Voyager: Software Architecture
Trade-off Explorer

Jason Mashinchi and Javier Camara

Department of Computer Science, University of York
jason.mashinchi@alumni.york.ac.uk, javier.camaramoreno@york.ac.uk

Abstract. Software engineers must ensure that systems under develop-
ment are endowed with software architectures that enable them to meet
their requirements. Apart from functionality, systems also have to satisfy
extra-functional requirements that may include behavioural constraints
that the software must adhere to, as well as qualities to optimise such
as performance, availability, and energy efficiency. These qualities are
often inter-dependent and heavily influenced by the structure of the sys-
tem. This results in poorly understood multi-dimensional design spaces,
in which trade-offs among qualities are not evident when making ar-
chitectural decisions. This paper presents Voyager, a tool which allows
engineers to visualise architectural configurations and explore the trade-
offs among their quality attributes in a multi-dimensional design space.
The tool produces contextual visualisations to facilitate trade-off anal-
ysis, providing engineers with a streamlined way of understanding ar-
chitectural design spaces, using an approach that combines architectural
structure with multi-dimensional data visualisations. A user study was
conducted to evaluate the effectiveness of the tool. Results show that
participants achieved a significantly higher accuracy in a shorter time
span and had a better user experience when using Voyager, with respect
to an existing comparable tool.

Keywords: Software architecture - visualisation - trade-offs - quality
attributes

1 Introduction

Software is extensively used across the globe today, forming a key part of many
industries with applications that range from safety-critical aviation to social net-
working. All software must meet its requirements — i.e. must be able to achieve
its intended purpose, by performing functions required of it and meeting what-
ever behavioural constraints that exist [12]. For example, a piece of software may
be required to calculate the speed a car is travelling, with a constraint that it
must deliver a result within 10ms of receiving an input. There are many correct
ways to develop software, and many possible architectural structures that allow
the software to achieve its goal, each with its own benefits and trade-offs.

A key challenge for software engineers is to understand the properties of
the architectural design space, to allow them to make better design decisions

2 Jason Mashinchi and Javier Camara

with well-grounded knowledge about the trade-offs amongst concerns (e.g. cost,
reliability) and the architectural constraints [4]. More often than not, the ar-
chitectural design space is poorly understood, as it is not easy to represent the
trade-offs that exist between desirable quality attributes and the structure of
possible architectural configurations in an accessible way. Understanding this
design space is useful for developing optimal software, as different configurations
entail different trade-offs that software architects have to make.

Visualisation is a useful tool for developing an understanding of data. How-
ever, visualising architectural design spaces is challenging because of the multi-
dimensional nature of the problem (quality metrics used for comparison often
go beyond three dimensions), and the difficulty in relating explicitly structure
and quality trade-offs.

This paper presents Voyager!' — a tool that primarily focuses on the needs of
software engineers, by combining trade-off analysis with software architectural
structure visualisation. As quality metrics of architectural configurations depend
on their structures, it is helpful for architects to understand and easily analyse
both side-by-side. Existing tools focus on either architecture visualisation (e.g.
AcmeStudio [15]), or architectural trade-off analysis (e.g. ClaferMoo [11]), un-
like Voyager which offers a novel combination of the two, enabling engineers to
narrow design spaces and find better configurations more effectively.

While Voyager is designed primarily for software architecture analysis, the
multi-dimensional trade-off analysis features are more general purpose, so it can
also be applied to other related areas with multi-dimensional data to analyse
results from variable configuration spaces (e.g. software product lines [6], quan-
titative verification [8]). In addition, Voyager has extensibility features that en-
able integration with external tools which can act as a data source and provide
additional visualisations to appear in the user interface.

2 Background & Related Work

Architecture refers to the high-level aspects of the software, such as its overall
organisation, the individual components and their functionality, and the rela-
tionships and interaction between them [4]. There are many alternative software
architectures that can be used to realize a software system, each with its own
set of quality characteristics [10]. Selecting one of a possible set of alternative
approaches to the software architecture entails carrying out a set of design de-
cisions which have to be informed by a clear understanding the design space,
including trade-offs amongst relevant quality attributes.

To inform this selection, some tools such as Prism-MW [7], ArchJava [1]
and Aura [16] facilitate modelling a set of correct architectural configurations
to analyse, without much support for optimisation. Work in multi-dimensional
architecture optimisation approaches is plentiful and varied in classes of tech-
niques employed [2], with some recent approaches enabling automated synthesis

! The source code, user study data and a video demonstration of the Voyager tool is
located online at: https://github.com/jasonmash/voyager

Voyager: Software Architecture Trade-off Explorer 3

of sets of correct configurations with associated quality metrics [5]. However,
these tools are not designed to facilitate systematic and interactive exploration
of their output, which is often difficult to understand and cumbersome to ex-
plore. The output of these tools can be used as input for Voyager, which offers
trade-off and architectural structure visualisations that help software engineers
understand and analyse these sets of multidimensional architectural data.

As each architectural configuration consists of a structured set of compo-
nents, individual architectures can be visualised and analysed using tools such
as AcmeStudio [15] and SoftArchVis [13]. These tools allow visualising the soft-
ware architectures to give a better understanding of how each configuration is
composed and their attributes. However, these tools are limited to visualising one
architectural configuration at a time, reducing their effectiveness for understand-
ing and analysing the design space and quality trade-offs. Voyager incorporates
basic structural diagramming tools alongside its trade-off analysis functionality,
and also provides an extensions interface that allows external tools to add new
static or dynamic architectural visualisations.

Other existing tools such as ClaferMoo [11] and TradeMaker [3] are good for
comparing amongst many configurations, providing charts such as 2D bubble
plots and matrices representing the distribution of configurations in relation
to their quality attributes. However, these do not include architectural structure
information, making it difficult to understand how the quality attributes relate to
the architecture itself. Voyager incorporates the design space visualisations and
trade-off analysis tools, alongside architectural structure visualisations, showing
each when contextually appropriate, without requiring any user configuration.

Finding an architecture design that meets all quality requirements while bal-
ancing the trade-offs from dependent quality attributes requires multi-objective
optimisation, a process that generates sets of Pareto optimal solutions (i.e. solu-
tions for which no alternative solution that is better in one property and equally
as good with respect to all others, exists [14]). Although some of the existing ar-
chitecture optimisation approaches can generate Pareto-optimal solutions, none
of the surveyed tools incorporates algorithms to calculate the Pareto frontier for
user-selected quality attributes from a raw data set. Our tool is able to do that,
making clear which configurations are Pareto-optimal for the selected attributes.

In summary, existing tools are effective for analysing either a single archi-
tecture at a time, or multiple correct architectures but without any explicit link
to architectural structure. In contrast, our tool combines the benefits of trade-
off analysis with that of software architectural structure visualisation to enable
better understanding of architectural design spaces.

3 Voyager

Voyager is designed to support architects during evaluation of architecture de-
sign quality and satisfaction of stopping criteria when optimising architectures,
helping them in understanding the design space and potentially providing feed-
back for the generation of new design alternatives (Figure 1, right).

4 Jason Mashinchi and Javier Camara

\/ Voyager Solution Explorer -

Solution Explorer 2 import| [& export| [Reset| [+

Architecture
representation

Attributes ouwtypiony Configurations sewmmar0 Visualisations

Generate new
design alternative(s)

© Cost 1
Priority: 1

Optimisation Aim:

config-10
Cost: o Evaluate

1233 architecture
design quality

Voyager

Final architecture
design(s)

Fig. 1: (left) screenshot of Solution Explorer in Voyager and (right) architecture
optimisation workflow (adapted from [2])

3.1 Implementation

The tool is implemented using open source web technologies, delivering a cross-
platform application that runs in a browser. The tool is implemented using
TypeScript (typescriptlang.org), a superset of JavaScript, which utilises extra
compilation steps to add features such as type checking that improve devel-
oper productivity. Additionally, open source libraries such as Vue.js (vuejs.org),
Bootstrap (getbootstrap.com) and ECharts [9] are used to construct the user
interface, alongside several other libraries listed in the code. While the tool is
designed to run entirely within a browser, all computation and data process-
ing takes place locally, and data is persisted across browser sessions to ensure
Voyager behaves like any other locally installed application.

To ensure the quality of the Voyager tool, a suite of end-to-end and unit tests
has been developed, using the Cypress (cypress.io) and Mocha (mochajs.org)
libraries respectively.

3.2 Solution Explorer

The core functionality of Voyager is found in the “Solution Explorer”, enabling
users to study a set of architectural configurations and their trade-offs using
context-appropriate visualisations, alongside relevant sorting and filtering tools.
The Solution Explorer page is split into three columns, each showing attributes,
configurations and visualisations respectively for the current data set. An ex-
ample is shown in Figure 1 (left), for a set of configurations that have cost,
reliability, and response time quality attributes.

3.3 Quality Attributes

The left-hand most “Attributes” pane includes the set of quality attributes in-
ferred from the imported architecture configurations, and it has been designed
to allow software architects to straightforwardly reduce the architectural design

Voyager: Software Architecture Trade-off Explorer 5

space. This is accomplished by allowing users to: select, filter and sort configura-
tions based on the values of their quality attributes; to set an optimisation aim
(i.e. whether higher or lower values are better for the attribute); and to narrow
down the range of acceptable values for a given attribute. Changing these prop-
erties updates the list of configurations and any currently visible visualisations
in real-time, ensuring users get instant feedback on how changes to the design
space affect the possible architectural solutions for the given data set.

3.4 Architectural Configurations

The centre of the screen contains a list of configurations that meet the require-
ments specified in the attributes pane. The configurations are grouped together
based on Pareto optimality, where optimal architectures on the Pareto frontier
are placed at the top, followed by non-dominant solutions below. Configurations
are sorted according to their attribute values, the order of which is determined
by the attribute optimisation aim (e.g. when higher values are better, those
configurations are placed first). This effectively shows architects which of the
possible structures are best suited for further consideration.

A single configuration can be selected, showing the ”Selected Configuration”
panel to the right. This presents each quality attribute value for the selected
configuration, and a radar chart of these values relative to those of other config-
urations, alongside any visualisations of its software architecture.

By default, Voyager shows an architectural structure graph, representing
each component within the architecture and the connections between them. This
chart allows the user to hover over individual elements for further details and
can be panned and zoomed. Additional architectural visualisations from exter-
nal tools can be shown in the selected configuration panel, by providing these
in an image or html-based format using the Voyager extensions interface. These
architectural visualisations help users understand the design space, by enabling
users to quickly compare possible configurations and identify which style of ar-
chitectures are better or worse, which components have which trade-offs, etc.

3.5 Design Space Visualisation

Using visualisations is an effective way of understanding data sets, as it allows
humans to intuitively identify patterns and trends, and spot outliers. Voyager
shows visualisations of the design space in the rightmost panel, including data
points for each visible configuration after the attribute filters have been applied.
This allows users to gain an understanding of the relationships between quality
attributes and therefore whether trade-offs exist.

Software architecture quality attributes, like any other data, are easy to visu-
alise when there are one, two or three attributes to analyse, making use of graphs
such as scatter plots, bar charts and 3D surface plots. However, as it is common
with software architectures, there are often more than three dimensions of data
to process, presenting a challenge as we cannot simply add additional dimensions
to graphical visualisations, being fundamentally limited to 3D space. Therefore,

6 Jason Mashinchi and Javier Camara

Voyager makes use complex visualisations that encode additional data into the
space we are able to perceive, applying projections onto the data where neces-
sary, and utilising additional properties such as colour, size and position where
appropriate.

The visibility of each visualisation in the UI is context-dependent, as their
effectiveness depends on the number of configurations and the number of di-
mensions of attributes, determined by the selected attributes and filters. Each
visualisation updates in real-time as filters are adjusted, which means users do
not have to manually press refresh (or similar) like existing tools. This reduces
cognitive load, by allowing users to focus their thought processes on their data,
rather than on how to get the software to do what they want it to.

The visualisations shown in the visualisations panel have been selected ac-
cording to their usability, clarity and function. These include bar/line charts,
2D/3D scatter plots, surface plots, configuration maps and radar charts.

Each visualisation has a dropdown menu in the top right corner, providing
options such as exporting to image files, and switching between projections of
3D charts (e.g. orthographic and perspective). All visualisations include addi-
tional information in tooltips for each data point — e.g. 3D scatter plots include
information about where the mouse is along each axis, and which configuration
is highlighted. In addition, selecting a point provides architectural structure di-
agrams, acting as an effective tool for comparing architectural structure and
quality attributes side-by-side (c.f. Figure 1, left).

3.6 Reports

Voyager contains reporting functionality to allow users to save any visualisation
included in the application into a report for future reference. Report visualisa-
tions contain a snapshot of their source data to ensure their content is not modi-
fied by any data manipulation performed elsewhere in the application. Users can
create one or more reports, each with a unique title, to group together multiple
visualisations that can be labelled - this provides a straightforward mechanism
for comparing between multiple architectures.

3.7 Data Sources & Extensibility

Voyager makes use of common file formats such as .csv and .json to allow users
to import and export data from the application easily, enabling the use of various
other tools for data collection and preparation. The state of the application can
be exported directly from the user interface, and re-imported at a later date to
restore the application exactly to its previous state, resulting in an output file
that can be shared amongst interested parties when collaborating.

Voyager offers an extension interface, allowing third party tools to integrate
with the tool by providing lists of configurations and associated customised vi-
sualisations in static (image) or dynamic (html/js) formats. Communication be-
tween Voyager and external tools is accomplished using HTTP requests, with
the requirement for external tools to implement a REST API that returns JSON

Voyager: Software Architecture Trade-off Explorer 7

data for specified endpoints. This technology choice was made because HTTP is
a widely supported protocol, with easy implementation across many program-
ming languages.

4 Evaluation

During development, Voyager has been validated with existing data sets, includ-
ing the Tele Assistance System (TAS) exemplar (a service-based system) [17],
showing indication of its potential to analyze trade-offs in preliminary user exper-
iments. To further validate that Voyager meets the goal of providing engineers
with a user-friendly tool for visualising software architectures and exploring their
trade-offs, we have conducted a user study to quantify its effectiveness.

4.1 User Study Design

We constructed a user study consisting of a set of questions related to a software
architectural trade-off analysis scenario. Participants are asked to make use of
tools including Voyager and other existing comparable software to analyse the
provided data for a given scenario. This allows for the collection of quantitative
data that is used to compare and measure the effectiveness of our tool.

Each scenario used in the user study include sets of architectural configura-
tion data, containing both quality attribute values and a representation of the
architectural structures for each configuration. Participants are asked questions
requiring them to find optimal architectural configurations for the data set, by
performing tasks such as filtering, sorting, clustering and correlation to iden-
tify any trade-offs between quality attributes. Participants also must make use
of individual architectural structure visualisations to compare between two or
more potential configurations. The data sets used contained many configura-
tions with cost, battery life, range and reliability quality attributes, each with
representative trade-offs between each.

To establish a baseline prior ability of each participant, and to ensure they
have a chance to familiarise themselves with the type of problem they are being
asked to solve, the first section of the user study consists of a background task
which all participants complete. This background task contains a scenario and
set of questions, alongside a basic spreadsheet tool that presents the data and
only offers basic data analysis tools including sorting and filtering.

Following the completion of the background task, the participants are ran-
domly allocated one of two possible tools for use on further, more difficult ques-
tions. One of these tools is Voyager, and the other is ClaferMoo Visualizer [11]
- a directly comparable tool with similar aims. This tool was selected for use
in this study because: it provides a user interface that can be used to solve the
same class of problems as Voyager, it is easily available and widely used, and it
can be populated with fundamentally the same data set as Voyager.

The same scenario, data set and questions are used regardless of the allocated
tool, with slight terminology adjustments to account for the differences between

Jason Mashinchi and Javier Camara

the tools (i.e. a Voyager “configuration” is called a “variant” in ClaferMoo).
This second analysis task is intentionally more difficult than the background
task, and contains additional quality attributes and configurations to analyse.
Each scenario consisted of four questions, each formulated to cover a com-
prehensive range of tasks users typically accomplish when conducting analytic
activities, and also to provide quantitative data to be used to compare and mea-
sure the effectiveness of our tool. For each question, timing data was captured
to understand how long it takes users to complete allocated tasks for each tool.

’Question Rationale

A straightforward question to get participants
familiar with the tool user interface. Requires
them to use the UI to find a single configuration
with the lowest value for one quality attribute.

1. Identify the configuration
with the lowest cost

2. Identify one (or more)
configurations with the high-
est possible battery life and
highest possible range within
the same configuration

This question is designed to get participants
thinking about trade-offs, as the data set con-
tained no obvious answers, as in this case, in-
creased range meant reduced battery life. Par-
ticipants could make use of the tabular or graph-
ical representations of all configurations, as well
as sorting tools to find those configurations that
were on the Pareto-front for this problem.

3. Identify one (or more)
configurations that have the
highest possible battery life,
then the highest possible
range where the reliability is
greater than [threshold]

This question requires participants to make use
of more advanced functionality within each tool,
including filtering, to identify configurations on
the Pareto-front for this problem. Participants
were told that sorting/filtering/visualisation
tools could be used.

4. Identify any common fea-
tures present in configura-
tions that have a battery life
greater than [threshold] and
a cost less than [threshold]

This question was designed to get participants to
make use of architectural structure visualisation
tools, to identify any components and connec-
tions that were common within a similar class
of configurations.

The responses collected from each participant are validated using a numerical
score for each question, representing the number of correct answers achieved out
of the total set of correct answers. For the questions where optimal configurations
need to be identified, the set of correct answers is the set of Pareto-optimal
configurations matching the specified goal.

Following the completion of each scenario within the user study, we asked
participants a series of usability questions to gather their opinion and therefore
a measure of their perception and confidence of how well they performed on the
task for each tool. Participants were asked (i) how they found the task, (ii)
how well they thought they did, and (iii) how easy the tool was to use. The
answer options for these questions took the form of a 5-point Likert scale, with

Voyager: Software Architecture Trade-off Explorer 9

the results being stored as 0 being a strongly negative answer, 3 being neutral,
and 4 being a strongly positive answer.

To determine whether a response we received from a participant was valid
(and not filtered out), we made use of the following criteria: (i) the participant
completed all questions, (ii) all answers to the question were in the expected
data formats, (iii) timing data was present for every question, and (iv) the
participant reported no problems completing the study.

4.2 Experiment Design

We recruited 47 participants to complete the user study of various backgrounds
and abilities. Of the 47 participants who started the user study, 32 participants
fully completed the study and provided results that were valid for further analysis
and contained no invalid answers according to the verification criteria above.

To ensure we understood our participants background experience, they were
asked to provide their current occupation, educational study level, and their level
of study in STEM-related subjects. Numbers of participants at each STEM edu-
cation level were as follows: Secondary: 1; Post-Secondary: 9; Bachelor’s Degree:
5; Master’s Degree (or higher): 17.

A web-based tool was developed to conduct the user study. This was neces-
sary to embed a spreadsheet tool, Voyager and ClaferMoo Visualizer in a seam-
less user interface, which ensured the only technical requirement participants
had to comply with was access to a modern desktop-sized web browser.

The total cohort of participants was split into two equally-sized groups, each
of which was allocated either the Voyager or ClaferMoo Visualizer tool. In total,
16 participants (50% of the total) completed the task using Voyager, and 16
participants completed the task using ClaferMoo Visualizer. All 32 participants
completed the background task using the embedded spreadsheet.

To balance the effects of education levels amongst participants, their allo-
cation to groups was entirely random. This led to the unintended effect of one
group having a slightly higher average education level than the other, which may
have resulted in an overestimate of the difference in outcomes between the groups
in the results. To account for this, a statistical T-Test was performed making
use of the background task data, which did not show a statistically significant
difference in the scores achieved between the two groups (p = 0.691, with mean
values of: 5.1 for Voyager, and 4.9 for ClaferMoo participants; where the maxi-
mum score was 8). A review of each participant’s occupation showed these were
well balanced between groups, as similar numbers of participants with relevant
occupations were present in each group (e.g. engineers, computer specialists).

The independent variable of this experiment was the tool used to complete
the same scenario. The dependent variables we measured were: correctness, con-
fidence, user perception, and time to complete each task. Correctness was mea-
sured using the scores achieved per question, while confidence and perception
were measured using the usability questions.

The hypotheses for this experiment were as follows:

10 Jason Mashinchi and Javier Camara

1. Given the same data set and questions, participants would identify more
correct answers in a shorter time period using Voyager compared to those
using an existing tool.

2. Participants would find Voyager subjectively easier to use and would be more
confident in their results compared to using a spreadsheet or a comparable
existing tool.

4.3 Analysis & Results

The results of the user study support both hypotheses of the experiment. This
data is publicly accessible alongside the source code. A two-sample, one-sided
statistical t-test was used to calculate a measure of whether there was a sig-
nificant difference between two sets of data, making use of the output p-value,
which shows a significant result if it is less than 0.05. A p-value represents the
probability of observing a result at least as extreme as the observed results, as-
suming that the null hypothesis is true (equal means). A smaller p-value means
there is a smaller probability that the null hypothesis is true, providing stronger
evidence in favour of the alternative hypothesis.

Participants using Voyager achieved a higher average score, in less time than
those who used ClaferMoo Visualizer, given the same questions and data set.
The mean average scores and durations for the tool questions are shown below,
in addition to the p-values obtained using a t-test as described above.

’ ‘Total Score (% correct)‘Duration (mins)‘

Voyager 57 8.4
ClaferMoo Visualizer 38 10.9
[T-Test (p-value) | 0.0133 \ 0.0391 \

Performing a statistical t-test shows there is a significant difference between
both tools for the total score with mean averages of 57% for Voyager, and 38% for
ClaferMoo, with p = 0.0133. Likewise for timing data (total time to complete tool
questions), with mean averages of 8.4 minutes for Voyager and 10.9 minutes for
ClaferMoo, with p = 0.0391. These p-values allow us to reject the null hypothesis,
and conclude there is not evidence in support of equal means. This shows a
statistically significant difference for both dependent variables, indicating that
the hypothesis that the Voyager tool allows users to achieve higher accuracy
answers in a shorter time period is correct. Broken down by question, in every
case, participants using Voyager achieved a higher mean average than those who
used ClaferMoo Visualizer.

The results from the usability questions that measured user perception and
confidence also support the hypothesis that Voyager was subjectively easier to
use compared to a spreadsheet and existing tools. A statistical t-test for each of
the questions asked was conducted, comparing the results from Voyager to those
from both the spreadsheet and ClaferMoo tasks. The results are as follows:

Voyager: Software Architecture Trade-off Explorer 11

Mean Average T-test (p-value)
Question Spreadsheet|ClaferMoo| Voyager|Spreadsheet|ClaferMoo
How easy was the tool 2.19 1.13 2.69 0.03627 0.00002
to use?
How did you find the 1.94 1.44 2.38 0.00904 0.00134
task?
How well do you think 2.38 2.25 2.81 0.01339 0.05330
you did?

For the user perception measures (how easy was the tool to use?, how did
you find the task?) - it is clear that Voyager has a higher mean average than
both a spreadsheet and ClaferMoo Visualizer, and this is statistically significant
for in both cases (p < 0.05). This means users found Voyager easier to use, and
found completing the same task easier using Voyager.

For the question quantifying how confident users felt about their answers
(how well do you think you did?), Voyager had statistically significant differ-
ence compared to the spreadsheet (p = 0.01339) with a higher mean average,
but there was not a significant difference compared to ClaferMoo Visualizer (p
= 0.05330, which is greater than 0.05) despite its higher average. This is a clear
contrast to the actual scores achieved on both tools, where there was a statisti-
cally significant difference in the results.

5 Discussion & Future Work

Voyager is a trade-off exploration tool designed for supporting effective analy-
sis and understanding of multi-dimensional design spaces. The tool delivers a
user-friendly, flexible and robust interface, offering a novel solution that com-
bines multi-dimensional quality attribute analysis with architectural structure
visualisation — neither of which appear to have been combined into a single tool
before. It makes use of modern web technology to deliver clear 2D and 3D data
visualisations, offering a maintainable and reliable codebase fit for future use
and expansion. Voyager’s extensibility features enable flexible integration with
other tools, opening up the potential to serve a much larger set of use-cases (e.g.,
software product lines).

Our user study shows Voyager is effective for use with multi-dimensional ar-
chitecture trade-off problems, having obtained results that show it had a signifi-
cantly better user experience compared with existing comparable tools, allowing
participants to achieve higher accuracy of answers in a shorter time span.

There is scope for future work - including implementing new visualisation
ideas (e.g. hierarchical structure exploration, parallel coordinate charts, con-
ditional formatting etc), encouraging open source contributions, and offering
enhanced support for external tool integration.

Acknowledgements. The authors would like to thank everyone who kindly
volunteered to participate in the user study.

12 Jason Mashinchi and Javier Camara
References
1. Aldrich, J., Chambers, C., Notkin, D.: Archjava: connecting software architecture

10.

11.

12.

13.

14.

15.

16.

17.

to implementation. In: Proceedings of the 24th International Conference on Soft-
ware Engineering. ICSE 2002. pp. 187-197 (May 2002)

Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software archi-
tecture optimization methods: A systematic literature review. IEEE Trans. Softw.
Eng. 39(5), 658-683 (2013)

Bagheri, H., Tang, C., Sullivan, K.: Trademaker: Automated dynamic analysis of
synthesized tradespaces. In: Proceedings of the 36th International Conference on
Software Engineering. pp. 106-116. ICSE 2014, ACM, New York, NY, USA (2014)
Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Professional, 3rd edn. (2012)

. Cémara, J., Garlan, D., Schmerl, B.R.: Synthesizing tradeoff spaces with quan-

titative guarantees for families of software systems. J. Syst. Softw. 152, 33-49
2019

glemgnts, P., Northrop, L.: Software Product Lines: Practices and Patterns.

Addison-Wesley Professional (2001)

Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for au-

tomatic verification of probabilistic systems. In: 12th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems. LNCS,

vol. 3920, pp. 441-444. Springer (2006)

Kwiatkowska, M.: Quantitative verification: Models, techniques and tools. In: 6th

Joint Meeting on European Software Engineering Conference and the ACM SIG-

SOFT Symposium on the Foundations of Software Engineering: Companion Pa-

pers. pp. 449-458. ACM (2007)

Li, D., et al.: Echarts: A declarative framework for rapid construction of web-based

visualization. Visual Informatics 2(2), 136 — 146 (2018)

Mahdavi-Hezavehi, S., Galster, M., Avgeriou, P.: Variability in quality attributes of

service-based software systems: A systematic literature review. Inf Softw Technol

55(2), 320-343 (2013)

Murashkin, A., Antkiewicz, M., Rayside, D., Czarnecki, K.: Visualization and ex-

ploration of optimal variants in product line engineering. In: Proceedings of the
17th International Software Product Line Conference. pp. 111-115. ACM (2013)
Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional re-
quirements: a process-oriented approach. IEEE Trans. Softw. Eng. 18(6), 483-497
1992

(Sawar)lt, A.P., Bali, N.: Softarchviz: A software architecture visualization tool. 4th

IEEE International Workshop on Visualizing Software for Understanding and Anal-

ysis pp. 154-155 (06 2007)

Sayyad, A.S., Ammar, H.: Pareto-optimal search-based software engineering: A
literature survey. In: 2013 2nd International Workshop on Realizing Artificial In-

telligence Synergies in Software Engineering. pp. 21-27 (May 2013)

Schmerl, B., Garlan, D.: Acmestudio: Supporting style-centered architecture de-

velopment. In: Proceedings of the 26th International Conference on Software En-

gineering. pp. 704-705. ICSE 04 (2004)

Sousa, J.P., Garlan, D.: The aura software architecture: an infrastructure for ubig-
uitous computing (2003)

Weyns, D., Calinescu, R.: Tele assistance: A self-adaptive service-based system

exemplar. In: 2015 IEEE/ACM 10th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems. pp. 88-92 (2015)

