conditions of the system. In order to exemplify our proposal we have presented a
case study relative to a Video-on-Demand (VoD) system.

However, the proposed notation has still certain limitations. It is worth noting that
our proposal constitutes a modular and dynamic approach of specifying the required
adaptation between just two software components. Thus, an interesting extension is to
consider adaptation between three or more interoperating components, and the com-
position among them. Likewise, it will be important to take into account the deriva-
tive problems of recursion in this new proposal, but it will be an open issue to deal
with in future work. An issue to be studied more profoundly is the way to alter the
environment conditions for which the mapping changes at run-time.

In addition, in our future work we will take into account the possibility that the
services may not be available at some point during the execution. Another important
issue is the component interoperability at the semantic level, which is a complex task
to study. It would also be interesting to introduce security policies for the dynamic
adaptation which we have proposed in this work.

The distinguishing aspect of the notation used is that it produces a high-level, par-
tial specification of the adaptor required. A specific adaptor component will be gener-
ated via a fully automated procedure. The adaptor must guarantee the safe interaction
of the adapted components (verification of properties), making sure that they will
never deadlock during an interaction session. Furthermore, an interesting future work
will be to develop an adaptor generation process, founded on the algorithm presented
in [4], producing an adaptor which provides the maximum possible flexibility.

 We look forward to contribute in the research on adaptation issues, so that we can
continue advancing in this formal technique. Although we will also explore other
possible ways to describe highly expressive mappings for solving component mis-
match.

 Dynamic Adaptation Using Contextual Environments 41

References

1. Allen, R., Garlan, D.:A Formal Basis for Achitectural Connection. In ACM Trans. on Soft-
ware Enginnerring and Methodology, 6(3):213-49, ACM Press, 1997.

2. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: Towards an
Engineering Approach to Component Adaptation. Dagstuhl Seminar 04511: Architecting
Systems with Trustworthy Components. Springer-Verlang, LNCS 3938, 2006.

3. Bergel, A., Ducasse, S., Nierstrasz, O.: Analyzing Module Diversity. Journal of Universal
Computer Science, vol. 11, no. 10, pp. 1613-1644, November 2005.

4. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation. Journal of
Systems and Software, 74(1):45-54, Elsevier, 2005.

5. Brogi, A., Canal, C., Pimentel, E.: Component adaptation through flexible subservicing.
Science of Computer Programming, Elsevier, 2006 (in press).

6. Brogi, A., Canal, C., Pimentel, E.: On the semantics of software adaptation. Science of
Computer Programming, vol. 61, no. 2, pp. 136-151, Elsevier, 2006.

7. Canal, C., Fuentes, L., Pimentel, E., Troya, J.M., Vallecillo, A.: Adding roles to CORBA
objects. IEEE Transactions on Software Engineering, 29(3):242-260, March 2003.

8. Canal, C., Murillo, J.M., Poizat, P.: Software adaptation. L’Objet, Special Issue on the 1st
International Workshop on Coordination and Adaptation of Software Entities (WCAT’04),
vol. 12, no. 1, pp. 9-31. Hermes, 2006.

9. Canal, C., Poizat, P., Salaün, G.: Synchronizing Behavioural mismatch in software composi-
tion. In proc. of Formal Methods for Open Object-Based Distributed Systems
(FMOODS’06), Italy, June 2006. Springer-Verlag.

10.Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines for
structured communication-based programming. In European Symposium on Programming
(ESOP’98), volume 1381 of LNCS, pages 122-138. Springer, 1998.

11.Inverardi, P., Tivoli, M.: Automatic synthesis of deadlock free connectors for COM/DCOM
applications. In ESEC/FSE’2001. ACM Press, 2001.

12.Magee, J., Eisenbach, S., Kramer, J.: Modeling darwin in the π -calculus. In Theory and
Practice in Distributed Systems, LNCS 938, pages 133-152. 1995.

13.Magee, J., Kramer, J., Giannakopoulou, D.: Behaviour analysis of software architectures. In
Software Architecture, pages 35-49, Kluwer, 1999.

14.Nierstrasz, O., Meijler, T.D.: Research Directions in Software Composition, ACM Comput-
ing Surveys, vol. 27, no. 2, 1995, pp. 262–264.

15.Vallecillo, A., Hernández, J., Troya, J.M.: New issues in object interoperability. In Object-
Oriented Technology, LNCS 1964, pages 256-269. Springer, 2000.

16.Vallecillo, A., Vasconcelos, V.T., Rabara, A.: Typing the behaviour of objects and compo-
nents using session types. Electronics Notes in Theorical Computer Science (ENTCS),
68(3), 2003.

17.Yellin, D.M., Strom, R.E.: Protocol specifications and components adaptors. In ACM
Transactions on Programming Languages and Systems, 19(2):292-333, ACM Press, 1997.

42 Javier Cámara, Carlos Canal, Javier Cubo and Ernesto Pimentel

AO approaches for Component Coordination?

Lidia Fuentes and Pablo Sánchez

Dpto. de Lenguajes y Ciencias de la Computación
University of Málaga, Málaga (Spain)

{lff,pablo}@lcc.uma.es

Abstract. Software components interact according to a coordination
protocol that governs the interchange of messages among them. Usu-
ally the coordination concern is entangled with the base functionality of
components. Separating coordination patterns from the base functional-
ity of components improve the opportunities to reuse them and makes
component composition easier. Aspect-Oriented Software Development
(AOSD) has been demonstrated to be a powerful technology to achieve
this goal. Following an AO approach, this paper shows the benefits of
separating the coordination concern as an aspect.

1 Introduction

Modern software development techniques have focused on increasing software
reusability, especially the component technologies. Following the CBSD (Com-
ponent Based Software Development) approach [1], applications are developed
by assembling prefabricated components, usually implemented by third-parties
and which are available in binary form. But software components are not iso-
lated entities, they usually interact according to a coordination protocol that
governs the interchange of messages and data among them. Therefore, a soft-
ware component has to perform two different tasks: (1) computation, i.e. its base
functionality, and (2) coordination, i.e. its interactions with other components
in order to interoperate with them.

Coordination is a key issue in CBSD because it defines how prefabricated
components can interoperate, but considering that each of them interacts fol-
lowing a specific coordination protocol which specifies the kind of messages in-
terchanged and how this is ordered. In traditional component platforms, like
EJB [2] or CCM [3]. The coordination is usually hard coded as part of the
component, so it can be said it is tangled along with its base functionality
(computational part). In addition, the coordination protocol is scattered over
the components involved in a given interaction. Consequently, the coordination
concern crosscuts components base functionality, i.e. its computational part,
which drastically decreases their reusability. In addition, the development of ap-
plications by component composition becomes more complex, because when a

? This work has been supported by Spanish MCYT Project TIN2005-09405-C02-01
and EC Grant IST-2-004349-NOE AOSD-Europe.

 Lidia Fuentes and Pablo Sánchez

component is inserted inside an application the other components have to agree
with the new component interaction protocol. If some incompatibility appears,
the component must be previously adapted, if it were possible. Therefore, by
separating coordination from computation the component reusability increases,
because just the component computational part is reused, i.e. no coordination
protocol is additionally imposed. Since separating coordination from computa-
tion makes component composition easier, applications can also be developed
more easily by plugging prebuilt components. In addition, separating coordina-
tion from computation leads to a better software modularization, making system
development, maintenance and evolution easier.

Aspect-Oriented Software Development (AOSD) is a new emerging technol-
ogy which improves the separation of concerns by means of encapsulating cross-
cutting concerns in special units, named aspects and providing mechanism to
compose them with base units. Coordination, since it has been identified as a
crosscutting concern, can be managed as an aspect. Thus, AOSD can help to sep-
arate coordination from computation, increasing component reuse. Several AO
component platforms have appeared in recent years [4]. This paper describes
common foundations of these platforms to manage coordination as an aspect,
separating coordination from computation.

After this introduction this paper is structured as follows: Section 2 shows our
case study. Section 3 briefly introduces aspect-orientation and how coordination
can be encapsulated in an aspect, shows an specific example using the JAsCo [3]
platform and also comment some special features provide by specific platforms
which make coordination encapsulation easier. Finally, Section 4 outlines some
conclusions and open issues.

2 Motivating example

The case study used throughout this paper, shown in Figure 1, is based on the
Auction System case study1. It is compounded of Buyer and Seller components,
whose interfaces are shown in Figure 1.a. Once the seller has initiated an auction,
different buyers can join it and bid for the auctioned item, following a specific
auction protocol. Figure 1.b illustrates the protocol for a one-bid private auc-
tion. The different buyers propose a bid; the highest bid is the winner and the
corresponding buyer receives an acceptance notification. The rest of the buyers
receive a rejection and they do not receive any information about the identity
of the winner or the value of the winner bid.

There are multiple auction protocols2. Therefore, the coordination protocol
could change according to different contexts or requirements. For example: (1)
When the winner is decided, the auction could be made public, and all the
buyers will be informed about who is the winner. Then, instead of sending a re-

jectProposal() to the non-winners buyers, the Seller sends an acceptProposal(winner)

message to all of them. (2) Instead of using the one-bid auction protocol, the
1 http://lgl.epfl.ch/research/omtt/auction.html
2 http://en.wikipedia.org/wiki/Auction

44

AO approaches for Component Coordination

b1 : Buyer s1 : Seller b2 : Buyer

join(b1)

join(b2)

callForProposal(300)

callForProposal(300)

propose(b1, 350)

propose(b2, 375)

rejectProposal()

acceptProposal(b2)

a) b) c)

Fig. 1. Auction System: a) Component Structure b) Private one-bid auction c) STD
for the Interaction Protocol

English auction protocol could be adopted. In this protocol, when a new bid
increasing the current item price is placed, all the buyers are informed they can
make new bids increasing the price again. Then, the Seller has to sent a callFor-

Proposal(newPrice) message to all the buyers in order to inform them about the
new received bid.

If coordination and computation are encapsulated in the same component, a
Seller for the scenario of Figure 1.b could not be reused as is in Auction Systems
with the protocol changes described above. By separating coordination from
computation, the Seller and the Buyer components can be reused in applications
using different auction protocols. These components will perform the computa-
tional part, which would be the same for all auction applications. The coordina-
tion part will be responsible for managing the coordination protocol, which can
be described by means of a state transition diagram (STD) as shown in Figure
1.c. Thus, the entity encapsulating the coordination only would have to imple-
ment a STD. If the implementation of the computational part of an Auction
System changes but the auction protocol is maintained, the coordination entity
could then be reused. Separating coordination protocol and encapsulating it in
a external entity improves its modularization, which makes component-based
system composition easier.

3 Coordination in AO component platforms

In this section, how coordination can be separated from computation in AO com-
ponent platforms is described. Firstly, AOSD principles are outlined. Secondly,
how coordination can be managed as an aspect is shown using the JAsCo [5]
platform as an example. Finally, special features of AO platforms which help to
manage coordination are briefly described.

45

 Lidia Fuentes and Pablo Sánchez

3.1 AOSD

Recently, several works have combined AOSD and CBSD approaches with suc-
cess. Aspects are used to implement crosscutting-concerns that would other-
wise be spread over several components, making application maintainability and
evolution more difficult. Typical examples of aspects are security, transactions,
persistence, etc. An aspect basically executes a piece of code (advice) when a
condition (denoted by a pointcut) is satisfied during an application execution.
The execution points of an application that can be intercepted are called join
points. Each platform offers its own set of join points. When aspects are ap-
plied to components, join points must only refer to the behaviour exposed by
the component public interface, like component creation/destruction, message
incoming/outcoming, event throwing, etc. In order to obtain the final applica-
tion, aspects and base components must be woven. Some platforms perform the
weaving at compile time, and others do it dynamically since aspects are applied
at load-time or even at run-time.

The key idea is to encapsulate all the coordination code in an aspect. This
aspect would be triggered when messages or events affecting the coordination
protocol are sent by components. For example, the coordination aspect would be
executed each time a buyer proposed a bid, performing the activities specified
by the selected auction protocol, expressed as a STD.

3.2 Coordination as an aspect using JAsCo

The JAsCo (Java Aspect Components) [5] language is an aspect-oriented ex-
tension to Java that introduces two new concepts: aspect beans and connec-
tors. Aspect beans encapsulate crosscutting concerns independently of specific
component types. Connectors deploy one or more aspect beans within a par-
ticular application. This schema, aspect beans plus connectors, increases aspect
reusability, as they are independent of the base components, and also increases
language dynamism because aspects can be attached/deattached to base com-
ponents at runtime, by adding/removing connectors.

To separate coordination from computation, all message sending/receiving
operations which requires to perform coordination tasks, as communicating auc-
tion winner, are intercepted by a coordination aspect bean, which implements a
particular auction protocol. Connectors are created to attach the coordination
aspect bean to the Seller and the Buyers components. This coordination aspect
bean is going to govern interactions between Buyers and Sellers. For each differ-
ent kind of auction protocol, there will be its corresponding coordination aspect
bean.

An aspect bean is a common Java class which contains in addition one or
more hooks. A hook encapsulates a piece of crosscutting code (an advice). In
the coordination case, a hook encapsulates a piece of the whole coordination
protocol. Figure 2 shows an excerpt of a JAsCo aspect bean to manage coor-
dination for the English Auction Protocol. Particularly, it shows a hook (lines
6-22) for sending a new callForProposal(price) to all the Buyers after a new bid

46

AO approaches for Component Coordination

 1 class EnglishAuction {
 2 private Vector buyers;
 3 private int state = 0;
 4
 5 // aspect definition
 6 hook AnnounceNewBid {
 7 // Constructor
 8 AnnounceNewBid (interceptedMethod (..args)) {
 9 execution(interceptedMethod (..args));
10 }

11
12 // Triggering condition
13 isApplicable () {return (state == COLLECT_BIDS);}
14
15 // Advice for proposeBid
16 after() {
17 for(i=0;i < buyers.size ();i++) {
18 Buyer b = (Buyer) buyers.get (i);
19 b.callForProposal ((float) args[1]);
20 } // for
21 } // after
22 } // hook
23 } // class

24 connector AuctionSystem _EnglishProtocol {
25 EnglishAuction protocol = new EnglishAuction ();
26 EnglishAuction.AnnounceNewBid hookInstance
27 = new EnglishAuction.AnnounceNewBid (* Seller.proposeBid (*));}

Fig. 2. An excerpt of a coordination aspect bean in JAsCo

increasing the current highest bid has arrived to the Seller component. The hook
constructor (lines 7-10) declares an abstract pointcut, i.e. an abstract pattern of
the point of the application which is going to be intercepted in order to execute
the hook body. In Figure 2, it indicates that, initially, any execution of a method
might be intercepted. This abstract pointcut is instantiated using the connector
of lines 24-28, which specifies that all the executions of the proposeBid method,
of the Seller component, will be intercepted. The isApplicable() clause returns a
boolean which determines if the hook body (lines 16-21) has to be executed when
a potential joinpoint has been detected on the execution of the application. In
this case, the hook body (advice) will be executed when an execution of the
proposeBid() method is detected if and only if the EnglishAuctionProtocol is in the
COLLECT BIDS state (lines 12-13). Finally, the hook body (lines 16-21) specifies
that after the execution of the intercepted method, i.e after the proposeBid() ex-
ecution, a new callForProposal message has to be sent to all the buyers in order
to indicate them than the highest bid has been increased.

Other hooks would have to be codified to manage the rest of the coordi-
nation tasks specified by the STD. For instance, after (hook body clause) the
decideWinner method is executed (hook constructor plus connector), if the auction
is private, an acceptProposal message has to be sent to the winner and a reject-

Proposal message to the rest of the buyers (hook body). If the auction is public,
an acceptProposal(winnerID) is sent to all the buyers in order to inform them who
the winner is. It should be noticed that only the advice code changes in this
case. Switching between a public and a private auction can be easily performed
in JAsCo, simply by replacing connectors.

An important benefit of JAsCo is that aspects can be applied over common
Java code, therefore it can be applied over legacy Java components. The ideas
exposed for the JAsCo platforms can be also implemented on the 11 AO compo-

47

 Lidia Fuentes and Pablo Sánchez

nent platforms surveyed in [4], since we are using basic AO principles supported
by all these platforms.

3.3 Special features to manage coordination

JAsCo, and other platforms [6], provides stateful pointcuts which describe the
applicability of aspects in terms of a sequence or protocol of run-time events [7].
These stateful pointcuts allows us to write coordination aspects more easily
because the protocol state and its transitions are managed by the own pointcuts,
not requiring to be explicitly programmed. An example of stateful pointcut in
JAsCo is shown in Figure 3. When the hook is created , two pointcuts are enabled
(line 3), init 1 (line 4) and init 2 (line 5), corresponding to the init state specified
by the STD (Figure 1.c) and to the interception of the execution of the join and
callForProposal methods, respectively. When a matching for the pointcut init 1

occurs, the associated hook body is executed and init 1 and init 2 stay enabled
(line 4). When a matching for the pointcut init 2 succeeds, after the execution
of the hook body, the pointcuts collectBids 1 and collectBids 2 are then enabled,
corresponding to the CollectBids state of the STD. Stateful pointcuts increases
the abstraction level of the coordination aspect implementation making it easier
and also making the possibility of automatic generation of coordination aspects
from STD specifications, using model-driven techniques, more feasible.

Aspects, in general, can be used to reify, redirect, broadcast, filter, etc., mes-
sages between components. Therefore, the target of a message would not have
any meaning if AO is being used, because the message could be never delivered
to the specified target. In messages relationship with the coordination proto-
col, to select the right target or targets of the message is a coordination issue
which does not be performed by base components. Therefore, when messages re-
fer to coordination purposes, like proposeBid, callForProposal, acceptProposal, etc.,
it would be more adequate that components threw events, i.e. messages without
a specific target. CAM/DAOP [8], a dynamic AO component platform, offers
support for this kind of event communication. In CAM/DAOP, whenever an
event is thrown, a coordination aspect is executed, which manages the event,
coordinating its execution. Events are thrown by CAM components in order to

1 EnglishAuctionProtocolHook (join(.. args1),callForProposal (..args2),
2 decideWinner (..args3), proposal(.. args4)) {
3 start > init_1 || init_2;
4 init_1: execution(join) > init_1 || init_2;
5 init_2: execution(callForProposal) > collectBids _1 || collectBids _2 ;
6 collectBids _1: execution(proposal) > collectBids _1 || collectBids _2;
7 collectBids _2: execution(decideWinner) > start;
8 }

9 after collectBids _1 () {...}

Fig. 3. A stateful pointcut in JAsCo

48

AO approaches for Component Coordination

signal relevant execution points where coordination is required. Additionally, the
STD specifying the coordination protocol, and which has to be implemented by
the coordination aspect, is expressed using an XML file. It is parsed and inter-
preted at runtime by the DAOP platform when the coordination aspect has to
be executed, avoiding to write code in any specific programming language. This
XML facility also allows us to change the coordination protocol dynamically at
runtime only by changing the XML description of the STD.

MALACA [9] is a component-based and aspect-oriented agent model. Agent
functionality is provided by components and it is separated from its commu-
nication, managed by aspects. MALACA offers high-level facilities, similar to
CAM/DAOP facilities described previously, to coordinate the interaction be-
tween agents. It also uses XML descriptions of the coordination protocols, in-
stead of implementations in specific programming languages.

4 Conclusions and Open Issues

Traditional techniques for managing coordination, like publish and subscribe,
blackboards, etc. have focused on decoupling the senders and the receiver of
a message, but these entities are still responsible for locating message targets,
communication channels, etc. and implementing the coordination protocol. If
protocols changed, components would become obsolete, because there is a tan-
gling between coordination and computation. AO improves the separation of
concerns, voiding this kind of crosscutting, by encapsulating crosscutting con-
cerns, such as the coordination concern, in special units called aspects. In this
paper, the justification for coordination being a crosscutting concern is initially
exposed. Then, how coordination can be managed as an an aspect and separated
from computation is presented. An initial and wider work about coordination
as an aspect was presented in [10] and [11]. However, it was based on AO com-
ponent platforms (such as CAM/DAOP [8] or MALACA [9]) offering special
support to manage coordination. This paper generalizes these ideas to the rest
of AO component platforms. In [12] how AO can also help component adapta-
tion was shown. Therefore, AO appears to be a promising technique for dealing
with component adaptation and coordination, although there are still some un-
resolved issues which need to looked at.

In the Auction System case study, the buyer interface contains an acceptPro-

posal method which has a customerID parameter. In the case of a private auction
this parameter is meaningless, because the receiver of an acceptProposal method
knows he/she is the winner. However, this extra parameter allows the compo-
nent to be reused for public auctions, where the rejectProposal method would be
then not used. Consequently, the degree of reusability of a component will de-
pends on the generality of its interfaces. Therefore, when designing component
interfaces, it would be required to design them as general as possible, allowing
the component to be reused under different coordination protocols. This means
that using AOSD, a component can be not ware of how it is being coordinated
at runtime, but at design time, it has to provide interfaces which allows its reuse

49

 Lidia Fuentes and Pablo Sánchez

in different coordination protocols. For the case of Auction Systems, it could be
made more or less easily because the set of possible auction protocols is known in
advance. In other cases, the set of candidate coordination protocols could not be
initially known, so component interfaces could not be designed with the enough
generality, avoiding the component reuse under some coordination protocols.

The approach presented in this paper has similarities with exogenous coor-
dination models like Manifold [13] or Reo [14], where a coordinating entity can
react to the external behavior of components, and initiate actions by itself. Thus,
AO languages could also be used to implement exogenous coordination models.

Finally, to summarize, the list of open issues outlined in this a this paper is
shown below:

– Should events be used instead of common messages when a component in-
tends to be coordinated ?

– Can a component be actually no aware it will be reused in different coor-
dination protocols or it should have some knowledge, for example at design
time, in order to provided interfaces with enough generality ?

– What are the similarities and differences between exogenous coordination
and AOSD about coordination management ? Does exogenous coordination
models provide better solutions than AO techniques in some cases ?

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. 2 edn.
Addison-Wesley (2002)

2. Sun Microsystems: (Enterprise JavaBeans 3.0 Documentation (JSR 220 FR))
http://java.sun.com/products/ejb/docs.html.

3. Object Managemente Group (OMG): CORBA Component Model v4.0
(formal/2006-04-01) (2006) http://www.omg.org/cgi-bin/doc?formal/06-04-01.

4. AOSD-Europe Network of Excellence: Survey of aspect-oriented middleware re-
search (2005) http://www.aosd-europe.net/deliverables/d8.pdf.

5. D. Suvee and W. Vanderperren and V. Jonckers: Jasco: an aspect-oriented ap-
proach tailored for component based software development. In: International Con-
ference on Aspect-Oriented Software Development, ACM Press (2003)

6. Douence, R., Fradet, P., Sdholt, M.: Composition, reuse and interaction analysis
of stateful aspects. (In: 3rd Int. Conf. on Aspect-Oriented Software Development
(AOSD))

7. Vanderperren, W., Suvée, D., Cibrán, M., Fraine, B.D.: Stateful Aspects in JAsCo.
In Thomas Gschwind, Uwe Amann, O.N., ed.: 4th International Workshop on Soft-
ware Composition (Revised Papers), Edinburgh,(United Kingdom), LNCS (2005)

8. Pinto, M., Fuentes, L., Troya, J.M.: A dynamic component and aspect-oriented
platform. The Computer Journal 48(4) (2005) 401–420

9. Amor, M., Fuentes, L., Troya, J.M.: Training compositional agents in negotia-
tion protocols. Integrated Computer-Aided Engineering International Journal 11
(2004) 179–194

10. AOSD-Europe Network of Excellence: A domain analysis of key concerns: known
and new candidates (2006) http://www.aosd-europe.net/deliverables/d43.pdf.

50

AO approaches for Component Coordination

11. Amor, M., Fuentes, L., Pinto, M.: Coordination as an aspect in middleware in-
frastructures. In: 5th Int. Workshop on Aspects, Components and Patterns for
Infrastructute Software, 5th Int. Conference on Aspect-Oriented Software Devel-
opment, Bonn (Germany) (2006)

12. Fuentes, L., Sánchez, P.: Ao approaches to component adaptation. In: 2nd Int.
Workshop on Coordination and Adaptation Techniques, (19th European Confer-
ence on Object Oriented Progamming), Glasgow, (United Kingdom) (2005)

13. (Bonsangue, M., Arbab, F., de Bakker, J., Rutten, J., Scutella, A., Zavattaro, G.)
14. Arbab, F.: Reo: a channel-based coordination model for component composition.

Mathematical Structures in Computer Science 14(3) (2004) 329–366

51

Towards Unification of Software Component
Procurement and Integration Approaches

Hans-Gerhard Gross

Software Engineering –
Embedded Software Laboratory
Department of Computer Science
Delft University of Technology

Mekelweg 4, 2628 CD Delft
The Netherlands

h.g.gross@tudelft.nl

Abstract. Software component procurement and integration are pri-
marily based upon having the right communication mechanisms available
that can map component customer requirements to component provider
specifications. Such mechanisms are currently only available on lower lev-
els of abstraction, close to the implementation level. This paper describes
the research being performed at the TU Delft Embedded Software Lab-
oratory to elevate typical component feature mapping mechanisms from
the implementation level up onto the design and requirements engineer-
ing levels.

1 Context

Before a component can be assembled to form part of a new system, it must be
located on a market, its fitness for the purpose has to be determined in terms of
functionality and behavior, and it must be selected according to non-functional
application requirements. These steps are called component procurement, and
they are performed prior to component integration [15, 20]. Procurement involves
two stakeholders, the component provider, who develops and offers components,
and the component customer, who requires components in order to assemble
a new application. In the software domain it is common that customers adapt
their requirements specifications partially to the components already available,
and component vendors provide dedicated variants of their existing components.
This requires adaptation which it is motivated by the following considerations:

– If component customers devise their applications entirely according to their
own requirements, it is unlikely, or at least very difficult for them, to find
existing components which will map exactly to their preset specifications.

– When building up systems entirely from existing components according to
the predefined specifications of the component vendors, component cus-
tomers will loose their distinction over their competitors who are using the
same domain-specific components. Today, market distinction is primarily

achieved through the distinct “look and feel” of the software functionality,
and not so much based on the underlying hardware.

– Pure outsourced custom development is typically too costly.

Finally, the supplied component must be integrated into the customer’s frame-
work, and the integration must be assessed qualitatively, i.e. through testing, or
analysis.

These activities of component procurement and integration are based on com-
munication between customer and supplier, and they can be seen as initial steps
for component coordination, adaptation and physical integration. Coordination
and adaptation deal with mappings between provided and required component
specifications plus their implementation, whereas this earlier phase, procurement
and mapping, takes place at a higher level of abstraction, although dealing with
the same concepts.

Procurement and integration would be greatly alleviated if both stakehold-
ers would use the same specification styles for required and provided component
interfaces, if they would apply the same semantics for their requested and of-
fered component behavior, and if they would communicate on the same level of
abstraction. This is typically not the case now, nor likely in the future, so that
both stakeholders go back to the least common denominator for specification,
natural language.

Common practice is that engineers select candidate components based on tex-
tual descriptions. Both parties figure out which adaptations might be required
for an eventual integration to be successful. Finally, those adaptations have to be
implemented and the component assembled in the customer’s framework. Cer-
tainty about the success of a working assembly can then only be assured after
extensive assessment and testing, along the lines described in [14]. By apply-
ing the component paradigm, organizations are facing a complete development
cycle for each externally procured software entity in order to assess whether a
candidate component is fit for the purpose under consideration. This involves
unacceptable effort.

This paper outlines the work in component-based software development for
embedded systems that is currently being performed in the Embedded Software
Laboratory at Delft University of Technology (www.rtess.ewi.tudelft.nl). It ad-
dresses the communication issues associated with component procurement which
involves typical component coordination and adaptation approaches applied to
a higher level of abstraction. The primary focus is on supporting the specifica-
tion and modeling of components on the highest level of abstraction, beginning
from requirements engineering, so that the effort associated with component
acquisition and integration will be reduced.

2 Faced Problems

Despite all the advances in component technology over the last decade, e.g.,
deployment environments, and run-time platforms such as CORBA, JavaBeans,
COM or .NET [32], today, component procurement and integration on higher

54 Hans-Gerhard Gross

levels of abstraction, and early during application development, is still not ad-
dressed adequately. In order to kick-off the “software industrial revolution” [10],
and component-based software development to become a success story, we need
communication standards to mediate between various component abstractions,
behavioral descriptions, and non-functional properties, on the highest level of ab-
straction possible. The components and their accompanying documents should
be able to be included in an overall modeling and simulation framework like
it is the case in the more mature engineering disciplines. Such a modeling and
simulation framework comprises behavioral interfaces, languages for describing
component behavior, as well as the automated generation of adapters and facili-
ties for automated test case generation and fault diagnosis. Having and applying
such a framework means that engineers can start to reason about a system and
“try it out” before it is actually built. The prerequisite for modeling is that
the right specification instruments are set up and readily available, and that
they provide seamless mappings between customer’s requirements and provider’s
specifications.

Because software components are not physical and they tend to be much
more complex than the physical components of the traditional engineering dis-
ciplines, specification artifacts used in software development are more diverse
and specialized for different purposes and types of systems. Hence, it is quite
unlikely that one single specification standard for software will ever emerge. The
only way to deal with the specification issues in component procurement is to de-
vise mapping mechanisms similar to the syntactic and semantic maps proposed
in [4] that alleviate communication between the stakeholders. These realize sim-
ilar mappings between notations at higher levels of abstraction that CORBA
provides in terms of mappings on the programming language level [23].

The component-based development method and formal language research
communities have tried to come up with solutions for component feature map-
ping and integration in the past. Various approaches have been proposed over
the years to alleviate the typical component identification, adaptation and wiring
problems. Some of the methods proposed are of a more formal nature, such as
CL [16], Koala [35], Piccola [22], or Abstract Behavior Types [2]. Some oth-
ers view component integration from a more global perspective and embed the
concepts of composition in an overall, less formal development framework. The
most commonly known of these so-called development methods, most of which
are based on object technology, are OMT [30], Fusion [9], ROOM [31], HOOD
[29], OORAM [28], Catalysis [11], Select Perspective [1], FODA [19], Rational
Unified Process (RUP) [17], to name only the most commonly known. Many of
the concepts coming from these methods are readily applied in industry more
or less successfully on an intra-organizational level, e.g., the Rational Unified
Process. However, development methods are not universally applicable across
organizational boundaries. Due to their complexity, they are usually embed-
ded deeply in an overall organizational context, so that their concepts are not
transferable easily between customers and suppliers. Moreover, they are bound

Towards Unification of Software Component Procurement and Integration Approaches 55

to distinct notations, and particular tools, that do not necessarily permit easy
exchange of information between different organizations.

The previously mentioned formal component composition languages seem
not to have made their ways into industry, simply because industry is afraid of
the high initial investment associated with the introduction of rigorous specifica-
tion techniques. Koala is an exception, because it is coming out of an industrial
context. However, Koala provides syntactical mappings only and does not con-
sider behavior. More recently, researchers have tried to combine development
methods and formal composition languages, e.g. PECOS [13], primarily in or-
der to circumvent the steep training curve associated with formal approaches.
But PECOS is geared toward field devices as primary application domain, and
because of this focus, it is not suitable as component procurement method; it is
too restricted. In summary, current approaches have the following deficiencies:

– They provide isolated solutions to the problems, do not integrate, and are
too formal, e.g., the composition languages.

– They do not address the need for simulation and modeling, e.g., the devel-
opment methods.

– They are primarily geared towards implementation, like the component wiring
standards.

– They do not acknowledge the fact that natural language is the most impor-
tant communication vehicle [7] early in development, and this is the case,
more or less, for all of them.

– The model-driven software development community proposes to build a num-
ber of (UML) models for each component [5, 8, 24], but such UML models
are not standardized, and the UML is ambiguous.

3 Proposed Solutions

The aim of our research is the establishment of specification and modeling map-
ping standards for component integration and procurement. These mappings
can be used by software engineers to select components according to functional,
behavioral and quality of service attributes, transfer these attributes into their
own models for reasoning, automated processing, dependability analysis, test
case generation, and fault diagnosis. We are currently developing

– Formalized component specifications at lower levels of abstraction that come
equipped with provided and required component behavior models, along the
lines that the KobrA method [4] proposes. These can be used to automate the
currently manually performed component mapping and integration effort.

– An integrated requirements specification method based on natural language
for component feature specification at the highest levels of abstraction, used
early during application development. This comprises standard specification
documents, along the lines that the QUASAR project [18] and the KobrA
Method [4] or UnSCom [25] propose, but also augmented with formalisms to
alleviate model creation, similar to what the Attempto project suggests [3].

56 Hans-Gerhard Gross

This is about which documents should be available in a component specifi-
cation and which format they should obey.

– Model artifacts that can be derived from the requirements specification doc-
uments of the previous item. The model notation should be easy to use and
come with a powerful tool, e.g. Lydia [21, 26, 27, 33, 34]. This is about which
formalisms will be applied, and which modeling mechanisms are useful in
this context.

– Mapping mechanisms to other commonly used component specification no-
tations such as the UML. This deals with the question of which other formats
should be supported and how the information in the models or in the natural
language specifications can be transformed into those other notations. This
comprises links to the MDA [8].

We are currently mainly concentrating on introducing formalisms and simula-
tion capabilities for behavioral descriptions used in component feature mapping.
Once we have a working prototype and can describe component integration in a
more formal way, we can move up abstraction levels in order to introduce more
formalism there.

4 Open Issues

There is a great diversity of techniques, methods and tools available today to
help in the specification, design, modeling, implementation and assessment of
embedded software systems. The introduction of the component paradigm adds
another complexity dimension to the development of such systems [6]: commu-
nication, or more concretely, lack of communication, between the component
provider and customer. Component integration on the implementation level has
been addressed in the past, so that sophisticated middleware platforms and
component technologies have emerged. Similar technologies on higher levels of
abstraction providing support in seamless component procurement are not yet
to be found, although, this is where most effort could be avoided in trying to
figure out whether or not components are fit for a particular purpose.

The next steps planned to be taken in the unification of software component
procurement approaches are the

– development of formalized use case descriptions (based on [4, 15]) out of
textual specification documents commonly used in industry.

– a (semi-) automatic mapping mechanism to UML state diagrams
– a mapping of behavioral specifications to Lydia [26], which can then be used

for simulation.

These steps will be carried out and evaluated in the context of industrial case
studies within our ongoing projects, i.e., Forments, Trader, Tangram, Finesse
[12].

Towards Unification of Software Component Procurement and Integration Approaches 57

References

1. P. Allen and F. Frost. Component-Based Development for Enterprise Systems:
Applying the Select Perspective. Cambridge University Press, 1998.

2. F. Arbab. Abstract behavior types: A foundation model for components and their
composition. In F.S. de Boer and et al., editors, Lecture Note in Computer Science,
volume 2852, Springer, 2003.

3. Attempto Project. Attempto Controlled English.
http://www.ifi.unizh.ch/attempto.

4. C. Atkinson, and others. Component-based Product Line Engineering with UML.
Addison-Wesley, 2002.

5. C. Atkinson and H.-G. Gross. Model Driven, Component-Based Development. In:
Business Component-Based Software Engineering. Franck Barbier (Ed.), Kluwer,
2003.

6. C. Atkinson, C. Bunse, H.G. Gross, C. Peper (Eds). Component-Based Software
Development for Embedded Systems. Lecture Notes in Computer Science, vol.
3778, Springer, Heidelberg, 2005.

7. D.M. Berry and E. Kamsties. Ambiguity in requirements specification. In J. Leitner
and J. Doorn (Eds), Perspectives on Software Requirements, pp. 7–44. Kluwer,
2003.

8. M. Born, I. Schieferdecker, H.-G. Gross, P. Santos. Model-Driven Development and
Testing. 1st European Workshop on MDA with Emphasis on Industrial Applica-
tions, Enschede, Netherlands, March 17-18, 2004.

9. D. Coleman et al. Object-Oriented Development – The Fusion Method. Prentice
Hall, 1994.

10. B.J. Cox. Planning the Software Industrial Revolution. IEEE Software, Vol. 7, No.
6, pp. 25–33, November 1990.

11. D.F. D’Souza and A.C. Willis. Objects, Components, and Frameworks. Addison-
Wesley, 1998.

12. Embedded Software Laboratory. Ongoing Projects,
http://www.rtess.ewi.tudelft.nl.

13. T. Genßler and C. Zeidler. Rule-driven component composition for embedded sys-
tems. In Intl. Conf. on Software Engineering (ICSE): Workshop on Component-
Based Software Engineering, Toronto, Canada, May, 12–19 2001.

14. H.-G. Gross. Component-based Software Testing with UML. Springer, Heidelberg,
2004.

15. H.-G. Gross, M. Melideo, A. Sillitti. Self-Certification and trust in component
procurement. Science of Computer Programming, Vol. 56, No. 1-2, pp. 141–156,
April 2005.

16. J. Ivers, N. Sinha, and K. Wallnau. A basis for composition language CL. Technical
Report CMU/SEI-2002-TN-026, Software Engineering Institute (SEI), September
2002.

17. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Pro-
cess. Addison-Wesley, 1999.

18. E. Kamsties, A. von Knethen, B. Paech. Structure of QUASAR Requirements
Documents. Fraunhofer IESE Report No. 073.01/E, November 2001.

19. K.C. Kang et al. Feature-oriented domain analysis (FODA) feasibility study. Tech-
nical report, Software Engineering Institute (SEI), November 1990.

20. J. Kontio. OTSO: A Systematic Process for Reusable Software Component Selec-
tion. Technical Report CS-TR-3478, Department of Computer Science, University
of Maryland, 1995.

58 Hans-Gerhard Gross

21. Lofar Project. http://www.lofar.nl.
22. M. Lumpe et al. Towards a formal composition language. In Workshop on Foun-

dations of Component-Based Systems, Zürich, September 1997.
23. Object Management Group (OMG). History of CORBA. Technical Report,

www.omg.org, 1997 – 2004.
24. Object Management Group (OMG). Model Driven Architecture.

http://www.omg.org/mda.
25. S. Overhage. UnSCom: A Standardized Framework for the Specification of Soft-

ware Components. In Weske and Liggesmeyer (Eds), Object Oriented and Internet-
Based Technologies, Springer Lecture Notes in Computer Science, Vol. 3263, Hei-
delberg, 2004.

26. J. Pietersma, A.J.C. van Gemund, A. Bos. A Model-Based Approach to Fault
Diagnosis of Embedded Systems. Proc. Annual Int. ASCI Conf., June 2004.

27. J. Pietersma, A.J.C. van Gemund, A. Bos. A Model-Based Approach to Sequential
Fault Diagnosis. Proceedings IEEE AUTOTESTCON, Orlando, 2005.

28. T. Reenskaug, P.Wold, and O. Lehne. Working with Objects: The OORAM Soft-
ware Development Method. Manning/Prentice Hall, 1996.

29. P.J. Robinson. Hierarchical Object-Oriented Design. Prentice Hall, 1992.
30. J. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall, 1991.
31. B. Selic, G. Gullekson, and P. Ward. Real-Time Object-Oriented Modeling. Wiley,

1994.
32. C. Szyperski. Component Software – Beyond Object-Oriented Programming.

Addison-Wesley, 2002.
33. Tangram Project. http://www.embeddedsystems.nl/tangram
34. Trader Project. http://www.embeddedsystems.nl/trader.
35. R. van Ommering et al. The KOALA component model for consumer electronics

software. IEEE Computer, 33(3), 2000.

Towards Unification of Software Component Procurement and Integration Approaches 59

On Dynamic Reconfiguration of Behavioural

Adaptations

Pascal Poizat1, Gwen Salaün2, and Massimo Tivoli3

1 IBISC FRE 2873 CNRS – University of Évry Val d’Essonne, Genopole
Tour Évry 2, 523 place des terrasses de l’Agora, 91000 Évry, France

Pascal.Poizat@ibisc.univ-evry.fr
2 VASY project, INRIA Rhône-Alpes, France

655 avenue de l’Europe, 38330 Montbonnot Saint-Martin, France
Gwen.Salaun@inrialpes.fr

3 POPART project, INRIA Rhône-Alpes, France
655 avenue de l’Europe, 38330 Montbonnot Saint-Martin, France

Massimo.Tivoli@inrialpes.fr

Abstract. Software components are now widely used in the develop-
ment of systems. However, incompatibilities between their observable in-
terfaces may happen and then make their composition impossible. Soft-
ware adaptation aims at generating as automatically as possible new
components called adaptors whose role is to compensate such incompat-
ibilities. Since development of adaptors is costly, it is crucial to make
their reconfiguration possible when one wants to modify or update some
parts of a running system involving adaptors. In this first attempt, we
present the problem of dynamically reconfiguring adaptors and we sketch
some ideas of solution on an example. Finally, we end with a list of open
issues to be worked out.

1 Introduction

Software components are now widely used in the development of systems, in-
cluding embedded systems, web services or distributed applications. This area
known as Component-Based Software Engineering has still many issues to be
solved. Main challenges focus on composition, adaptation and verification of
these applications. Software adaptation aims at generating as automatically as
possible new adaptors whose role is to compensate incompatibilities appearing
in a system constituted of communicating entities.

It is now becoming accepted that entities and in particular their public in-

terfaces, most of the time the only observable part of a component due to its
black-box feature, have to be represented using dynamic behaviours [22, 10, 3,
19, 7]. In this paper, we deal with adaptors fixing incompatibilities in their be-
havioural interfaces.

The construction of adaptors can be costly, in particular when built from
scratch. Consequently, when one wants to update or modify some parts of a
running system, add some new functionalities or needs, suppress out-of-date

 Pascal Poizat , Gwen S ala ü n , an d Massimo Tivoli

services, we should propose automated techniques to reconfigure the running
adaptors without stopping the whole system.

Reconfiguration can be performed off-line or dynamically at run-time. Dy-
namic reconfiguration seems more realistic because it is applied while the system
is running. On the other hand, it is more difficult in this case to practically take
changes into account since modifications have to be made without interrupting
parts of the system which are not affected by them. Several possible changes are
upgrade, addition or removal of components, and reconfiguration of the archi-
tecture such as addition or suppression of connections.

Dynamic reconfiguration [18] is not a new topic and many solutions have
already been proposed dealing with distributed systems and software architec-
tures [15, 16], graph transformation [1, 21] or metamodelling [14, 17]. However,
to the best of our knowledge, nobody has already worked on the reconfiguration
of systems involving adaptors which raises specificities since any change induces
modification of the adaptor.

In this work, we consider open systems, that are systems where the number of
connectors and components is not fixed, and then can vary. Additionally, systems
we handle can be made up of several components and several adaptors, even if
we modify only one adaptor at a certain moment. Therefore, the other adaptors
involved in the system to be reconfigured are viewed as any other component.

A related problem is incremental adaptation [5] which argues for the con-
struction of adaptors step by step by successive refinements. Such successive
steps can be viewed as several reconfigurations, then the reconfiguration issue is
more general and subsumes incremental adaptation.

The rest of this paper is organized as follows. Section 2 presents our formal
model to describe component interfaces and adaptors. In Section 3, we show
possible changes that can be performed on a system with several components and
an adaptor. This section also sketches some solutions to the reconfiguration issue
through an example. Section 4 ends with concluding remarks and perspectives.

2 Component Interfaces and Adaptors

Component interfaces are given using a signature and a behavioural interface.
A signature Σ is a set of operation profiles. This set is a disjoint union of

provided operations and required operations. An operation profile is simply the
name of an operation, together with its argument types, its return type and the
exceptions it raises.

We also take into account behavioural interfaces through the use of la-
belled transition systems (LTS). A Labelled Transition System (LTS) is a tuple
(A, S, I, F, T) where: A is an alphabet (set of event labels), S is a set of states,
I ∈ S is the initial state, F ⊆ S are final states, and T ⊆ S × A × S is the
transition function.

The alphabet of the LTS is built on the signature. This means that for each
provided operation p in the signature, there is an element p? in the alphabet, and
for each required operation r, an element r!. Communication between two LTSs

62

O n D y n amic R econ fi gu rat ion of Beh av iou ral A d ap t at ion s

involves one event with complementary actions p?/p!. Higher-level behavioural
languages such as process algebras can be used to define behavioural interfaces
in a more concise way.

We point out that our communication model is synchronous: two components
synchronize on one event (rendez-vous) and then continue their own evolution.
Asynchronous communication can be modelled adding components representing
the message queues and interacting with the other components in a synchronous
way.

To check if a system made up of several components presents behavioural
mismatch, its synchronous product is computed and then the absence of dead-
locks is checked on it [8]. An abstract description of an adaptor is given by an
LTS which, put into a non-deadlock-free system yields a deadlock-free one. For
this to work, the adaptor has to preempt all the component communications.
Therefore, prior to the adaptation process, component message names may have
to be renamed prefixing them by the component name, e.g., c:message!.

3 Adaptor Reconfiguration

3.1 Preliminaries

Changes. First of all, let us summarize the possible changes [18] that can be
applied to a system made up of a set of incompatible components and an adaptor
making all the entities work correctly together. We distinguish three main classes
of changes: (i) upgrade of a component, (ii) addition of a new component, (iii)
suppression of a component belonging to the system. Note that an upgrade is
a specific case which could be computed as a suppression and an addition of a
new component.

In the real world, such changes may appear in many cases. For example, let
us imagine two components which can respectively receive orders of books and
CDs; a third component could be added to handle DVDs. Another example could
be an invoice component in charge of generating invoices for a french electricity
company which would be updated to handle only prices in euros and abandon
the double printing in euros and francs.

Substitution. As far as component upgrade is concerned, a first case is when
the new component has exactly the same behaviour as the one before. Formally,
it means that both behaviours are strongly equivalent and it can be checked
automatically using Bisimulator [6], a tool of the CADP toolbox [11] which
allows to verify the most common notions of behavioural equivalences (trace,
tau*.a, safety, observational, branching, strong). Equivalences are relations which
are preserved on the structure of two behaviours described as automaton. A
strong equivalence can be preserved instead of a weak one because our model
does not take into account τ actions that are internal actions unobservable from
the environment.

If components are not equivalent, several changes can take place in the new
component interface. Operations can be removed or added in the signature.

63

 Pascal Poizat , Gwen S ala ü n , an d Massimo Tivoli

More important are possible modifications of the behaviour where it can con-
cern minimal changes such as renaming of events, addition of an interaction (a
new transition) in the automaton, removal of an interaction (suppression of a
transition), or bigger changes such as addition or removal of several interactions
that are modifications of pieces of behaviour.

Silent portion. We emphasize that if the architecture has already changed,
we should have an update (abstract) description of the adaptor since a system
can be targeted by several successive changes. As regards adaptor updates wrt.

component changes, there are two ways to take them into consideration: either
modifying the current adaptor, or adding a new adaptor in-between the new
component and the previous adaptor [4]. Note that if the adaptor is dynamically
updated, modifications have to apply on a silent portion of the behaviour, that is
a portion not currently engaged in interactions with components to be updated.

Correctness guarantee. Another point concerns the reliability of the up-
dated adaptor wrt. the former one. Indeed, checking the absence of deadlocks
is required but is not enough to ensure that the system is left in a consistent
state after modification. Therefore, the adaptor-to-be must be validated (invari-
ant? checking properties?) off-line before really modifying its running version.
Another approach is to build a correct-by-construction adaptor, but in this case
our reconfiguration techniques have to be proven as respecting such a claim.

3.2 An example

In this section, we present an example with three components: C1 communicates
with C2 to send it as arguments a set of documents to store; C2 receives docu-
ments, stores them in a repository, and alerts another component C3 in charge
of counting the number of handled requests. These components cannot interact
correctly together because their interfaces are incompatible. Indeed, a deadlock
exists at the beginning because no matching of messages is possible. This can be
worked out with a simple reordering of events in components C1 or C2. The LTSs
for these three components and an abstract description of the adaptor are given
in Figure 1 with initial and final states respectively emphasized using an input
arrow or a black circle. The adaptor is built following the method proposed in
[8] with the three vectors 〈comm!, comm?, ε〉, 〈args?, args!, ε〉, 〈ε, inc!, inc?〉 as
an abstract description of the mapping specifying how components C1, C2, C3
have to interact.

In the following, we show issues and sketches of solutions on this example for
several changes that might be applied to components involved in this system. In
this example, we chose to modify the adaptor at hand instead of developing new
adaptors in-between as in [4].

A first simple modification is the renaming of a message. That induces the
renaming of all the instances of this message in the adaptor.

Suppression of a message implies its suppression in the adaptor. It can be
automatically computed using CADP tools [11] hidding the concerned message
and applying a tau*.a reduction. For instance, if the message inc! is removed
in C2, messages C2:inc? and C2:inc! are removed in the adaptor. In this case,

64

O n D y n amic R econ fi gu rat ion of Beh av iou ral A d ap t at ion s

args? inc?inc!args! comm?

C2:comm!

A

C3C2C1

C1:args!C2:args?

C1:args!C2:args?C1:comm?

C2:comm!C1:comm? C1:args! C1:args!

C3:inc!

C3:inc!C2:inc?

C2:inc?

comm!

Fig. 1. Three components and an adaptor

the system is not deadlock-free anymore, since C3 communicates on inc too.
Let us solve this situation removing the component C3. In case of a component
suppression, all the messages involved in this component have to be removed
from the adaptor, that are C3:inc? and C3:inc!. We show in Figure 2 all the
transitions concerned by these suppressions (red and bold font).

comm!

C2:comm!

args? args! comm?

C2:inc?

C2:inc?

inc?inc!

A

C3C2C1

C1:args!C2:args?

C1:args!C2:args?C1:comm?

C2:comm!C1:comm? C1:args! C1:args!

C3:inc!

C3:inc!

Fig. 2. Suppression of message and component

The adaptor obtained after suppression of these transitions (Fig. 3) is deadlock-
free. We emphasize that when components or messages are removed, some ser-
vices (the ones implemented in the suppressed parts) can be lost. Therefore, the
designer has to be informed of that before changes to be effectively taken into
account.

The last case focuses on addition of message and component. Now, let us
add (again) the message inc! in C2. The resulting updated adaptor can be
computed in two ways: (i) computing the new adaptor off-line, and then apply-
ing the adequate insertions into the running adaptor wrt. it, (ii) traversing the

65

 Pascal Poizat , Gwen S ala ü n , an d Massimo Tivoli

comm?args!args?

C2:comm!

comm!

C1:args!C1:comm? C2:comm!

C1:comm? C2:args? C1:args!

C2:args?

C1 C2

A

Fig. 3. Adaptor obtained after suppression

adaptor and adding directly into it the new message when it is possible wrt.

updated component interfaces. Note that in case (i) updates are applied only if
the adaptor is deadlock-free whereas in case (ii) the new adaptor can contain
deadlocks. Both approaches are meaningful: (i) ensures that the modified adap-
tor will work, but (ii) can be a first modification followed by another one (the
addition of former component C3). The latter case (ii) takes place when several
modifications should be made successively. These changes have to be applied in
sequence within a same silent portion to avoid the running adaptor to have an
unexpected behaviour and possibly insert deadlocks within the system.

Figure 4 shows the addition of message inc! in C2 following approach (ii).
In a second step, component C3, and the original system of Figure 1 is obtained.

args? args! comm?

C2:comm!

inc!

A

C2C1

C2:args?

C1:args!C2:args?C1:comm?

C2:comm!C1:comm? C1:args!

C2:inc?

C2:inc?

comm!

Fig. 4. Addition of message inc! in C2 and A

66

O n D y n amic R econ fi gu rat ion of Beh av iou ral A d ap t at ion s

3.3 Automatic handling of the reconfiguration process

An interesting aspect of our approach is concerned with its full automation in
handling the reconfiguration process. In other words, to make the reconfiguration
process as automatic as possible, we could develop techniques that allow the
adaptor to automatically detect and react (by triggering the synthesis of the
new adaptor) to changes on the components that it controls.

A possible idea is to enrich (during the automatic synthesis of the adap-
tor’s actual code) the implementation of the adaptor with mechanisms that are
suitable for that.

A solution could be the use of exception handling techniques and in par-
ticular Architectural exceptions [13, 20] that are exceptions that flow between
two components. Fault tolerance is intended to preserve the delivery of correct
services in the presence of active faults. It is generally implemented by error
detection and subsequent system recovery. Error detection originates an error
signal or message within the system.

Coming back to our context, supposing that a component need to be changed,
this activity could be represented as an exception that triggers the component
change. System recovery techniques can be used to bring the system in a consis-
tent state before components replacement. For instance, if the component that
must be replaced is in execution, system recovery techniques can help the system
to reach the state before the component execution.

4 Conclusion

In this paper, we presented the problem of dynamic reconfiguration in the context
of a system involving several incompatible components for which an adaptor
was implemented and deployed. It was illustrated using a simple example based
on a formal model of component interfaces describing signatures and dynamic
behaviours (ordering of messages).

It remains several open issues to be worked out before having a satisfactory
and completely automated solution to this problem:

– ensuring the correctness of a reconfiguration applied on the system (deadlock-
freeness is not enough): correct-by-construction? properties to be checked?;

– applying automatic reconfiguration while the system is running needs to de-
fine a notion of consistent state or silent behaviour: how can it be computed?
how can it be ensured that it can be obtained?;

– studying reconfiguration as a generation of new adaptor in-between the orig-
inal one and the involved updated components;

– formalising a language which can be used by a developer to write out the
changes he wants to make on the system;

– writing down the different algorithms automating the possible changes wrt.

a given formal description of component interfaces and expected reconfigu-
rations;

67

 Pascal Poizat , Gwen S ala ü n , an d Massimo Tivoli

– experimenting our approach on existing implementation languages and frame-
works such as COM/DCOM architectures [12], BPEL for web services [2],
the Fractal model and its implementations, e.g., ProActive [9];

– reconfiguration/evolution of the adaptor independently of any change in the
system.

References

1. N. Aguirre and T. Maibaum. A Logical Basis for the Specification of Reconfigurable
Component-Based Systems. In Proc. of FASE’03, volume 2621 of LNCS, pages 37–
51. Springer-Verlag, 2003.

2. T. Andrews et al. Business Process Execution Language for Web Services (WS-
BPEL). BEA Systems, IBM, Microsoft, SAP AG, and Siebel Systems, February
2005.

3. F. Arbab, F. S. de Boer, M. M. Bonsangue, and J. V. Guillen Scholten. A Channel-
based Coordination Model for Components. In Proc. of FOCLASA’02, volume
68(3) of ENTCS, 2002.

4. M. Autili, P. Inverardi, M. Tivoli, and D. Garlan. Synthesis of ”Correct” Adaptors
for Protocol Enhancement in Component-based Systems. In Proc. of Specifica-
tion and Verification of Component-Based Systems (SAVCBS’04), Workshop at
FSE’04, 2004.

5. S. Becker, C. Canal, J.M. Murillo, P. Poizat, and M. Tivoli. Coordination and
Adaptation Techniques for Software Entities. In ECOOP 2005 Workshop Reader,
2005. To appear.

6. D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu. BISIMULATOR: A
Modular Tool for On-the-Fly Equivalence Checking. In Proc. of TACAS’05, volume
3440 of LNCS, pages 581–585, Scotland, 2005. Springer-Verlag.

7. D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web Service Interfaces. In Proc.
of WWW’05. ACM Press, 2005.

8. C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural Mismatch in Soft-
ware Composition. In Proc. of FMOODS’06, Italy, 2006. Springer-Verlag.

9. D. Caromel, W. Klauser, and J. Vayssière. Towards Seamless Computing and
Metacomputing in Java. Concurrency - Practice and Experience, 10(11-13):1043–
1061, 1998.

10. L. de Alfaro and T. A. Henzinger. Interface Automata. In Proc. of ESEC/FSE’01,
pages 109–120. ACM Press, 2001.

11. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST
Newsletter, 4:13–24, 2002.

12. P. Inverardi and M. Tivoli. Deadlock Free Software Architectures for COM/DCOM
Applications. Journal of Systems and Software, 65(3):173–183, 2003.

13. V. Issarny and J.-P. Banatre. Architecture-Based Exception Handling. In Proc. of
HICSS’01. IEEE Computer Society Press, 2001.

14. A. Ketfi and N. Belkhatir. A Metamodel-Based Approach for the Dynamic Re-
configuration of Component-Based Software. In Proc. of ICSR’04, volume 3107 of
LNCS, pages 264–273. Springer-Verlag, 2004.

15. J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software Engineering, 16(11):1293–1306,
1990.

68

O n D y n amic R econ fi gu rat ion of Beh av iou ral A d ap t at ion s

16. J. Kramer and J. Magee. Analysing Dynamic Change in Distributed Software
Architectures. IEE Proceedings - Software, 145(5):146–154, 1998.

17. J. Matevska-Meyer, W. Hasselbring, and R. Reussner. Software Architecture De-
scription Supporting Component Deployment and System Runtime Reconfigura-
tion. In Proc. of WCOP’04, 2004.

18. N. Medvidovic. ADLs and Dynamic Architecture Changes. In SIGSOFT 96 Work-
shop, pages 24–27. ACM Press, 1996.

19. S. Moschoyiannis, M. W. Shields, and P. J. Krause. Modelling Component Be-
haviour with Concurrent Automata. In Proc. of FESCA’05, volume 141(3) of
Electronic Notes in Theoretical Computer Science, pages 199–220, 2005.

20. C. M. F. Rubira, R. de Lemos, G. R. M. Ferreira, and F. Castor Filho. Exception
Handling in the Development of Dependable Component-based Systems. Softw.
Pract. Exper., 35(3):195–236, 2005.

21. M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A Graph Based Architectural
(Re)configuration Language. In Proc. of ESEC / SIGSOFT FSE 2001, pages 21–
32. ACM Press, 2001.

22. D. Yellin and R. Strom. Protocol Specifications and Component Adaptors. ACM
Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

69

������������ 	
�������� ������

� ������� �������
 	�������

������ ������	
 ��������� ����������

����������� 	�
��� ��������������� ��������� ���� ��������� ����
���� � �� 	�� !����� �"#" $%&�

�'��� ����� �������� ��	�(�)�����

��������� * � ���� � ����� �	��������� ������������	 ��	 �������
������	 ��������� ����	� 	�+����� ���������� � �	�,- �,�.���
��������/ ��� �� �� ��	 ������� 	-��������-" �� ��� ��������� � �����
�	�������� ��- ���	 ��� ���������� � �� ���,� �����" *. ���� ,���
����� , ������� �		���� ���� ��� �")���� ��������� ����	� 	��� ����
������� ��� ��� � � ��� 0�������- �� ���1�	 .��� �� �������������"
#�������� �� ���� ���1 , ,���� , �	����� ��	 ����� �� �� ��	 ��
���� ����,���"
2 � ������ ������� �� ��� ���0 ��� �	������� �� �	�� ����� �� ��
	�� � ��1� ��� 	�3����� 0������� ��	 �� � �� �����" *��� ����� ��������
� ��,��- ������� ���� ��� �� 4 ����	 �- ������0���� ����,��� � 	�����
���� .������ ��� �	�������� � �� 	�� �� ��� ����,�� ����� ��� ��,� �
��" �� ��� ,� ��� � ��� ����3�� , � �	�� 	����� ��0�������0 567�8
������� ,� ����	���� � �����"

�	
����� � ����� �	��������� �������� 67�� �	�� ����	����"

� ���������	��

�	 ����	�� ������� ��������	��
 �	��	���������� ���
 ���
 ��� ��� �������	�������
�����	��� ���
 ���
 � � ��	!��� ��"����� ���#������ �	 �	���� �	��$��� ��������%
��������� ��� ��#�!�	� �����������& '	� �(�����
 �� �	�� �	��	���� �����	���

��)������� ��� �#��)�
 ��� 	� ���	!� �	��	����� �� �� �������� $#��� ����)
������ ��)������) �#�� ��� �#��)� �#� ��#�!�	� 	� �� ������ �#�	�)# �#� ���
��	�����	� 	� �� ������& '�	� �	$ 	�
 $� ���� ���������� ���# *��� 	� �������
�	��+����	� 	� �� ���������	�&

,� �#� ��������
 ������� ��������	�� ��� ���� �#� ���������	� �	 �� ������
�����- �	� �(�����
 � ��.����� ������	������ ��� �� ���	!�� �#�	�)# �#� ���	!��
	� � �	��	���� 	� � ����� ��� �� ����	����� �� �#� ���������	�� ���$��� �	��
�	�����& ���#	�)# ��$ $	�*� ������� �#�� �����
 $� ��� ������)���# �$	 ��������
	� ����	��#& '	���� 	��� ��	!��� ���� �#�	������� ������� ��� ���)�������� �	�
���*�� $��# �� ������������	� �/�
 �0�& ,� �	������
 ��������� 	��� 	���� ���* 	�
�	���� �	������	�� � � ��� ����	� �� ������ �� 	�#�� �����	��� ���&

��� ��	�	��� �	������ �� ����������) �#� �	�����	�� �	 �� �����+�� �	 ������
�	���	� ������� ��������	� ��� �� �	������) ��������	� ������ ������������� 	�
���#�	�)���� �����	���& �#�� ����� �������� � ������ ���!��� �#�� ��� �� .������
�� ���#�	�)���� �����	��� �	 ��������� $#��#�� �#� ��������	�� �	 �� �	�� ��
�#� �����	�� ��!�� ��� ���� 	� �	�& ,� ���	 �	����� 	� �#� ����+�� 	� � �	��� ���!��
1�23 �4� ����	��# �	� !�������	� ����	���&

�#� ��������� 	� �#�� ����� �� 	�)���5�� �� �	��	$�& 6����	� � ��	!���� ��
	!��!��$ 	� �#� ������ ���!���& 6����	� � �(������ $#� �2 �� �)		� ���������
�� �	�����) ��� �������) ���# � ���!��� $��# � �	���� ���*)�	���& 6����	� �
#�)#��)#�� �#� ���#	�	�)� ���� �	 ������� ��������	� ������ ��)	�	���� ���
����������� ��� ��*� 	��� .�����	�� ��)�����) �#� ����� 	� �#�� ���#	�	�)�&

 �� ���	� ����� ���	�

6���� �	����� 	� �#��� ���� ��������	� ��������- ���� �!	����	� 1���7���	!�
������	��������3
 ��#�!�	��� ������	������ �	��	����	� 1�#��)� ����	�� ���	������
$��# � ������	������ �	 �	���� ��� ��#�!�	�3 ��� �������� �	��+����	�� 1���7���
�	!�7������� �	��	����� �� ����������3& 8� ����	�� ���������	�� �	 �� ������
���� 1���# ����!����� �	��	���� �� ���� ��� �#� ������� ���������� 	� �#��� �	��	�
����� ��� ���� �		3& ,� �#� ���������	� ������� ����� �� ���� �#�� $�)�������� �#��
�#� ���������	� ����� ������� ���� ����� ����) �������& '	� �#��
 $� #�!� �������
+�� � ��� 	� ������ ��	�������
 $#��# �	�����	�� �	 �#� �	�����	�� �	 �� �����+��
�� 	���� �	 ������ �	���	� ������� ��������	� 	� �	��	�����& �#� ��	�������
#�!� �	 �� �#��*�� ���	�� �� ��������	� ��� �� ��	������&

'	� �(�����
 �� �	��	���� �	��� �!	�!� �� ��������	�
 $� ���� ������ �#��
�#� �	��������� 	� �	��	���� ���������� �� ������!��& � ������ ��	����� ������
9�������� �	�������:)��������� �#�� ���# ������	������ ��.����� �� 	�� �	��
�	���� �� �"����!��� 	"���� �� ��	�#�� 	��& 8� ���� ���	 ������ �#�� �#� �������
������	�������� 	� � �	��	���� ��� �	� ���������� $#�� ��� ��������� �!	�!�& �#�
������ ��	����� ������ 9������� �	��� �	����!���	�: �!	��� ���	�� ����	����� ��
� ���� �	 �� ��*�	$� ������	������& �������) � �	��	���� ���������� ��� ���
���� � �	� ������������� ��#�!�	� ��� ����	���� �	�;����& �#� ������ ��	�����
������ 9��������	� �	��	����	� �	#������: ������� �#�� �������� ��������	�� 	�
� ���� �	��	���� ��� �	��	��� �� � �	#����� $��& �#� 	�#�� ������ ��	�������
��� �������� �� ��<�
 ����& =	�� �#�� �#� ���� 	� ��	������� �#�� $� �	������ #������
�����+� ���	�� ��� �#�� $� �	 �	� ����� �	 ������ ��� *���� 	� ���	��& >	$�!��

�#� �	��� ��� �� ������ �(������ �	 ����	�� ��$ ������ ��	������� �� $��� ��
��$ *��� 	� ��������	��&

�#� ������ ���!��� ��*�� �� �	������ �	 !������� �� ��������	� 	� �� ��������
��	� � ���	����) �	 �#� 	������	�� 	"���� �� �#� �	��	����� ��� �	 �#� ���!�	��
��������	�� 	� �& �� ��!����)� 	� ����) � ���!��� �� �#�� �� ��*�� �� �	������
�	 �!	�� �#� ����)����	� 	� �#� ������ ������ �������� �� ���# �����	��- ������
�#��*��) �� ��������5�� �#�	�)# �#� ���!���&

72 Audrey Occello and Anne-Marie Dery-Pinna

'�)��� � �������� �#� ���!��� ���#��������& ����)� �(�#��)� ���$��� �#�
���!��� ��� �#� �����	�� �� ����������	���& ,� ����� �	� 	��� �#�� �#� �����	��
.������ �#� ���!�� �	 �#��* �� ��������	�
 ��� ���	 �#�� �#� ���!�� ��������� $��#
�#� �����	��& ,������ 	� �#		���) � �����+� ��������	� ���)��)� ��� � ����������
���� ������ �	� �#� ���!��� ������������	�
 �#� ���!�� ��*� �#� �����	�� �	� ���#
���	�����	� 1�	� ��������) ������ 	� �#��*��) �	��	����� 	� �$	 �����3 �� 	����
�	 �� ����������� 	� �����	�� �����+������&

platform
FAC/JuliusDiary application

Safety service

 Client

 Server

 Partial representation of the diary application

 teamDiary synchronization amDiary

 componentBasicDiary
server interface

client interface
Synchronization

controller
Interception

 aspect component
 synchronization amDiary

component

AspectComponent
server interface

server interface
SmartDiary

 teamDiary

���� �� ��,��- ������� ��������� �� 9 ������� �	������� ��	 ������� 4 ��-

�	 ���������� �#� ���!���7�����	�� ���������	��
 �	������ � ����� ���������	�
������) 	� �#� '�?7@����� 1'������ ������ ?	��	����3 �����	�� ����& �$	
�	��	����� ��������� ��������!��� �#� ����� 	� ��������� ��� �#� ����� 	� �#�
����& ����	��
� ���������� �#� ���������� ��������� �#�� ��	!���� 	������	��
�	� ������) ����)����� 1���	

���
 �
���
	

���

�	

���3& ��	��
�
���������� �#� ���������� ��������� �#�� ��	!���� ������	��� 	������	�� �	�
������) �	�����	� ����)����� 1����

 ��� ����������3& �#� �$	 �	��	�����
#�!� ���� �	��� �������������
 �#�� �	 �	� *�	$ ���# 	�#��&

6���	�� �#��
 �	� �	�� �	����	����!� ����	���
 ��������� $���� �#�� ���#
��$ ����%� ������)� �� ����� �� #�� 	$� ����� $#�� �#� ��	� �� �!�������& �
������ ��������	� 	� ��	��
� ��#�!�	� ��� �	� �� �)		� �	����	� �� �� $	���
����� �	 �	����� �#� �	��	���� �)���& '	� �	�� ;�(�������
 �#� $���� �	 �	��
��� �#� ��#�!�	� 	� �#� ���	

��� ������	������ ����������� ���	����) �	 �#�
�	����	����	� ����� ����	����� �� �#� ���������	� ��� $��#	�� ��� �	��+����	�
	� �#� ������) �)�����% �	��&

 Capitalizing Adaptation Safety: a Service Orientd Approach 73

'�? ���	$� �	� �#� ������������	� 	� ������ 	������� �	������ �� �	��	����
�����	���& � ��$ *��� 	� �	��	���� 1������ �	��	����3 ��� �� �	������� �	
� '������ �	��	���� �� 	���� �	 �	���� �#� ��#�!�	� 	� �#� �������& �#��
 �	
����#�	��5� ��	��
� 	� ����	��
�
 �� ������ �	��	���� �� ��+��� �	 ���������
���	

��� ����� 	� ����	��
�& ����	��
� �� �	������� �	 �#� ������ �	��	����
�#�� ����)� ����#�	��5���	� �� 	���� �	 �#��)� �#� ��#�!�	� 	� ���	

���&
'������
 �#� ������ �	��	���� �� �	������� �	 ������� �	 �� �	 �	�$��� �#�
������)� 	� ����	��
� �	 ������� 1�#� ��������) �������� �� ��������� �� �#�
'�?7@����� �	(� '�)��� �3&

�	 ������ �#�� �#�� ��������	� �� �	������
 ��������� ���� �#� ������ ���!���
���	����) �	 �#� �	��	$��) ��	����-

� ���� �� ?	��	����� ��� ��)������� �	 �#� ���!�� 1��	��
� ��� ����	��
� ��
�#� �(�����3 �� 	���� �	 #�!� � ������� ������������	� 	� �#� ���������	� ��
�#� ���!��� ��!��& >	$�!��
 �#�� ��� �� ������� �	 �#� +��� ���� � �	��	����
�� ����) ������� 1��� ���� �3& �� �#�� ����
 �#� ���!�� .������ �#� �����	�� �	
�#��* �	��	���� ����� �	��	����� ���	����) �	 �#� �����	�� �����) �����&

� ���� �� �#� ���������	� 	� �#� ��������	� �	 �� ����	���� �� ��)������� �	
�#� ������ ���!�� 1�#� ����#�	��5���	� ���������	� �� �#� �(�����3& �� �#��
����
 �#� ���!�� .������ �#� �����	�� �)�� ��������	��������!� ���	�����	�
�� 	���� �	 ��������� �� ��� ���������	� �������� �#� ������ ��	�������& '	�
�(�����
 �#� ���!�� �#��*� �#�� �#� �������� �	 ������ ���$��� ��	��
�
��� �#� ������ �	��	���� �	�� �	� ����	���� � �����&

� ���� �� 8� �#��* �� �)�!�� ���� 	� �	��	����� ��� �� ������� ����) � ���
�������	� 	� ��������	� ��)������� ���!�	���� 1��	��
� ��� ����	��
� �� �#�
�(�����3& ?	��	����� �	 �� ������� #�!� �	 �� ��)������� �� �	� �������
�	��& �� �#�� ����
 �#� ���!�� .������ �#� �����	�� �� 	���� �	 ��������� ��
�#��� �� �	 �	��	����	� �	�;���� ���$��� �#� ��$ ��������	� 	� �#� �	��	�
����� ��� �#� ���!�	�� 	���&

� ���� �� �� ���� ����� ��� �!	�!� 1�	�� ��������	�� ��� �	� �� $��#��
����	�� �� �#� ������3
 �#� �	��+����	�� ������� 	� �#� �	��	����� ���
#�!� �	 �� ���	��& �� �#�� ����
 $� �#��* �� �#� �	��+����	�� ��!	�!�� ��
�� ��������	� ��� �� ���	��& ,� �#� �(�����
 �#�� ���� $	��� �	�����	��
�	 �#� ���������	� 	� �#� ����#�	��5���	� ���$��� �#� �������&

6���� � ��� � �	���� �#� ����� 	� �#� ���!��� �	 ���	��5� �#� ��������	� 	�
�	��	�����& �#��
 �#� �����	�� ��� �#� ���!��� ���� �� ����#�	��5�� �	 �#��
�#� ����� 	� �#� ���������	� ��	� �#� �	��� 	� !��$ 	� �#� ��������	�� �� �.��!��
���� �� �#� ���!��� ��� �� �#� �����	��&

� *��� ���� �� �, �� ������ ��� ���� .��� � ��"

74 Audrey Occello and Anne-Marie Dery-Pinna

� ��������� �� ��	��	�� �� ����� ���	� ��	�� ���

�#� 6����� ���!��� �� ����� 	� � �	��� $#	�� *�� �������� ��� ��!	�!�� �� �#�
��������	� ��	���� ��� �#� ������ ��	������� ��� ��������� 	!�� �#�� �	���& �#��
�����	� �(������ #	$ �#� ��������	� ������ #�� ���� �(������� ��� �	�����5�� ���
��) AB ���� ��� �?B ����& �����$����
 �� �#	$� � $�� �	 !������� �#� �	�����)
��� #	$ �#� !�������	� �� ������!�� �� ��	C����	� ����&

��� ����� 	
�� �
��������
� ����� �	� ��� ���

�	�
�������
� ��� ����� �
�� '�)��� � �#	$� � ������+�� !��$ 	� �#�
�	���& �#� �	������ AB �	��� �� �������� �� ����& �$	 ���� �	������ 	� �#�
�	��� ��*� �� �	������ �	 ����� �#� ������ ������- ��������	� �������� ��� �	���&

� � ���������� �����
� ���������� �#� ���� 	� ���������	� ��� ����� 	� �����
����	� ���������	��& �#� ������� �	����� ������ 	� ��������	� ����	������	�
������������ 	� �#� �����	��&

� �)������
��� �����+�� �#� 	������	�� �#�� � �	��	���� ���� ��	!��� 	�
��.���� �	 ���� �#�� �	�� �� �� ��������	�& � �	��	����
��� ��������� �#�
	������	�� 	"���� �� �#� �	��	���� �� $��� �� �#� 	������	�� ��.����� ��
�#� �	��	���� $��#�� �#� �	���(� 	� ��� ��������	��& �#� �	�� �	����� ������
	� � �	��	����� ������	��#�� ��+��� �� �#� �����	��&

participants

 ElemantaryAdaptation

 AdaptationPattern

 AdaptationInstance
Component

Port

Role

1..n

1..n

adaptations

adaptations

 functionalities

parameters

1..n

1..n

 roles 1..ninstantiate

1..n

���� �� ����� �������� �	�� ������.

��� �
��������� ���
�����
��� ��� ����� �
�� �#� 6���� �	������
��*� �� �	������ �	 �(����� �#� ������ �
���
����
 ���������) �#� �#�������������
	� ���� ��������	��
 �	������ 	!�� �#� �	���& �#� �	��������� �#�� �	�����5� �#�
��	������� �	�����	�� �	 � ��� 	� �?B ����	�����	�� 	� ���#	�� ��� ������� 	�
�#� AB �	���&

 Capitalizing Adaptation Safety: a Service Orientd Approach 75

�#� �� �	�������� �� ���	������ $��# �#� 9�������� �	�������: ������ ��	��
����& �#�� �	�������� �� � ����	�����	� 	� �#� ����������� 	������	� 	� �#� �����
����	� ������� �����& �#�� 	������	� #�� �� �#��)� �	 ����� �	 �	��	����� �	��
�	��+����	�� �(������� �� �)�!�� ��������	� �������& ��)��������� �#�� ���
������������ 1�	��	�����3 ��� ���� �#� �	�� 	� �#� ������� �#�� ��� ���	������
$��#& �#� ����������� 	������	� �� ���� �� �#� �	�������� �	 �#��* �#� �	��	��
���� 	� � �	��	���� �	$��� �)�!�� �	��&

����
��

��������������
��������������
�������
��� � �
��
��
�������
����

� �����������������

��
 �� �

�
��
��
 !""������
���#$��%
&#$'���((� ���
� � ���

�)

������
���#$������
��"����(��*�(
��
('"�����
�
��#$������
����

�#� ��� �	�������� �� ���	 ���	������ $��# �#� 9�������� �	�������: ������
��	�����& �#�� �	�������� �� � ����	�����	� 	� �#�
����� 	������	� 	� �#� �����
����	� �������� �����& �#�� 	������	� #�� �� �#��)� �	 ������� �	 �	��	�����
�	�� �	��+����	�� �(������� �� �#� ��������	� ������� �� �� �� �������� 	�& ���

������� �#�� �� ��������	� �������� ����	� �� ���	!�� ����� �#��� ��� �	 �	��
������������& �#� ��������	����������� ���#	� �#��*� $#��#�� �� ����� �	��
	� �#� ��������	� �������� �� ���� 	� ������� �� ��	�#�� ��������	� ��������&

����
��

�����������������
���
���
��

��
 �!+�

�
('"�����������#$'���((��) �"
�,��
�� - .������(. ���(�
�

��� �
('"���������
�
��
���
�����

�#� �� �	�������� �� ���	������ $��# �#� 9��������	� �	��	����	� �	#������:
������ ��	�����& �#�� �	�������� �� � ����	�����	� 	� �#� ����������� 	������	�
	� �#� ��������	� ������� �����& ��)��������� �#�� ���# ��$ ��������	�� ��
�	�������� $��# �#� 	�#�� ��������	�� ������� ������� �	 �#� �	��	����& �#�
����
 	������	� �� ���� �	 ��������� �� �$	 ��������	�� ��� �	� 	��#)	��� ���
�#� ��������������� 	������	� �#��*� �	� �	����������� 	� ��������	��&

����
��

��������������
��������������
�������
��� � �
��
��
�������
����

� �����������������

��
 �/ �

�
('"�����������#$'���((��)

������
���#$����"�����������"
������������������#$'���((���)

�"����������"'�(�
�����"����,������� ���(�
�

�"���������0(
1��2���"����������� ��

��� �#� �	��������� ���)�!�� �� ����&

76 Audrey Occello and Anne-Marie Dery-Pinna

�
����������
�
� ��� ����� �
�� �#� 6���� �	��� �� �#� #���� 	� �#�
������ ���!���& � ��	�	���� #�� ���� �����5�� ����) �#� �	��	$��) �#	���� 	� ���
����������	� ��� #�� ���� ������ $��# =	�# ��� ��� '������7@���� ��� �����	���&

� !������������� �� � � �����"
�#� �	��� ��������� �� ����������� �� @�!� �������& �#� �?B �	���������
��� ������ ����) �#� ���������?B �		�*�� ���� $#��# ��*�� �� �	������ �	
������!� �#� ��		� ���� �� �#� �	��� ��!��&

� !������������� �� � � ������
�#��
���� �$� �����"
����)� �(�#��)�� �	 ��� �#� ���!��� ��� ��������� �� �� ,�B ?	���& �	
�	�+)��� �#� ���!��� �	� �)�!�� �����	��
 �����+� ���������� ���� �� ������
������& '	� �(�����
 �	 ��� �#� ���!��� $��# �#� '������7@���� �����	�� ���

�#� ������������	� 	� �#� ��������� �	� �	��	����� �#��*��) ����	�� ��� ��
����)���� �	 �#� ��"�03
��4
0"'�����("���",��
 �����&

=�(� �����	� �(������ �#� ���#	�� �#�� #�!� ���� ���� �	 !������� �#� �	���&

��� �������
� ��
����
� �����

�$	 *���� 	� !�������	� ���� �	 �� ����	����& '����
 �#� �?B �	��������� ���
������ �	����� �� �#�� ��� �	�������� $��# ������� �	 �#� ��	����� �#�� #�!� �	
)��������- �#��� ���� �� � ��C����	� ���$��� �	��������� !���� �	���� ���
��	����� !���� �	����& �#��
 ��
����� ���������� �	������ �� !�������) �#� �	��
�������� 	� �#� �	��������� $��# ������� �	 �#� �	�����	����) ������ ��	�������&
6��	����
 �
�%����� ���������� �	������ �� !�������) �#�� �#� �?B �	���������
��� ���� 	� �	���������	��&

������� �������
�� 6�������	� ���	$� �	� �����+����	� �	��������� !�������	�
$��#	�� #�!��) �	 ��������� ��& ,� �	������ �� �	���������) 9�����#	��: �#�� ����
������ ������ ������& '	� �)�!�� �����#	�
 �� ��� 	� �#� �	��������� �� �!�������
�	 9�����:
 �#� ������ ����� �� ����)�� ��� �#� �����#	� �� ��C�����& �$	 �����
��� ��������� �	 ��	!� �#�� �	�������� �	���������& '����
 $� ���� �#��* $#��#��
����������� ������ ������ ��)�����) �)�!�� ��	����� ��� �� �������� �� �#�
��������	� 	� �#� �	�����	����) �	���������& 6��	����
 $� ���� �#��* $#��#��
��������� ������ ������ ��)�����) �)�!�� ��	����� ��� �� ��C����� �� �#� �����
����	� 	� �#� �	�����	����) �	���������& �� ����� 	�� �	����� �(����� ���	$� ��
�	 �Æ�� �#�� �#� �	��� �� ���	�����& ,� �	������
 �#� ������� 	� �	����� �(�����
����	� ��������# �#� �	��������� �� � �	���� �����& 6�������	� 	��� ���� �#�� �#�
�����+����	� �� �	����� $��# ������� �	 �#� �����5�� ������ ������& A62 �� � �� �
)		� ��������� ������� �� ������� �#� !�������	� ��	� �������� �?B ��+����	��&

 Capitalizing Adaptation Safety: a Service Orientd Approach 77

���
��� �������
�� >	��5	���� D�������	� ��� �� ��#��!�� ����) � �	����
���#	�& 	�����) ��������	� ������ �� � ���!��� 	������� ����	��# ������� �
����� ��������	� ���$��� �#� �	��� �(������� ��� �#� ���)���� �����	��� ���
���������� ����� �� ����)� ����& �#�� ��������	� �� �� ��!����)� �	� !�������	�
����	��� ������� �� ������� �	 �	��� �#� ��		�� 	� �#� �(������� 	���& E �	����
���#	� �� �)		� ��������� ������� �� �	����!�� �#�� ���������	�& �� 	�� #���

�	��� �(������� ��� �� �(������� �� �#�	���� �	 ��	!�- �#� ��� 	� ������ ��	����
���� �	�����	��� �	 � E ���#��� ��!������ �#�� ���� �� ������!��& �� �#� 	�#��
#���
 �����	��� ������������ ��� �� �	�������� �� �(�	�� �#�� $� ��� ���� 	�
�����) �#� !�������	�- �#� �	��	����� ������	��#�� ��	!���� �� �����	��� ��� ��
���� �	 ���	������� �#�� �#� ���#��� ��!������ �� ������!��&

�������
� ����������
�� ��)��� !�������	� �� � #��!� ��� �	�)����� ���*
$#��# ���� �� ���������� �	� ���# �!	����	� 	� ��)����& 8��# �	���� �#��*��)
�� �#� �	��� ��!��
 �#� ������ ��� �� ��	!�� 	��� 	���& >	$�!��
 �	��� ������)
�	$��� ���#�	�)���� �����	��� ������� �	 !������� �#� �	�� �	�����	����) �	 �#�
�	��������� ������)& D�������	� ��������5���	� �� �#�� �	��& �#� ���������!� �����
	� � ���!��� 	������� ������) ��*�� �� �	������ �	 �!	�� �#� ���� 	� ��!������
��	� 	� �#� �	��������� $#����� � ��!�������	�� ��� ��������� �� �#� ��	�������
��� ������ ���	 � �����	���& ��	�#�� ��!����)� �� �#�� �#� ����)���� 	� ��$
�����	��� �	�� �	� ����� �	 ��	!� �)��� �#� ��	������� ����� �#� �����������
��	� 	� �#� ���!��� �	�� �	� �#��)�& �#�� ��))���� �#�� �#� �	���� �27���!���
����������� ��)��� !�������	� ���# �� �	�����#��*��) ��/� 	� �	���� ���#	��
��0�&

� ��� ����� � ���������� ��� ���� ��	���	��

�	 ������� ��������	� ������
 $� ���� � ���#	�	�)� ����� 	� �#� �	�����5���	�
	� ������� ��	������� ����) �?B& �#�� ���	$� �	� �#� !�������	� 	� ��	�������
�� �	��� ��!��& 	��	!��
 ����) � ���!��� 	������� ����	��# ������� �	 �� �
��	�����) $�� �	 ������!� �	��� !�������	� �� ��	C����	� ����& >	$�!��
 #	$
��� $� �(��	�� ������� 	� �#� 6���� �(��������F 6�!���� .�����	�� ��� �� ������&

� �����
���� ����� ��
����%������ ���� �#� ���� �	������ 	� � �	��� ���
������+�� ��� ��������� $��# AB
 �#� .�����	�� ���- ,� �#� �	��� ����)���
���� �	 �������� �#� ��� 	� ��	������� �	 ������!� �� �#� �	��� ��!��F ,� �?B
��$��� �)		� ��������� �	 �(����� �	������ ���# ��	�������F

� �����
���� ����� ����������� ?�� �#� ������� ��	������� ��$��� �� !��������
�� �#� �	��� ��!��F ?�� $�)�������5� �#� ���� �#�� �#�� !�������	� ��� ��	+�
�	�# 	� ��������	� ���#��.�� �	� !������� !�������	� ��� 	� E �	���� ���#	�
�	� #	��5	���� !�������	� ��0�F

� �����
���� ����� ���������� �
���
������� ?�� $� ��$��� ������!� �#� !����
����	� ���� �� �#� �	��� ��!�� �� �� ���������!� ������) ��	���� ����� 	�
� ���!��� 	������� ����	��#F

78 Audrey Occello and Anne-Marie Dery-Pinna

!�����

$" 2�:���.��9 *��)������ !������ 6	��" ����9;;,������"�:���.��"�0; 5<��'8
<" �	���1� ="� #������)"9 ������� ������ ���� ���0 ����� ��	 �	����" ��9

#����	��0� , ���� ���������- , >����.� #���	 5<���8
�" 26?9 !2��� �"�
�. !������� !�������" 7� ���� ���;<��$�$$��� 5<��$8
%" #�.��1� �"� ����� ����� �"� 7 ������ �"�)����� ?"9 =�!9 � @�(���� ��	 �Æ�����

�� ��� ,� �������������	 ��0������0 �� :���" �� A��B�.�� �"� 6��� 1�� �"�
�	�"9 ��@�����" C� �� <$�< , �
!�"� �����0���C����0 5<��$8 $D<%

&" ���-�)������� 6"� !���3� �"� ��������� 7"� #�����7��-� �"6"� �������� 6"9 �,��
.��� ����������" = ���� , 2�:��� *�����0- �� 5<��%8

'" ?������ !")"
"9 !���� E9 � � ����� ,� ��� "
�� ����,��" 6�����/� ������� 7���"
, !�� ��� �������� ���������- , *.����� ������	�� ���
��������	� 5<���8

F" !����B� !"�)�������� �"�
�:�� �"9 ������ ��� �������� ,� � � �	 ��������
, ��������" �� GH��0� I"� I������ 6"� >���B� �"� �	�"9 <��	 �)�# ��������
����� !�,������ �)���� *�����4 �� ,�
��.�1�	 ��	 7������ ��	 �-�����
5)2�*� <���� �)�# *! ';>? '"$8" C� �� <F'F , �
!�" �����0���C����0�
������� ?�����- 5<���8 $$$D$<'

J" 7 ����� �"�)��	��� #"� �H 	���� 6"9 !�������� �� �� ��	 ���������� ����-���
, �����, � �������" ��9 #����	��0� , ��� ��	 ������������ !�,������ � �������
2������	 �,�.��� 7��������� 5�2�7/�%8" 5<��%8 $%$D$&� �!6 #����"

�" G���� �"9 6	�� 7����� ��0�������0" ��9 #����	��0� , �)6 <��<" �
!� <��&�
�����0���C����0 5<��<8 <J'D<�J

$�" 2������ �"� 7��-�#����� �"6"9 �� �	����������,� �	�� ,� ������� ����,���"
��9 #����	��0� , ��� ��� ������������ !�,������ � �������0��� ��	 �	������
�-����� ��	 �,�.��� ��0�������0 5�����/�%8�
����)����� 5<��%8 $'�D$F%

$$" 2������ �"9 !������������ 	� �� �� ����� 	� ,����������� 	�� ����������� � �����
� (�	�������� 	-����4 ��9 �� �	K��� �(��� ����� �����" #�7 ������� �����������
	�
��� �������������� 5= �� <��'8

$<" #���������
"� ����� ����� �"� 7 ������ �"9 !�������� �7� ��	 �2#9 *.��	�
� ���� �������" ��9 >�1��� �!22# ��@������ �2# ��	 6����7��� ,�
�,�.��� ��� ��� 5��6����%8" 5<��%8

$�" 26?9 ���3�	 6	����0 ���0 �0� �����3�����" 7� ���� ,����;�������$
5<���8

$%" >������ ="� G������ �"9 2!�9 *�� ��������� ���0 �0� , ��� �6�" = ���� ,
2�:����2������	 #�0������0 5$���8

$&" >�����1�� �"9 ������- � ���� ,� ����1��0 �� � ������ � ��� �� :��� ��0����"
6�����/� ������� *��7���	�� 5<���8

$'" ��������� 6"9 *�� ��� ��9 � �6������	 �����3����� ����������"
����9;;..."	�"��,�����1" ���������"	�;��:����;���; 5<��&8

$F" ������������� 2"� #� ���� �"9 !���1��0 ���� 3���� ����� ��� ����� ��0���� �����,-
����� ������ �����3�����" ��9 #����	��0� , ��� $<�� �!6 �-��" #��������� ,
#�0������0 ���0 �0�� 5#2#�/J&8�
�. 2������� ��� ��� 5$�J&8 �FD$�F

$J" ������� ="�"9 *�� � �1 � ����0���0 #�0���� � 6�����0�"
 ���� ���

��&<$�%�'$�&" !�����	0� ���������- #���� 5$��'8

 Capitalizing Adaptation Safety: a Service Orientd Approach 79

Safe dynamic adaptation of interaction protocols

Christophe Sibertin-Blanc1, Philippe Mauran2, Gérard Padiou2

and Pham Thi Xuan Loc3

1 Institut de Recherche en Informatique de Toulouse, UMR CNRS 5505
Université Toulouse 1, 1 Place Anatole France, F-31042 Toulouse Cedex

sibertin@univ-tlse1.fr
2 Institut de Recherche en Informatique de Toulouse, UMR CNRS 5505

ENSEEIHT, 2 rue Camichel, BP 7122, F-31072 Toulouse cedex 7
mauran,padiou@enseeiht.fr

3 Can Tho University??

phamtxloc@yahoo.com

Abstract. We propose an approach for the dynamic adaptation of inter-
actions between the actors of a computer aided learning system, based on
the notion of Moderator. A Moderator is a component managing interac-
tions that are described and formalized using a Petri net. The dynamic
adaptation is performed by specific transformations of the Moderator’s
Petri net. These transformations permit to satisfy adaptation demands,
insofar as these changes do not alter the integrity of the base system.
Adaptation of a protocol for controlling accesses to documents during an
examination are used to illustrate the flexibility of our approach.

1 INTRODUCTION

Software reuse is an old and essential concern in the field of software engineer-
ing. In this search, the notions of interface, and modularity have progressively
emerged, leading to the current notion of software component [1, 2].

Inasmuch as a component is to be widely reused, the designer of this compo-
nent cannot consider in advance every possible context of use for this component.
The underlying idea to the component approach is to provide the means to adapt,
and customize a “standard” code. This adaptation can be performed gradually,
as constraints on the context of use are set.

Our work deals with the dynamic control of adaptation, and more precisely
with adapting the protocol of use itself. This control is based on the specification
of the characteristics of the use of the component, for each user of the component.
The aspect of the use of components that we consider is the coordination of the
interactions between a component and a set of users, by controlling the sequence
and conditions, (i.e. the choreography[3]), in which interactions are performed.
This specification is considered from the designer’s perspective: the possible uses
of a component by a user are characterized by a role, whose compliance with the
component’s semantics is checked a priori.
?? Post-doctoral visitor at the Institut de Recherche en Informatique de Toulouse.

An interception layer, called a Moderator, checks at runtime that each par-
ticipant’s interactions are kept within his role. The Moderator acts as a proxy
as regards each component’s interactions: it intercepts and (re)schedules these
interactions, in order to ensure the compliance of behaviors with roles.

In order to adapt to a specific runtime context, an agent may ask the Modera-
tor of a conversation to depart from the (preset) behavioral rules of the protocol.
To be safe, such an adaptation should keep the purpose of the Moderator which
is guaranteeing each agent taking part to the conversation that the goal of the
conversation can be reached. This can be achieved, in particular if this adapta-
tion is transparent to the agents taking part to the conversation, except for the
agent requiring the adaptation. More precisely, we define an adaptation to be
transparent, if it does not introduce any new behavior, from the agents’ point of
view. We focus more particularly on: specifying such adaptations, working out
their properties, characterizing the transparency to other agents and defining
the ways of requesting and activating the adaptations of roles.

2 Coordination Component

Protocols are intended to ensure coordination between entities of a system. A
protocol is defined as a set of rules that agents follow during a conversation.
These rules determine which entities may take part in a conversation, and how
each one can or must contribute to its good processing. In other words, a con-
versation can be seen as a process which proceeds according to the protocol.

The main benefits of coordination by protocol are to ensure the efficiency
of interactions among entities and the predictability of the system behaviour.
When an entity engages in a conversation, objectives have to be achieved, some,
common to all the participants of the conversation, and others, specific to the
entity, and we need to be sure that the protocol’s rules shall be followed. To
ensure the respect of protocol rules, in [4] is proposed to manage each conversa-
tion by a specific coordination component, the Moderator of this conversation,
in charge of enforcing the protocol rules.

The idea is to dissociate the interventions in the conversation, which are
performed by participating entities, from checking whether these interventions
obey to the protocol rules, which is entrusted to the conversation’s Moderator.
The participants are thus in physical impossibility to contravene the rules of the
protocol [5].

A protocol is defined by the following items:

– Information that needs to be processed in the course of a conversation to
reach its objective,

– The initial state of a conversation, i.e. the conditions that must be satisfied
so that a conversation can start,

– The final state that characterizes the completion of a conversation,
– The roles that entities can hold in a conversation, I.E. the specific contribu-

tions to the achievement of the procol,

82 Christophe Sibertin-Blanc, Philippe Mauran, Gérard Padiou and Pham Thi Xuan Loc

– Casting constraints on the attribution of roles that determines the conditions
to satisfy so that an entity may take a certain role in a given conversation,

– The types of intervention that entities can carry out to take part in a con-
versation, to make it progress,

– The behavior constraints that determine the control structure of the conver-
sations, i.e. in which cases a component playing a certain role can carry out
a given intervention, as well as the effect of this intervention.

For a protocol defined in this way, it is possible to design a component type,
each instance of which is created to control the course of a conversation following
this protocol. Such an instance, called a Moderator, manages the protocol infor-
mation and guarantees that the protocol rules are strictly observed. Instantiated
at the beginning of a new conversation, a Moderator:

– records the required information in variables or in a database;

– checks whether, at its creation, the conditions of the protocol initial state
are satisfied;

– decides if an entity may become a participant to the conversation;

– ensures that the course of the conversation fulfills the protocol’s behavior
constraints. To this end, any intervention of a participant in the conversation
is directed to the Moderator; if the current state of the conversation is such
that this intervention is coherent with the behavior rules of the protocol, the
Moderator accounts for and processes the intervention;

– decides the end of the conversation, after having detected either that the
final state is reached, or that the conversation is blocked because of the
defection of a participant whose contribution is essential to the completion
of the conversation.

In this paper, we focus on the regulation of entity behaviors exerted by a Mod-
erator. In [4], a description of how to design, validate and implement such Mod-
erators by using a formalism based on Petri nets [6] is proposed, and we retain
this framework here.

The behavior of the Moderator is described by a Petri net (in short PN). In
fact, they are High Level Petri nets, provided with data processing capabilities
thanks to tokens that include all the needed information [7]. Using this true
concurrency formalism allows to process concurrently the interventions received
by the Moderator from the components participating in the conversation.

In addition, the Moderator is able to keep track of the state of each com-
ponent with regard to the conversation. As for these components, the behavior
of each one can also be described by a PN, so that, at runtime, they commu-
nicate asynchronously with the Moderator, by sending message tokens through
communication places.

 Safe Dynamic Adaptation of Interaction Protocols 83

3 Adaptation approach

For any particular reason, one of the agents participating in a conversation may
need some adaptation of the behavior constraints that apply to its role. This
modification of the protocol rules entails a modification of the conversation’s
Moderator, so that it authorizes this new behavior of the agents.

Adaptations will be based upon some well-defined change in the marking
of a Moderator PN, that could be interpreted as the occurrence of some new
transitions in this PN. We first figure out the definition of an adaptation and
how it is requested, then we specify the necessary properties of such operations
to assure a safe adaptation.

3.1 Definition of an adaptation

Moderator OthersRequester

Adaptation
transition

Launching
place

Request
 transition

Fig. 1. Adaptation interface

Firstly, we restrict an adaptation to be a change in the Moderator’s state, that
is a change in the internal marking of its PN. Thus, an adaptation has an effect
limited to the Moderator and impacts neither the inner state of the participating
components nor the state of communication channels between the Moderator
and its users. Moreover, we do not investigate transformations involving place
removals/additions except for the place requesting this change in the marking
of the Moderator’s PN. This state change can occur only under some state of
the Moderator. It can be implemented as a new transition of the Moderator’s
PN, that we call an adaptation transition as in figure 1. The input places of an
adaptation transition characterize the states of the Moderator that enable the
adaptation to occur, while its output places define the adaptation state change.

An adaptation is not a definitive modification in the rules of the protocol and
has to occur only upon request by a participating agent. Thus, an adaptation
transition must have an additional input place intended to receive the requests
for activating the adaptation. This place is a communication place where a par-
ticipating agent can put a token to launch the adaptation (greyed in figure 1).

84 Christophe Sibertin-Blanc, Philippe Mauran, Gérard Padiou and Pham Thi Xuan Loc

3.2 Properties of a safe adaptation

The adaptation facility must not prevent a Moderator from guaranteeing the
proper running of a conversation. Thus, the performance of an adaptation must
be transparent for all the components participating in a conversation but the
component requesting this adaptation. The adaptation must not lead the con-
versation in a state that is unexpected by a component because this state is not
compliant with the role played by this component.

Each component that takes part in a conversation holds some role in this
conversation, and this role defines the sequences of messages that the component
can sent to and receive from the Moderator. Safety of an adaptation means that
the Moderator is still able to manage the role of each participant component:
it sends to each component only sequences of messages that belong to the role
definition, and it processes received messages in conformity with the protocol
definition.

To be safe, an adaptation does not change the behavioral constraints of any
role of the protocol that is, it must not extend the set and ordering of possible
interactions of the roles. The transparency criterion demands that the adaptation
does not result in an unexpected situation for C participating in a conversation:
any behavior that is possible after the adaptation was already possible before the
adaptation. From the point of view of C, the adaptation is just the occurrence
of a special case.

This property may be formalized in the following way. For a component C
participating in a conversation and a sequence s of transitions that can occur
during this conversation, let s|C denote the sub-sequences of transitions that are
performed by the Moderator and messages sent to or received from C: s|C is the
part of the Moderator’s activity that controls the contribution of C to the part
s of the conversation.

Criterion for safe adaptation Let t be the transition performing
the state change of an adaptation of a protocol, and C a component
participating in a conversation following this protocol. This adaptation
is said to be safe for C iff for any marking M of the Moderator that
enables t and is reachable in the course of the conversation, for any
sequence s such that M

t.s→ (i.e. the sequence t.s may occur from state
M), there exists a sequence s0 of transitions of the Moderator such that
M

s0→ and s|C = s0|C .

In any case, we may assume that the Petri net of a Moderator is bounded,
which is equivalent to the fact that the state space of any conversation following
the protocol is finite [3]. In this case, the language L(M) of the Moderator(that is
the set of the sequences of transitions such that M

s→) is a rational language. Let
L(M)|C be the set of sub-sequences of transitions sequences in L(M) that retain
only the transitions concerning the interactions between C and the Moderator,
it is easy to verify that L(M)|C is also a rational language. Thus the verification
of the above criteria for safe adaptation is just a matter of checking the inclusion
of rational languages.

 Safe Dynamic Adaptation of Interaction Protocols 85

3.3 Performing adaptations

Concerning the requests for adaptation, we can consider the two following cases:
either the request is only for one realisation of the adaptation, so that the adap-
tation transition will occur only once after the reception of the request by the
Moderator, or the request is for a definitive adaptation, so that the adaptation
transition will occur as often as it is enabled from the Moderator marking.

To carry out the previous pattern of adaptation, we can investigate two
different implementations :

– either an offline approach : the Moderator’s designer is in charge of providing
a set of adaptation schemes available to future users. In this case, the safety
properties of these adaptations can be verified before execution ;

– or an online approach : at runtime, a specific (adaptator) agent is in charge
of testing new adaption schemes according to the user requirements. In this
case, the satefy properties should be verified on demand and, therefore, re-
quire a specific adaptation service to perform such a task during execution.

4 The case study

We illustrate our approach through a case study about the control of accesses
to documents by students during the course of online examinations.

Each student has a workstation connected to the e-learning computer system
(ECS). To participate to the examination, a student has first to log in. According
to the student’s profile, the ECS determines the list of documents that this
student is granted to access. This list of authorized documents is supplied to
each student at the beginning of the examination. However, inadvertently or not,
a student may access a non-authorized document. Indeed, the network proxy of
the university has not the capacity to check, for all faculties, all examinations
and all students, whether a document access is authorized or not.

Thus, this checking is performed by the ECS. To this end, the workstation
of each student informs the ECS of any document access (transition T6, or
transition T11 if the student has already received a warning), and the latter
checks whether this document belongs to the list of documents authorized for
the student (transition T5, or transition T12 if the student has already received
a warning). If the document is authorised, transition T31 (or T32 if the student
has already received a warning) occurs. If it is not the case, the system informs
the assistant that supervises the examination (transition T7). A faulty access
may be handled in three ways:

1. The access violation is the first but a major one. The assistant immediately
imposes a penalty to the student (sequence of transitions T8 → T24 → T14).

2. It is the first unauthorized access of the student and this access is not seri-
ous. The assistant warns the student not to repeat this action (sequence of
transitions T8 7→ T9).

86 Christophe Sibertin-Blanc, Philippe Mauran, Gérard Padiou and Pham Thi Xuan Loc

Moderator (ECS) Other agents (students)

P8

P11

P12

P3

P10

P14P13

T9

T24

T13
P24

P16

P9

T10

P18

T6

T11

T5

T12

T32

T31

T7T8

T14

T16

T27
T28

T30

T29

T15

T18T17

T23 T21

P15

Requester (Assistant)

Fig. 2. Global description of the cooperation related to the control of accesses to doc-
uments during an online examination

3. It is the second unauthorized access of the student. Regardless of the access
seriousness, the student is imposed a penalty (sequence of transitions T16 →
T13 → T14).

When the student has to bear a sanction, the sanction is recorded by the ECS
(transitions T27 and then T28 or T30 according to the case), and the student

 Safe Dynamic Adaptation of Interaction Protocols 87

must stop the exam (transition T29 if it is after the first unauthorised access, or
T15 if it is after the second one) and send his work to the computer system (tran-
sition T18). Transitions T17, T23 and T21 aim at recording the student’s work
in the various cases. Figure 2 describes the formal specification of interactions
between the ECS, the assistant and any student.

5 Adaptation Example

Fig. 3. A more rigourous attitude

We have seen that a student can try to access forbidden documents. In the
current Moderator, the system signals the unauthorized access to the assistant.
The first time, the assistant can choose either to warn the student or to assign a
penalty (see place P13 and transitions T9 or T24 in figure 2). The second time,
the assistant assigns a penalty (see transition T13). An adaptation can lead to
define a more rigorous or more tolerant attitude.

88 Christophe Sibertin-Blanc, Philippe Mauran, Gérard Padiou and Pham Thi Xuan Loc

A more rigorous attitude consists in always assigning a penalty when the first
alert occurs. In this case, when a token enters P11, a new transition is introduced.
This transition deletes this token and puts a token into P24. With respect to
the moderator, the document access is now directly interpreted as a document
access after warning. This new behavior of the ECS remains consistent with the
student behavior and the requesting role, namely the assistant behavior. Figure
3 illustrates the updated part of the PN.

Fig. 4. A more tolerant attitude

A more tolerant attitude consists in assigning a penalty after an undefined
number of alert occurrences. A slight variation would systematically give the
faulty student a plain warning when the first alert occurs. In such a case, when
tokens are present in P10 and P16, a new transition deletes these tokens and
puts a new token into P8. Thus, the PN state returns to a previous marking.
Figure 4 illustrates the updated part of the PN.

A Counter-example : the assistant could allow a student to make more than two
unauthorized accesses. This adaptation would be implemented by a transition
moving a token from P15 (document access after warning) toward P9 (document
access). But this adaptation does not satisfy our safety criteria. Indeed, the
arrival of the token in P9 can cause a token to be put into P14 (warning),
while the student is no longer able to process this token: transition T10 is not
enabled because the student’s token stays in P18 instead of P3. In this state,
no transition may occur in the student’s net.

 Safe Dynamic Adaptation of Interaction Protocols 89

6 Conclusion

We have proposed a safe dynamic adaptation framework for interaction proto-
cols. This extension opens the way to a methodological approach : the designer
can specify a basic scenario which ensures a core of safety properties and conse-
quently a rich set of behaviours. Then specific rules can be introduced step-by-
step. This could provide a smooth and flexible design process.

Moreover, the cost of this new adaptation mechanism must be evaluated:

– The verification of an adaptation request involves a cost insofar as a valida-
tion must be run onto the PN. This could lead to constrain the PN modifi-
cations so that this analysis remains scalable according to the PN size.

– For usability purposes, the results of this analysis should be made available
to the application programmer, in order to allow the debugging of adaptation
requests.

– More generally, the programmer should be provided with tools enabling him
to assess the impact of an adaptation on overall performance.

Another important issue is about the composition of adaptations: an adap-
tation can be safe from the initial definition of the protocol’s rules, and become
unsafe after having performed another adaptation. This problem may be solved
in the following way: the safety criterion must be checked in comparing the
“adapted language” of the Moderator (that is the language resulting from the
protocol’s definition plus the already requested adaptations) with the language
resulting from the additionally requested adaptation. This checking should be
performed according to the different kinds of adaptation that we have presented
in 3.3.

References

1. Marvie, R., Pellegrini, M.: Modèles de composants, un état de l’art. Coopération
dans les systèmes à objets, Numéro spécial de la revue l’Objet 8(3) (2002) 61–90

2. Riveill, M., Merle, P.: La programmation par composants. Techniques de l’Ingénieur
- Informatique, 249, rue de Crimée, F-75019 Paris - France (2000)

3. Burdett, D., Kavantzas, N.: WS Choreography Model Overview. Working Draft,
W3C (2004)

4. Hanachi, C., Sibertin-Blanc, C.: Protocol Moderators as Active Middle-Agents in
Multi-Agent Systems. Autonomous Agents and Multi-Agent Systems 8(3) (2004)
131–164

5. Castelfranchi, C.: Engineering Social Order. In A. Omicini, R. Tolksdorf, F. Zam-
bonelli, ed.: Proc. Int. Workshop on Engineering Societies in the Agents World
(ESAW 2000), Springer-Verlag (2000) 1–18

6. Murata, T.: Petri Nets: Properties, Analysis and Applications. In: Proceedings of
the IEEE. Volume 77., IEEE (1989) 541–580

7. Sibertin-Blanc, C.: CoOperative Objects: Principles, Use and Implementation. In
Agha, G., De Cindio, F., eds.: Petri Nets and Object Orientation. Volume 2001.,
LNCS, Springer-Verlag (2000) 210–241

90 Christophe Sibertin-Blanc, Philippe Mauran, Gérard Padiou and Pham Thi Xuan Loc

An Aspect-Oriented Adaptation Framework for Dynamic
Component Evolution*†

Javier Camara1, Carlos Canal1, Javier Cubo1, Juan Manuel Murillo2

1Dept. of Computer Science, University of Málaga (Spain)
{jcamara,canal,cubo}@lcc.uma.es

2 University of Extremadura (Spain),
2Dept. of Computer Science, Quercus Software Engineering Group,

juanmamu@unex.es

Abstract. This paper briefly describes the design of a dynamic adaptation man-
agement framework exploiting the concepts provided by Aspect-Oriented Soft-
ware Development (AOSD) -in particular Aspect-Oriented Programming
(AOP)-, as well as reflection and adaptation techniques in order to support and
speed up the process of dynamic component evolution by tackling issues re-
lated to signature and protocol interoperability. This will provide a first stage to
a semi-automatic approach for syntactical and behavioural adaptation.

1 Introduction

One of the most significant trends in the software development area is that of
building systems incorporating pre-existing software components, commonly de-
nominated commercial-off-the-shelf (COTS). These are stand-alone products which
offer specific functionality needed by larger systems into which they are incorpo-
rated. The purpose of using COTS is to lower overall development costs reducing
development time by taking advantage of existing and well tested products. But this
approach to systems engineering has its drawbacks: development teams have no con-
trol over the functionality, performance, and evolution of COTS products because of
their Black-Box nature. Moreover, in most of the cases these components are not
designed to interoperate with each other, requiring customized adaptation which has
to be performed time and again when teams face their integration along the evolution
of the system. These activities are highly demanding, consuming time and resources
which could otherwise be devoted to the enhancement or development of new func-
tionality.

The need to automate the aforementioned adaptation tasks has driven the develop-
ment of Software Adaptation (SA) [4], a new discipline characterized by highly dy-
namic run-time procedures that occur as devices and applications move from network

*

† This work is also presented at the 3rd ECOOP'2006 Workshop on Reflection, AOP and

Meta-Data for Software Evolution (RAM-SE06).

This work has been partly supported by the projects TIN2004-07943-C04-01 and TIN2005-
09405-C02-02 funded by the Spanish Ministry of Science and Technology (CICYT) and
project 2PR04B011 funded by the Regional Government of Extremadura.

to network, modifying or extending their behaviour. SA promotes the use of software
adaptors [12], specific computational entities for solving interoperability problems
between software entities which can be classified in four different levels:

Signature Level: Interface descriptions at this level specify the methods or ser-
vices that an entity either offers or requires. These interfaces provide names, type of
arguments and return values, or exception types. This kind of adaptation implies
solving syntactical differences in method names, argument ordering and data conver-
sion.

Protocol Level: Interfaces at this level specify the protocol describing the interac-
tive behaviour that a component follows, and also the behaviour that it expects from
its environment. Indeed, mismatch may also occur at this protocol level, because of
the ordering of exchanged messages and of blocking conditions. The kind of prob-
lems that we can address at this level is, for instance, compatibility of behaviour, that
is, whether the components may deadlock or not when combined.

Service Level: This level groups other sources of mismatch related with non-
functional properties like temporal requirements, security, etc.

Semantic Level: This level describes what the component actually does. Even if
two components present perfectly matching signature interfaces, and they also follow
compatible protocols, we have to ensure that the components are going to behave as
expected.

We will focus in the design of a framework based on Software Adaptation tech-
niques and how they can be applied in order to support and speed up the process of
Software Evolution, particularly at the signature and protocol levels. Considering the
aforementioned opaque nature of COTS components, the techniques provided for the
development of this framework should be non-intrusive. In this sense, AOP [6] makes
a perfect candidate, providing a mechanism to extend and modify the behaviour of
components without directly altering them (i.e., their code). We should also employ
automatic and dynamic procedures, in order to enable adaptation just in the moment
in which components join the context of the system (or are substituted as the system
is running). The development of this kind of framework can provide a new breeding
ground for the development of agile methodologies for Software Evolution by reduc-
ing integration effort supporting (semi)automatic component adaptation.

In this paper, Section 2 discusses the advantages provided by different approaches
to dynamic AO component adaptation, and justifies the convenience of selecting
Dynamic Adaptor Management. Although signature level is the state-of-the-art in
adaptation (e.g. CORBA’s IDL-based signature description), several proposals have
been made in order to enhance component interfaces with a description of their con-
current behaviour [1, 3, 7], allowing automatic adaptor derivation in some circum-
stances [2]. Section 3 briefly describes the design of a dynamic adaptation manage-
ment framework based on the concept of automatic adaptor derivation and gives some
tips on implementation issues using AspectJ. At last, section 4 presents some conclu-
sions and open issues.

92 Javier Cámara, Carlos Canal, Javier Cubo and Juan Manuel Murillo

2 Supporting Unanticipated Dynamic Software Evolution:
Alternative Strategies based upon AO and Adaptation

When performing dynamic component adaptation, it is important to have reliable,
transparent and automatic procedures and mechanisms. These often require informa-
tion only available at runtime. If we want to take advantage of this information, we
have to find a way to apply it at runtime as well in order to modify the behaviour of
the components. We may consider two different strategies:

Dynamic Aspect Generation: Adaptors are implemented by means of aspects

which are generated, applied and removed at runtime as required. This approach
increases the complexity of the infrastructure required for execution, demanding
some non-trivial modifications to it, such as the inclusion and integration of new
functionality (runtime aspect code generation and compilation). Alas, the computa-
tional overhead caused by these additional tasks may be too heavy if the system is not
carefully optimized. On the other hand, this approach would provide a high degree of
flexibility in adaptor generation.

Dynamic Adaptor Management: Several precompiled aspects manage adaptation.

In this approach, the different aspects form a manager which is able to retrieve, inter-
pret, and use the dynamic information required for adaptation. Different adaptors can
be built using the algorithm described in [2], and managed specifically for each inter-
action between components as they join the context of the system and invoke meth-
ods belonging to others.

So far, several efforts have been made in the community in order to develop plat-

forms such as CAM/DAOP [10] or PROSE/MIDAS [11], which are already capable
of performing dynamic aspect weaving, a mechanism that allows aspect code to be
woven into an application at any point of its execution. This technique will enable the
application of adapting aspects independently of the selected approach. Although the
state of the art does not currently make Dynamic Aspect Generation a feasible ap-
proach, it is a promising choice to consider for future research. Dynamic Adaptor
Management, on the other hand may be less flexible but suffices the requirements to
perform dynamic adaptation, and the required infrastructure in comparison is much
simpler. This justifies the adoption of this strategy for this first stage of our proposal.

 An Aspect-Oriented Adaptation Framework for Dynamic Component Evolution 93

3 Dynamic Adaptation Management Framework

3.1 System Architecture

When performing dynamic adaptation, we require both signature and protocol in-
formation from the components being adapted to produce a consistent mapping or
correspondence between their interfaces in order to solve potential mismatches. This
can either be obtained from the components using techniques for the incorporation of
metadata such as annotations [5], or semantic techniques [8] exploiting the already
available information from the components, and inferring protocol related informa-
tion such as order of message exchange in a similar fashion to OWL-S [9], used in
the field of Web Services. While in the former approach adaptation may work more
accurately, the latter does not require the component to be specifically prepared for
adaptation. However, the available information may vary depending on the specific
platform we are using, so a compromise may be necessary, such as taking a hybrid
approach by adding some complimentary information to the components in some
cases if it is required. Anyway, the construction of such mappings falls out of the
scope of this paper, and it is an issue to discuss in itself in further work. For our pur-
poses, we will consider that the mapping is already available, focusing in the design
of an aspect-based adaptation management framework. As we can see in Fig.1, the
architecture of the system contains three basic functional modules in charge of the
different tasks required for adaptation:

Interface Manager: This module is in charge of inspecting the interfaces of the

components as they join the context of the system, and keeping their description in an
interface repository in order to use them later for mapping generation. For this pur-
pose we will use reflection techniques. Upon initialization of the component c1 of
class C, the manager checks for the existence of an entry for C in the repository, and
if it does not exist, it creates one for it. Each one of these entries is a set of informa-
tion containing a minimum of method and argument names, argument and return
value types, argument ordering, and exception types. As we have already mentioned,
this set of information can be extended with other properties (protocol-related, etc.).
This may be required at some point in order to solve some specific problems, al-
though it should not be encouraged, since the principle of obliviousness would be
compromised.

Adaptor Manager: It generates new adaptors as required by the conditions of the

system. Once a component of class S joins the context, it may generate one or several
messages to other components. Every time one of these messages is generated, the

94 Javier Cámara, Carlos Canal, Javier Cubo and Juan Manuel Murillo

manager captures it and checks if it is the first one consigned to a target component of
class T. If that is the case, a mapping is produced between the source and target com-
ponent classes, and subsequently an adaptor is automatically generated making use of
the algorithm described in [2]. This adaptor is stored in a repository and it will be
used for interaction management between any pair of components of classes (S, T).
This module will incorporate an inference engine based on pre-agreed ontologies
explicitly defining resources, preconditions, and effects of processes, as well as do-
main related properties and relationships. In such a way, we will provide the system
with a machine-interpretable description of the semantics of the components. This
enables the use of inference techniques traditionally used in AI (knowledge represen-
tation, goal-oriented planning, logic, etc.) in order to infer relevant properties from
the components and adapt them. Once generated, these adaptors will allow syntactical
adaptation providing message and parameter name translation, data conversion, and
parameter reordering. They will also provide a mechanism to perform protocol adap-
tation, storing messages whenever required for a delayed delivery, and establishing
correspondences between them which can be one-to-one as well as one-to-many. By
accessing the Adaptor Manager the engineers can supervise and tune the behaviour of
the components by editing the mappings produced by the inference engine in order to
fit specific needs. The characteristics of these mappings may also be constrained by
manual introduction of contextual information in the engine. This capability enables a
semi-automatic approach in which the engineer can easily evolve components worry-
ing mostly about coarse-grained issues.

Coordination Manager: Monitors and translates all messages between compo-

nents. Each time a component si sends a message to a component ti, the manager
translates it making use of the already available adaptor for (S, T) stored in the reposi-
tory. A pool for session information is established in this manager in order to store
specific information about the state of the components and their interaction. For each
pair of interacting components (si, ti), a session is created in the repository the first
time si sends a message to ti. This session information is updated if necessary with
each message between components. Session information will be publicly available to
the mechanisms in the coordination manager since some interactions between com-
ponents may influence that of others.

 An Aspect-Oriented Adaptation Framework for Dynamic Component Evolution 95

Fig. 1. Architecture diagram and simple component interaction example: Components
a1,b1, and n1 join the context. Interfaces A, B, and N are stored in the interface re-
pository (a). Component b2 joins the context (b). a1 sends a message to b2. Interfaces
for A and B are mapped and adaptor (A ,B) is generated in the adaptor repository and
a session entry for components (a1,b2) is created in the session pool. The message is
then translated by the coordination manager (c).a1 sends a message to b1. A session
entry is then created for components (a1,b1) in the session pool and the message
translated by the coordination manager (d).

3.2 Implementation Issues

In order to illustrate some of the issues related to the implementation of our pro-
posal, we will make use of AspectJ, which is highly representative of the AOP sys-
tems currently used. In this section we will highlight some of the key structures and
mechanisms it provides to implement the functionality of our adaptation management
framework. If we take a look at its design, we can enumerate a minimum set of point-
cuts we have to define in order to provide the required functionality:

Component initialization: It is satisfied whenever a new component enters the

context of the system. It will be used by the interface manager in order to store inter-
face related information.

Component invocation: Specifies all the messages sent from one component to

another within the context of the system. Used by the adaptor manager for adaptor
generation and by the coordination manager for session creation, message translation,
and session info updating.

It is worth mentioning that since multiple aspects are present in the system, pieces

of advice in the different aspects corresponding to each of the managers, may apply to
a single join point. When this situation is given, the order in which advices are ap-
plied to the join point must be explicitly defined. This is the case of component invo-

96 Javier Cámara, Carlos Canal, Javier Cubo and Juan Manuel Murillo

cation, which is used both by the adaptor and the coordination managers. In order to
observe this order, AspectJ uses precedence rules to determine the sequence in which
advices are applied. Aspects with higher precedence execute their before advice on a
join point before the ones with lower precedence. When the method of a component
is invoked, the sequence to follow is: (a) the adaptor manager checks if an adaptor
needs to be generated. (b) The coordination manager checks if a session entry must
be created, and (c) the coordination manager translates the message and updates ses-
sion information. This translation is driven by the previously generated mapping and
implemented through the join point model provided by AOP. This provides an ele-
gant and non-invasive way of performing message translation.

AspectJ also provides mechanisms for source and target component identification
through the use of thisJoinPoint getThis() and getTarget() methods. The coor-
dination manager can monitor argument values in method invocations making use of
the getArguments() method provided by thisJoinPoint as well. In order to obtain
information related to methods such as exception, return, and parameter types, as well
as argument and method names we can use the getSignature() method provided by
thisJoinPointStaticPart.

Table 1. Pointcut definition and main API classes used for the framework.

Sample pointcut definition
Component Initialization pointcut pcComponentInitialization() :

 staticinitialization(exp.adapt.component.*);

Component Invocation pointcut pcComponentInvocation() :
 call(* exp.adapt.component.*.*(..));

API structures and mechanisms
Component Identification org.aspectj.lang.JoinPoint

thisJoinPoint(getThis() and getTarget())

Argument Values org.aspectj.lang.JoinPoint
thisJoinPoint.getArguments();

Method Information
org.aspectj.lang.JoinPoint.StaticPart
org.aspectj.lang.Signature
(thisJoinPointStaticPart.getSignature())

Class
Identification and Interface
Inspection

java.lang.reflect.Class
java.lang.reflect.Method

In order to identify component classes and perform interface inspection we will

use the Java Reflection API. Through this API we can obtain the class of each com-
ponent and extract information from it such as name, public attributes, and method
signature description. It is worth noticing that parameter name information is not
stored in standard Java .class files, so it is not retrievable using standard Java reflec-
tion. However, the AspectJ compiler does enrich compiled classes with that informa-
tion. We will consider that we have that information readily available for our pur-
poses.

 An Aspect-Oriented Adaptation Framework for Dynamic Component Evolution 97

4 Conclusions and open issues

In this paper, we have discussed the potential approaches to Aspect-Oriented Dy-
namic Component Adaptation in order to support Dynamic Component Evolution, as
well as their advantages and drawbacks. We have justified the choice of dynamic
adaptor management in a first approach and illustrated its use proposing a design for
an adaptation management framework, and how it can be used in order to support the
process of component evolution. In order to test this approach we are currently devel-
oping a prototype in AspectJ. Although the platform does not support dynamic weav-
ing, it is capable of performing load-time weaving, which is enough in order to test
our approach. The ontologies we are planning to use in this prototype will be stored
in OWL. This will make it easier to create and read the ontologies since tools and
libraries to process OWL are available. So far, only the signature and protocol levels
have been tackled, and further study has to be performed related to mapping genera-
tion in order to provide suitable techniques for the semantic level as well.

Although our chosen approach suffices the requirements to perform dynamic adap-
tation, dynamic adaptor generation has a great potential and it is a very promising
approach to explore in further work, as compiler and virtual machine technology
evolves.

References

1. Allen R. and Garlan D. A formal basis for architectural connection. ACM Trans. on Soft-
ware Engineering and Methodology, 6(3):213–49, 1997.

2. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation. The Jour-
nal of Systems and Software. Special Issue on Automated Component-Based Software En-
gineering 74 (2005), pp. 45-54.

3. Canal, C., Fuentes, L., Pimentel, E., Troya, J.M., Vallecillo, A.: Adding roles to CORBA
objects. IEEE Transactions on Software Engineering 29 (2003), pp. 242–260.

4. Canal, C., Murillo, J.M. and Poizat, P. Software Adaptation. in L'objet, 12(1):9-31, 2006.
Special Issue on Coordination and Adaptation Techniques for Software Entities. to appear.
2006.

5. Cazzola, W., Pini, S. and Ancona, M. The Role of Design Information in Software Evolu-
tion. In Proceedings of the 2nd ECOOP Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE’05).

6. Filman, Robert E., Friedman, Daniel P.: Aspect-Oriented Programming Is Quantification
and Obliviousness. In Mehmet Aksit, Siobhán Clarke, Tzilla Elrad, and Robert E. Fil-
man, editors, Aspect-Oriented Software Development. Addison-Wesley, 2004.

7. Magee J., Kramer J., and Giannakopoulou D. Behaviour analysis of software architectures.
In Software Architecture, pages 35-49. Kluwer, 1999.

8. McIlraith, S.A., Martin, D.L.: Bringing semantics to Web Services. IEEE Intelligent Sys-
tems, 18(1):90-93, Jan/Feb, 2003.

9. “OWL-S: Semantic Markup for Web Services”, The OWL Services Coalition (2004),
http://www.daml.org/services.

98 Javier Cámara, Carlos Canal, Javier Cubo and Juan Manuel Murillo

http://www.lcc.uma.es/%7Ecanal/
http://quercusseg.unex.es/QuercusProy/en/personal.php?LOGPER=1
http://www.daml.org/services

10. Pinto, M.: CAM/DAOP: Component and Aspect Based Model and Platform, PhD thesis.
Dpto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga (2004) Available
in Spanish.

11. Popovici, A., Frei, A., Alonso, G.: A proactive middleware platform for mobile computing.
In: 4th ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro, Brazil
(2003)

12.Yellin, D.M., Strom, R.E.: Protocol specification and component adaptors. ACM Transac-
tions on Programming Languages and Systems 19(2) (1997)

 An Aspect-Oriented Adaptation Framework for Dynamic Component Evolution X

