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Nanoelectronics (2) Tunnelling

Supplementary materials



Outline

• Physics of Tunnelling (review)
– Thin oxide layer can conduct through tunnelling

– Implication for conventional field effect transistor 
technology

• Scanning Tunnelling Microscopy
– Application of tunnelling physics

– Imaging of spatially resolved wavefunctions

– Observe local density of states by differential 
spectroscopy 



CMOS, the workhorse of IC

• Smallest dimension, the thickness of gate 
oxide layer

http://upload.wikimedia.org/wikipedia/en/6/62/Cmos_impurity_profile.PNG



Limit to conventional FET

Electronic structure of ultrathin gate oxide

Nature， v399，p758 (1999)
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Operating principle

Scanning tunnelling microscopy

• A sharp tip is scanned over 
a surface
– piezoelectric scanners 

allows control of x,y and z 
movement

• A bias voltage, Vb, is applied 
between tip and surface.

• The current, I, between tip 
and surface is measure



The Basic Concept
� Tunnelling can occur from all 

states between Ef and (Ef-eVb) of 
the surface.

� Tunnelling current, I, depends 
� on the tip-surface distance.
� on the density of states of both that 

of the sample and the tip.

� Tunnelling is a QM process can be 
described by Schrodinger 
equation
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Solving Schrodinger Equation 

� Inside the tunnelling barrier, assume eVb << φ, 
then E-eV ~ - φ, Thus

� This has the solution of the form

� Substituting it back into SE, we get:

� Evaluate:
� Probability e- reaches z=d (tunnels through barrier)

= exp(-2αd)
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Vertical resolution of STM
� For typical tip materials (W), φ ~ 5 eV

� We can calculate  α:

� Let d=1 Å, then we have

� i.e.    27% increase in tunnel current for 0.1Å

� Vertical resolution is better than 0.1 Å

� In practice, the vertical resolution can be routinely 

achieved to be better that 1 Å, i.e. individual atom layers 

can be seen easily
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Lateral resolution

� Atomic resolution depends on localised tip and the 

nature of the tunnelling states on the sample surfaces
� Because of asperity, only a few atoms in the tip is involved 

in the tunnelling process 

� Tip is capable of very high lateral resolution
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Lateral resolution…

� Lateral atomic resolution depends on 

� the wavefunction (whether localized or delocalized), 

and 

� the amount of charge spill over into interstitial space. 

� Examples

� Cu(111)

� Si(100)



Example 1: Cu(111) surface
� Surface states on Cu(111)

�Delocalized on the surface (2D free-electron-like wave)

�Large charge spill-over into the inter-atomic region (This is the 

reason for the surface double layer)

�Minimal surface corrugation of the corresponding charge density.

� Observations
�No lateral atomic resolution feature

�Smallest features are ripple 
� Wavelength 15 Å >> atomic spacing

� Height 0.04 Å << atom size

� due to reflection of free electron-like 

waves from step edge or point defects



Example 2: Si(001) surface

� Stepped Si(001) surface

(7x7) reconstruction 

� Localized directional 

bonding 
(Si 2p states)

� High corrugation expected

� Observations

� Atomic feature is clearly 

resolved

� The complex pattern is due 
to (7x7) reconstruction of 

Si Si Si Si Si Si
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Modes of imaging

� Constant height mode
less common
� Keep d constant, measure 

variation in the current I
� Need current feedback to avoid 

crashing
� Can scan fast, not limited by 

response time of vertical tip 
movement

� Constant current mode
Usual topographical mode
� Keep I constant by adjusting z 

(through feed back loop)
� No danger of crashing the tip



Image formation and processing

� Image scanning and display

� False colour display



Quantum corral

A circular ring of 48 Fe atoms assembled on the Cu(111) surface at 4K, mean 
radius 71.3 Å

Atomic landscape  ���� Electronic landscape 
���� Quantum Corral

M.F. Crommie, C.P. Lutz, D.M. Eigler, Science 262 (1993) 218



Variation on corrals

� One can construct walls of Fe atoms of different shapes, 
hence different standing wave pattern of surface states.



Quantum Corral

• The artificial corral structure results in space 
confinement of surface state wavefunction. 

• The wave nature of the surface electron is 
demonstrated by the formation of ripples within the 
quantum corral.

• The ripple here and those found on stepped Cu(111) 
surface are of the same origin.

• In the case of quantum corral, the ripple pattern can 
be calculated using ‘particle in a box (ring)’ model



To understand the quantum quarrel
• Understand the concept of surface states (revision)

– Free electron nature of surface states

• Understanding the interaction of impurity, steps with surface 
states
– Reflection at steps and standing wave formation

• Experimental measurement of dispersion relationship (energy vs. 
wavevector) of the wavefunction

• Constructing quantum corrals to confine the wavefunction of 
the electrons in the surface state

• Understading of the  electronic structure of the quantum 
corral
– Solving two dimensional Schrodinger equation., solution for 

wavefunction is based ob Bessel equations, energy level quantized.  
(explore the Bessel function, the zeros corresponds to the nodal
positions )

– STM image of the charge density (wavefunction squared)



Review: Surface State Wavefunction

� What is an electronic surface state ?
� An electron state whose wavefunctions is 

spatially localized on crystal surface.

� Properties of surface states in Cu(111) 
surfaces.
� Close-packing of atoms gives a small atomic 

potential corrugation

� Valence electrons are delocalized, so it can 
move freely within the surface plane, so it 
behaves like a 2D free electron gas with a 
dispersion relation:
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Scattering off the surface step
� The surface step is 

assumed to form 
impenetrable barrier to 
the surface state 
electron.

� Near the step, the 
incoming wave and the 
reflected wave form a 
stationary wave

� STM can measure a 
stationary wave pattern 
such as standing wave
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Dispersion Relationship of electrons in surface state

Summing over all surface state 
electrons

� The energy dependence allows us 

to map out the dispersion 

relationship for the surface states, 

εεεε(k).

� It is free-electron like
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Surface scattering off Fe atoms on Cu
� Again, standing wave pattern is 

observed from an impurity Fe atom. 
However, the mathematical 
description is more complicated 
because of the spherical symmetry.

� We can use the scattering property 
of Fe atoms to construct artificial 
walls to confine surface electrons. 

IBM web-image

a circular ring of 48 Fe atoms assembled on the Cu(111) surface at 4K, mean radius 71.3 Å



Local density of states
(particle in a circular box ... )

� Solving the azimuth equation 
first by setting
� substituting this back into 

azimuth equation gives 

� cyclic boundary conditions:

φ=Φ imAe
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� Solving the radial equation

� Rearranging

� This is an example of Bessel’s equation



Bessel Functions
� Let

� The Bessel function has two kinds of solutions Jm(x) and 
Ym(x) [also called Nm(x)].  The Ym(x) is considered non-
physical for our case because it has infinite value at r=0.

� Solution   R=Jm(kr)

with boundary condition:

� Obtain k from the boundary condition:

Thus, possible values of ka are the ‘zero’ of Jm i.e. where Jm cuts 
the x-axis.
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Bessel Functions

� Note:
� Radial solution depends on the value m in 

� For simplicity, 

consider only the cylindrical symmetric solutions, i.e. m=0

so

with

We need to find values of x=ka where zero of J0(ka) occurs 

(from math book)
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Bessel Functions ...
� From tables (Abramwitz & Stegun)

This gives us the allowed values of k.

From this, we can get allowed energy values.
a

x
k s=

S
(S
th
 zero)

Value of x
Where zero occurs

1 2.40

2 5.52

3 8.65

4 11.79

5 14.93

6 18.07



Results ...

� To calculate the energy, we need to know

� Effective mass of the electrons 

me
* = 0.38 me         (for surface state at Cu(111) surface)

� Radius of the box

a = 7.13 nm

� Value of s:  no. of nodes = 5, assuming a node at the Fe atoms

s = 5

� Thus 

ka = 14.93,     i.e.     k = 14.93 /a

E=7.1 x 10-20 J  = 443 meV
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Local spectroscopy of electrons within 
a Quantum Corral

A circular ring of 48 Fe atoms assembled on the Cu(111) surface at 4K, 
mean radius 71.3 Å

Atomic landscape  ���� Electronic landscape 
���� Quantum Corral

M.F. Crommie, C.P. Lutz, D.M. Eigler, Science 262 (1993) 

218



Comments ...
� What is the reference point for V = 0 (bottom of the well) in the real 

surface system ?

� Calculation: - 0.443eV

� Experiment: - 0.450 eV below FF

The s = 5 state lies at Ef, 

The Vb used by Eigler was + 10 meV (on the sample)

� a remarkable match !!!

� If moving the tip out of the centre, pick up cylindrical unsymmetric, 
see additional peaks.  Match well with m=1, 2, etc.

� The peak height (vs. r) do not quite match, so other waves are also 
present

� The peaks (vs. V) have a width (not δ function)
� leakage out of the box or inelastic scattering



Summary

� Tunnelling is detrimental to FET
� Tunnelling is very useful in STM
� STM

� Applications to imaging of surface electronic state 
wavefunction
�Surface state and its dispersion relationship.
�The scattering property of atomic states and impurity Fe atoms on 

Cu(111) 
�Confinement of surface electron states and standing wave pattern.

� Spectroscopy measurements using STM
�STM current measures the sum of local density of states, 

confirmation of the quantum mechanical calculation of a particle in 
a box


