
Marine and terrestrial Pseudosuchia macroevolution was independently 

affected by climate change 

Abstract  

Pseudosuchia makes up one half of the Archosauria. Once a rich, diverse reptilian clade, 

only 23 extant species remain with little morphological diversity. Here, correlational analysis 

is used to compare rates of speciation and extinction for both marine and terrestrial species 

from a fossil record. The results of the analysis show temperature as a driver for increases in 

speciation rates for both habitual clades. Results show decreases in sea level correlate to a 

rise in speciation. The analysis provides a potential indicator of the impacts of human 

induced climate change on carnivorous ectotherms. 

Introduction 

Pseudosuchia refers to an evolutionary diverse reptilian group that makes up one of the two 

groups of Archosauria. Pseudosuchia is composed of crocodiles and all extinct relatives that 

first appeared around 250 million years ago in the late lower Triassic period (Butler et al. 

2011) (Nesbitt 2011). Pseudosuchia faced a mass decline in diversity around 201 million 

years ago (Triassic-Jurassic extinction) which was quickly followed by a large increase in 

evolutionary radiation (Toljagic and Butler 2013), occurring from crocodylomorphs. During 

this time, Pseudosuchia diversity was high with species occupying various ecological niches 

such as marine environments (Thalattosuchia) (DE ANDRADE et al. 2010) as well as 

terrestrial species that show varying amounts of morphological diversity (Buckley et al. 2000) 

(Sereno et al. 2001). Pseudosuchia diversity slowly began to fall leaving only 23 semi-

aquatic species today. The reasons for the evolutionary decline of Pseudosuchia are likely 

due to climate change (Mannion et al. 2015) as Pseudosuchia are vulnerable to changes in 

environmental temperature, their only source of bodily heat. With current climate projections 

predicting global temperature increases as well as a rise in sea level, aridification and habitat 

loss (Knutti et al. 2013), Pseudosuchia face the threat of extinction. Usage of proxy data 

based on geological evidence allows for understanding of how climate can affect biodiversity 

of a wide variety of animal clades (Davis et al. 2016) (Tang et al. 2018). This allows for the 

development of clearer models for how future climate change may impact the natural world. 

This report will investigate how both temperature and sea level change has affected 

speciation and extinction rates of Pseudosuchia via correlational analysis.  

Results and discussion 

Marine and terrestrial phylogenetic tree construction 

Phylogenetic trees were constructed for marine and terrestrial taxa separately using 

geological data (Payne et al., in prep). The data was created from morphological fossils 

records as well as sequence data for extant species. The terrestrial phylogenetic tree shown 

(fig.1.B) contains 206 taxa dating to around 282 million years ago. The marine phylogenetic 

tree shown (fig.1.A) contains 107 taxa dating to around 252 million years ago. Marine and 

terrestrial species were separated for both phylogenetic trees as well as analysis, this 

methodology was chosen as these two groups are likely to be affected by climate change 

differently as seen in similar studies (Mannion et al. 2015).  



 

 

 

 

 

Fig 1.A/B The phylogeny of marine (blue) and terrestrial (red) taxa scaled against the 

geological timescale over 290 million years. 



Terrestrial taxa speciation increased with temperature 

Change in temperature is likely to have affected the evolution of Pseudosuchia due to their 

reliance on their environment for warmth. Thus, periods of cooling may have increased rates 

of extinction and speciation as organisms must rapidly adapt to colder environments, with 

those unable to dying out. To test this hypothesis, a Wilcoxon statistical test was carried out 

between two coefficients generated via a detrended cross correlation analysis (DCCA-

based) test. The correlation coefficients were generated and tested in RStudio using the 

BAMM package (Rabosky et al. 2014). This analysis was carried out for rates of speciation 

and extinction (Lloyd et al. n.d.) (Mitchell, Etienne, and Rabosky 2018) against temperature 

(Zachos et al. 2001), in terrestrial species. Temperature increase showed a significant 

correlation to speciation rate increase (P = 0), shown (fig.2.D). Temperature was also found 

to have a significant correlation to extinction rate increase (P = 1.257953e-106) (fig.2.E). The 

overall temperature change (fig.2.A) and extinction/speciation rates (fig.2.B/C) are shown. 

The results show a clear correlation between rise in both speciation and temperature. 

However, the correlation seen for extinction is less so due to the closeness of the mean to 0. 

Speciation is likely to be heavily affected by temperature change as it enables ectotherms to 

have elevated metabolism (Riemer et al. 2018). Higher metabolism likely heightened levels 

of reproduction leading to an increased rate of speciation. Extinction rate increase showed 

small unreliable correlation with temperature rise and therefore has limited reliability. Despite 

this significant temperature change is likely to have affected extinction rates but in the 

opposite direction than seen, as temperature decrease may have limited the metabolic 

activity of ectothermic Pseudosuchians. 

 

 
Fig 2: (A) Proxy temperature over ~280 million years, source: (Zachos et al. 2001). The 

two lower panels show the rates of extinction (B) and speciation (C) for terrestrial taxa. 

Histograms showing the correlation coefficients for speciation (D) and extinction (E) 

generated from a DCCA-based test. 

 



Speciation rates fell with sea level rise in terrestrial taxa 

Sea level change has shown much variation over the past 250 million years and is likely to 

have affected terrestrial Pseudosuchia. Sea level rise beginning around 200 MYA and 

peaking around 90 MYA (fig 3.A) is known to have led to many habitat adaptations with 

many terrestrial species transitioning to marine or semi-aquatic environments (Wilberg, 

Turner, and Brochu 2019). It is therefore likely that increased sea levels may lead to 

extinction of many terrestrial species due to habitat loss and increased competition. To test 

the effects of changing sea levels on terrestrial speciation and extinction, the same 

correlation previously described was run for sea level change (Haq, Hardenbol, and Vail 

1987). The results from the speciation-sea level analysis show a significant correlation 

between a decrease in sea level and a rise in the rate of speciation (P = 0) (fig 3.B). 

Extinction-sea level analysis showed a significant correlation (P = 0) (fig 3.C) between rise in 

sea level and rise in extinction. The results described clearly fit the hypothesis, sea level rise 

led to a significant increase in extinction of terrestrial species likely due to destruction of 

habitats and competition. The decline of terrestrial species and their replacement with semi-

aquatic taxa found today also supports this and is seen in adaptations that support the 

terrestrial-semi aquatic transition (Schwab et al. 2020). Speciation rate increase strongly 

correlated with the decrease in sea levels. This result also seems to fit the hypothesis as 

lower sea levels may have provided new terrestrial habitats allowing for further speciation of 

terrestrial Pseudosuchia.   

 

 

 

 

Temperature increase drives speciation rate increase in marine taxa 

Temperature change may have had a small impact on the speciation and extinction of 

marine taxa compared to terrestrial due to the off set of temperature changes in marine 

environments. Despite this, temperature fall following the K-Pg asteroid was shown to cause 

a major extinction in both marine and terrestrial taxa for non-Pseudosuchian species 

(Robertson et al. 2013). Temperature change (fig 4.A) was correlated for marine taxa 

speciation and extinction rates. A significant correlation was found between increase in 

temperature and increase in speciation (P = 0) (fig 4.D). A significant correlation was also 

found between a decrease in temperature and a rise in extinction (P = 0) (fig 4.E). The 

extinction and speciation rates for marine taxa are also shown (fig 4.B/C). The results show 

that temperature increase leads to speciation like that seen for the analysis of terrestrial 

taxa. This trend seen for marine taxa is also likely due to increase in ectotherm metabolism 

Fig 3: (A) Proxy sea level over ~240 million years, source: (Haq, Hardenbol, and Vail 

1987). Histograms for speciation (B) and extinction (C) correlation coefficients generated 

by a DCCA-based test. 

 



for both Pseudosuchia and their prey which may allowing for higher reproductive levels and 

thus greater speciation. Warmer waters in the poles may have allowed for the increase 

spread of marine Pseudosuchia opening new habitats increasing speciation. The results 

from this analysis match those seen in similar investigations (Martin et al. 2014). 

 

 

 

 

 

 

Sea level rise increased extinction of marine taxa 

A significant rise in the sea level from 200 MYA to 90 MYA is likely to have acted as a major 

driver in the speciation of marine taxa which would have opened new habitats for marine 

species. Similarly, a fall in the sea level seen following this period is likely to have 

contributed to the extinction of marine taxa leaving only 23 semi-aquatic species remaining. 

To test these hypothesises a final correlation analysis was carried out between sea level 

change (fig 5.A) and speciation/extinction rates. A significant correlation for a sea level fall 

and rise in speciation (P = 9.770145e-259) was observed as well as a significant rise in sea 

level and a rise in extinction (P = 0). The results from the analysis of sea level-speciation (fig 

5.B) do not match the hypothesis. The closeness of the mean to 0 combined with the large 

distribution of coefficient values for this analysis indicates a weak correlation between sea-

level fall and speciation increase, indicates unreliability in the result. The correlation between 

rise in sea level and extinction (fig 5.C) may be down to greater selection pressures as a 

higher sea level may lead to more species and thus greater competition for resources. It may 

be hypothesised that sea level fluctuations, rather than a direct rise or fall, cause variation in 

Fig 4: (A) Proxy temperature over ~280 million years, source: (Zachos et al. 2001). Lower 

panels indicate the extinction (B) and speciation (C) rates for marine taxa. Histograms for 

speciation (D) and extinction (E) correlation coefficients generated via a DCCA-based 

test. 

 



speciation/extinction rates as seen in similar investigations (Tennant, Mannion, and 

Upchurch 2016). 

 

 

 

 

Conclusion 

The results from the analysis generally fit the hypothesis described based on similar 

literature. The investigation may be limited by a lack of inclusion of other abiotic factors such 

as carbon and sulfur cycles that may contribute to Pseudosuchian macroevolution (Tennant, 

Mannion, and Upchurch 2016). The results of this investigation may be further explained via 

analysis of Pseudosuchian prey extinction in response to the environmental changes 

studied. To clearly understand the macroevolution of Pseudosuchia it is vital that all factors, 

both abiotic and biotic are considered. This knowledge is vital in understanding how 

anthropological induced climate change may affect the future of Pseudosuchia.  
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Supplementary methods 

#Load packages 

library(ggplot2) 

library(strap) 

library(BAMMtools) 

library(tidyverse) 

library(phylotools) 

############################################################# 

#Load in temperature data 

temperature <- read.csv("temperatureTimeSeries.csv", header = F) 

#Smooth temperature data 

finaltemp <- smooth(smooth(temperature$V2)) 

#Plot temperature over time 

plot(temperature$V1,finaltemp, xlab='Time (MYA)', xlim=c(220,0), type = 'l', ylab = "Proxy 
temperature", lwd = 1.8, cex.lab=1.5, cex.axis=1.5) 

#Load in sea level data 

seaLevel <- read.csv("seaLevelTimeSeries.csv",header=TRUE) 

#Plot sea level over time 

plot(seaLevel, xlim=c(250,0), type = 'l', lwd = 1.8, cex.lab=1.5, cex.axis=1.5, xlab="Time 
(MYA)", ylab="Proxy sea level") 

#################################################################### 

#Creating a tree for the Pseudosuchia  

tree <- read.tree("fossilCrocPhylogeny.tre") 



#Creating a data set for the terrestrial species 

habitatdata <- read.csv("HabitatData.csv", header=T, stringsAsFactors = F) 

TerrestrialTaxa <- subset(habitatdata, habitatdata$Habitat=='Terrestrial')$Taxon 

#Creating a terrestrial tree 

treeT <- keep.tip(tree, TerrestrialTaxa) 

plot(treeT, cex=0.2) 

#Creating a data set for marine species 

MarineTaxa <- subset(habitatdata, habitatdata$Habitat=='Marine')$Taxon 

#Creating a marine tree 

treeM <- keep.tip(tree, MarineTaxa) 

#Creating a geoscalePhylo tree for terrestrial species 

Tlengths <- nodeHeights(treeT) 

Troot.time <- max(Tlengths) 

treeT$root.time <- Troot.time 

Tall_otus <- treeT$tip.label 

Tall_otudates <- matrix(0, nrow = length(Tall_otus), ncol = 2) 

Tall_otudates <- data.frame(Tall_otudates) 

row.names(Tall_otudates) <- Tall_otus 

colnames(Tall_otudates) <- c('FAD', 'LAD') 

par(mar = c(5, 2, 2, 2)) 

geoscalePhylo(treeT, ages = Tall_otudates, cex.tip = 0.2, lwd=1, quat.rm = T, units = 
c("Peroid", "Epoch", "Era"), boxes = "Epoch", cex.ts = 0.6, cex.age = 0.6, font = 4, x.lim = 
c(280,0), col=”red”) 

#Creating a geoscalePhylo tree for marine species 

Mlengths <- nodeHeights(treeM) 

Mroot.time <- max(Mlengths) 

treeM$root.time <- Mroot.time  

Mall_otus <- treeM$tip.label 

Mall_otudates <- matrix(0, nrow = length(Mall_otus), ncol = 2) 

Mall_otudates <- data.frame(Mall_otudates) 

row.names(Mall_otudates) <- Mall_otus 

colnames(Mall_otudates) <- c('FAD', 'LAD') 

geoscalePhylo(treeM, ages = Mall_otudates, cex.tip = 0.2, lwd=1, quat.rm = T, units = 
c("Peroid", "Epoch", "Era"), boxes = "Epoch", cex.ts = 0.6, cex.age = 0.6, font=4, 
x.lim=c(280,0), col=”blue”) 



############################################################# 

#Load in Pseudosuchia species data 

edata <- getEventData(tree, eventdata ='fossilCrocDiversificationData.txt', burnin=0.1) 

#Create terrestrial taxa sub-tree 

streeTerrestrial <- subtreeBAMM(edata, tips=TerrestrialTaxa) 

#Create terrestrial through-time matrix 

rtt_T <- getRateThroughTimeMatrix(streeTerrestrial) 

#Plot terrestrial speciation through time 

plotRateThroughTime(streeTerrestrial, ratetype='speciation', avgCol="red", ylim=c(0,0.5), 
cex.axis=1, intervalCol='red', intervals=c(0.05, 0.95), opacity=0.3) 

#Plot terrestrial extinction through time 

plotRateThroughTime(streeTerrestrial, ratetype = 'extinction', avgCol = "red", cex.axis = 1, 
intervalCol = "red", intervals = c(0.05, 0.95), opacity = 0.3, ylim = c(0,0.2)) 

 
#Create marine taxa sub-tree 

streeMarine <- subtreeBAMM(edata, tips = MarineTaxa) 

#Create marine through-time matrix 

rtt_M <- getRateThroughTimeMatrix(streeMarine) 

#Plot marine speciation through time 

plotRateThroughTime(streeMarine, ratetype='speciation', avgCol="blue", ylim=c(0,0.5), 
cex.axis=1, intervalCol='blue', intervals=c(0.05, 0.95), opacity=0.3) 

#Plotting marine extinction through time 

is.na(rtt_M$mu) 

which(is.na(rtt_M$mu)) 

rtt_M$mu[is.na(rtt_M$mu)] <-0 

plotRateThroughTime(rtt_M, ratetype = 'extinction', avgCol = "blue", cex.axis = 1, intervalCol 
= "blue", intervals = c(0.05, 0.95), opacity = 0.3, ylim = c(0,0.2)) 

############################################################# 

CCA <- function(x,y,s){ 

  xx<-cumsum(x) 

  yy<-cumsum(y) 

  t<-1:length(xx) 

  F2sj_xy<-runif(floor(length(xx)/s)) 

  F2sj_xx<-F2sj_xy 

  F2sj_yy<-F2sj_xy 



  for(ss in seq(1,(floor(length(xx)/s)*s),by=s)){ 

    F2sj_xy[(ss-1)/s+1]<-sum((summary(lm(xx[ss:(ss+s-1)]~t[ss:(ss+s-
1)]))$residuals)*(summary(lm(yy[ss:(ss+s-1)]~t[ss:(ss+s-1)]))$residuals))/(s-1) 

    F2sj_xx[(ss-1)/s+1]<-sum((summary(lm(xx[ss:(ss+s-1)]~t[ss:(ss+s-
1)]))$residuals)*(summary(lm(xx[ss:(ss+s-1)]~t[ss:(ss+s-1)]))$residuals))/(s-1) 

    F2sj_yy[(ss-1)/s+1]<-sum((summary(lm(yy[ss:(ss+s-1)]~t[ss:(ss+s-
1)]))$residuals)*(summary(lm(yy[ss:(ss+s-1)]~t[ss:(ss+s-1)]))$residuals))/(s-1) 

  } 

  rho<-mean(F2sj_xy)/sqrt(mean(F2sj_xx)*mean(F2sj_yy)) 

  return(c(rho,1/sqrt(length(xx)),1-pnorm(abs(rho),mean=0,sd=1/sqrt(length(xx))))) 

} 

#Generate data sets for terrestrial speciation-temperature analysis  

Ttimes= abs(rtt_T$times-max(rtt_T$times)) 

TnumberOfSims = length(rtt_T$lambda)/length(rtt_T$times) 

numberOfSamples = 2000 

cors_temp_T <- rep(NA, numberOfSamples) 

Tsamples = sample(1:TnumberOfSims, numberOfSamples, replace = F) 

count = 1 

#Generate correlation coefficients 

# This loops from 1 to the number of simulations, which is 9,001. 

for (i in 1:TnumberOfSims ) { 

   

  # Is it one of our samples? 

  if (i %in% Tsamples){ 

     

    # If yes, do the correlation. 

    # Start by interpolating the data. We do this because the two time series are 
different lengths. We need them to start and end at the same times and we need the 
points in between to match up in order to carry out the correlation. 

     

    # This line takes our speciation rates (lambda) and the corresponding times and 
interpolates the lambda onto the temperature times. We can only do a correlation for 
the temperature data that we have so if we have more lambda times than temperature 
we cannot use them 

    interpdiv = approx(Ttimes, rtt_T$lambda[i,], temperature$V1, method='linear', rule=1) 

     



    # Here we check whether there is a lambda for every temperature time, if not it's left 
as NA     

    end = which(is.na(interpdiv$y)) 

     

    # If we have no NAs, ie. there is a time in the temperature time series for each 
lambda, we just use the interpolation as already calculated 

    if (length(end) == 0) { 

      div_rates = interpdiv$y 

      ft = finaltemp 

       

      # Otherwise, we only grab and use the times that have both lambda and 
temperature data 

    } else { 

      div_rates = interpdiv$y[-end] 

      ft = finaltemp[-end] 

    } 

     

    # Now do the correlation using the interpolated data 

    c = DCCA(as.numeric(unlist(div_rates)),as.numeric(unlist(ft)),length(ft)/10) 

     

    # Store the correlation co-efficient 

    cors_temp_T[count] = c[1] 

     

    # Increase your count by 1 ready for the next correlation 

    count = count+1 

  } 

} 

#Create a sink for wilcox test of terrestrial temperature-speciation coefficients 

sink(file='SpeciationTerrestrialTemperature.txt') 

print(summary(cors_temp_T)) 

print(quantile(cors_temp_T, c(0.025, 0.975))) 

Tstats <- (wilcox.test(cors_temp_T, mu=0.0, paired = F)) 

Tstats$p.value 

sink() 

#Generate data sets for marine speciation-temperature analysis  



Mtimes= abs(rtt_M$times-max(rtt_M$times)) 

MnumberOfSims = length(rtt_M$lambda)/length(rtt_M$times) 

numberOfSamples = 2000 

cors_temp_M <- rep(NA, numberOfSamples) 

Msamples = sample(1:MnumberOfSims, numberOfSamples, replace = F) 

count = 1 

#Generate correlation coefficients 

for (i in 1:MnumberOfSims ) { 

   

  # Is it one of our samples? 

  if (i %in% Msamples){ 

     

    # If yes, do the correlation. 

    # Start by interpolating the data. We do this because the two time series are 
different lengths. We need them to start and end at the same times and we need the 
points in between to match up in order to carry out the correlation. 

     

    # This line takes our speciation rates (lambda) and the corresponding times and 
interpolates the lambda onto the temperature times. We can only do a correlation for 
the temperature data that we have so if we have more lambda times than temperature 
we cannot use them 

    interpdiv = approx(Mtimes, rtt_M$lambda[i,], temperature$V1, method='linear', rule=1) 

     

    # Here we check whether there is a lambda for every temperature time, if not it's left 
as NA     

    end = which(is.na(interpdiv$y)) 

     

    # If we have no NAs, ie. there is a time in the temperature time series for each 
lambda, we just use the interpolation as already calculated 

    if (length(end) == 0) { 

      div_rates = interpdiv$y 

      ft = finaltemp 

       

      # Otherwise, we only grab and use the times that have both lambda and 
temperature data 

    } else { 

      div_rates = interpdiv$y[-end] 



      ft = finaltemp[-end] 

    } 

     

    # Now do the correlation using the interpolated data 

    c = DCCA(as.numeric(unlist(div_rates)),as.numeric(unlist(ft)),length(ft)/10) 

     

    # Store the correlation co-efficient 

    cors_temp_M[count] = c[1] 

     

    # Increase your count by 1 ready for the next correlation 

    count = count+1 

  } 

} 

#Create a sink for wilcox test of marine temperature-speciation coefficients  

sink(file='SpeciationMarineTemperature.txt') 

print(summary(cors_temp_M)) 

print(quantile(cors_temp_M, c(0.025, 0.975))) 

Mstats <- (wilcox.test(cors_temp_M, mu=0.0, paired = F)) 

Mstats$p.value 

sink() 

 

#Generate data sets for terrestrial speciation-sea level analysis  

Ttimes= abs(rtt_T$times-max(rtt_T$times)) 

TnumberOfSims = length(rtt_T$lambda)/length(rtt_T$times) 

numberOfSamples = 2000 

cors_seaLevel_T <- rep(NA, numberOfSamples) 

Tsamples = sample(1:TnumberOfSims, numberOfSamples, replace = F) 

count = 1 

#Generate correlation coefficients 

# This loops from 1 to the number of simulations, which is 9,001. 

for (i in 1:TnumberOfSims ) { 

   

  # Is it one of our samples? 



  if (i %in% Tsamples){ 

     

    # If yes, do the correlation. 

    # Again, we have to start by interpolating the data. 

    interpdiv = approx(Ttimes, rtt_T$lambda[i,], seaLevel$Age, method='linear', rule=1) 

    end = which(is.na(interpdiv$y)) 

    if (length(end) == 0) { 

      div_rates = interpdiv$y 

      ft = seaLevel$SL 

    } else { 

      div_rates = interpdiv$y[-end] 

      ft = seaLevel$SL[-end] 

    } 

     

    # Now do the correlation 

    c = DCCA(as.numeric(unlist(div_rates)),as.numeric(unlist(ft)),length(ft)/10) 

     

    ## Store the correlation co-efficient 

    cors_seaLevel_T[count] = c[1] 

     

    # Increase your count by 1 ready to do the next. 

    count = count+1 

  } 

} 

#Create a sink for wilcox test of terrestrial speciation-sea level coefficients  

sink(file='SpeciationTerrestrialSealevel.txt') 

print(summary(cors_seaLevel_T)) 

print(quantile(cors_seaLevel_T, c(0.025, 0.975))) 

Tstats2 <- (wilcox.test(cors_seaLevel_T, mu=0.0, paired = F)) 

Tstats2$p.value 

sink() 

 
#Generate data sets for marine speciation-sea level analysis  

Mtimes= abs(rtt_M$times-max(rtt_M$times)) 



MnumberOfSims = length(rtt_M$lambda)/length(rtt_M$times) 

numberOfSamples = 2000 

cors_sealevel_M <- rep(NA, numberOfSamples) 

Msamples = sample(1:MnumberOfSims, numberOfSamples, replace = F) 

count = 1 

#Generate correlation coefficients 

# This loops from 1 to the number of simulations, which is 9,001. 

for (i in 1:MnumberOfSims ) { 

   

  # Is it one of our samples? 

  if (i %in% Msamples){ 

     

    # If yes, do the correlation. 

    # Again, we have to start by interpolating the data. 

    interpdiv = approx(Mtimes, rtt_M$lambda[i,], seaLevel$Age, method='linear', rule=1) 

    end = which(is.na(interpdiv$y)) 

    if (length(end) == 0) { 

      div_rates = interpdiv$y 

      ft = seaLevel$SL 

    } else { 

      div_rates = interpdiv$y[-end] 

      ft = seaLevel$SL[-end] 

    } 

     

    # Now do the correlation 

    c = DCCA(as.numeric(unlist(div_rates)),as.numeric(unlist(ft)),length(ft)/10) 

     

    ## Store the correlation co-efficient 

    cors_seaLevel_M[count] = c[1] 

     

    # Increase your count by 1 ready to do the next. 

    count = count+1 

  } 

} 



#Create a sink for wilcox test of marine speciation-sea level coefficients 

sink(file='SpeciationMarineSealevel.txt') 

print(summary(cors_seaLevel_M)) 

print(quantile(cors_seaLevel_M, c(0.025, 0.975))) 

Mstats2 <- (wilcox.test(cors_seaLevel_M, mu=0.0, paired = F)) 

Mstats2$p.value 

sink() 

#Generate data sets for terrestrial extinction-temperature analysis  

Ttimes= abs(rtt_T$times-max(rtt_T$times)) 

TnumberOfSims2 = length(rtt_T$mu)/length(rtt_T$times) 

numberOfSamples = 2000 

cors_temp_T_E <- rep(NA, numberOfSamples) 

Tsamples2 = sample(1:TnumberOfSims2, numberOfSamples, replace = F) 

count = 1 

#Generate correlation coefficients 

# This loops from 1 to the number of simulations, which is 9,001. 

for (i in 1:TnumberOfSims2 ) { 

   

  # Is it one of our samples? 

  if (i %in% Tsamples2){ 

     

    # If yes, do the correlation. 

    # Start by interpolating the data. We do this because the two time series are 
different lengths. We need them to start and end at the same times and we need the 
points in between to match up in order to carry out the correlation. 

     

    # This line takes our extinction rates (mu) and the corresponding times and 
interpolates the mu onto the temperature times. We can only do a correlation for the 
temperature data that we have so if we have more mu times than temperature we 
cannot use them 

    interpdiv = approx(Ttimes, rtt_T$mu[i,], temperature$V1, method='linear', rule=1) 

     

    # Here we check whether there is a mu for every temperature time, if not it's left as 
NA     

    end = which(is.na(interpdiv$y)) 

     



    # If we have no NAs, ie. there is a time in the temperature time series for each mu, 
we just use the interpolation as already calculated 

    if (length(end) == 0) { 

      div_rates = interpdiv$y 

      ft = finaltemp 

       

      # Otherwise, we only grab and use the times that have both mu and temperature 
data 

    } else { 

      div_rates = interpdiv$y[-end] 

      ft = finaltemp[-end] 

    } 

     

    # Now do the correlation using the interpolated data 

    c = DCCA(as.numeric(unlist(div_rates)),as.numeric(unlist(ft)),length(ft)/10) 

     

    # Store the correlation co-efficient 

    cors_temp_T_E[count] = c[1] 

     

    # Increase your count by 1 ready for the next correlation 

    count = count+1 

  } 

} 

#Create a sink for wilcox test of terrestrial extinction-temperature coefficients  

sink(file='ExtinctionTerrestrialTemperature.txt') 

print(summary(cors_temp_T_E)) 

print(quantile(cors_temp_T_E, c(0.025, 0.975))) 

Tstats3 <- (wilcox.test(cors_temp_T_E, mu=0.0, paired = F)) 

Tstats3$p.value 

sink() 

 

 

#Generate data sets for marine extinction-temperature analysis  

Mtimes= abs(rtt_M$times-max(rtt_M$times)) 

MnumberOfSims2 = length(rtt_M$mu)/length(rtt_M$times) 



numberOfSamples = 2000 

cors_temp_M_E <- rep(NA, numberOfSamples) 

Msamples2 = sample(1:MnumberOfSims2, numberOfSamples, replace = F) 

count = 1 

#Generate correlation coefficients 

for (i in 1:MnumberOfSims2 ) { 

   

  # Is it one of our samples? 

  if (i %in% Msamples2){ 

     

    # If yes, do the correlation. 

    # Start by interpolating the data. We do this because the two time series are 
different lengths. We need them to start and end at the same times and we need the 
points in between to match up in order to carry out the correlation. 

     

    # This line takes our extinction rates (mu) and the corresponding times and 
interpolates the mu onto the temperature times. We can only do a correlation for the 
temperature data that we have so if we have more mu times than temperature we 
cannot use them 

    interpdiv = approx(Mtimes, rtt_M$mu[i,], temperature$V1, method='linear', rule=1) 

     

    # Here we check whether there is a mu for every temperature time, if not it's left as 
NA     

    end = which(is.na(interpdiv$y)) 

     

    # If we have no NAs, ie. there is a time in the temperature time series for each mu, 
we just use the interpolation as already calculated 

    if (length(end) == 0) { 

      div_rates = interpdiv$y 

      ft = finaltemp 

       

      # Otherwise, we only grab and use the times that have both mu and temperature 
data 

    } else { 

      div_rates = interpdiv$y[-end] 

      ft = finaltemp[-end] 

    } 



     

    # Now do the correlation using the interpolated data 

    c = DCCA(as.numeric(unlist(div_rates)),as.numeric(unlist(ft)),length(ft)/10) 

     

    # Store the correlation co-efficient 

    cors_temp_M_E[count] = c[1] 

     

    # Increase your count by 1 ready for the next correlation 

    count = count+1 

  } 

} 

#Create a sink for wilcox test of marine extinction-temperature coefficients  

sink(file='ExtinctionMarineTemperature.txt') 

print(summary(cors_temp_M_E)) 

print(quantile(cors_temp_M_E, c(0.025, 0.975))) 

Mstats3 <- (wilcox.test(cors_temp_M_E, mu=0.0, paired = F)) 

Mstats3$p.value 

sink() 

 

#Generate data sets for terrestrial extinction-sea level analysis 

Ttimes= abs(rtt_T$times-max(rtt_T$times)) 

TnumberOfSims2 = length(rtt_T$m)u/length(rtt_T$times) 

numberOfSamples = 2000 

cors_seaLevel_T_E <- rep(NA, numberOfSamples) 

Tsamples2 = sample(1:TnumberOfSims2, numberOfSamples, replace = F) 

count = 1 

#Generate correlation coefficients 

# This loops from 1 to the number of simulations, which is 9,001. 

for (i in 1:TnumberOfSims2 ) { 

   

  # Is it one of our samples? 

  if (i %in% Tsamples2){ 

     



    # If yes, do the correlation. 

    # Again, we have to start by interpolating the data. 

    interpdiv = approx(Ttimes, rtt_T$mu[i,], seaLevel$Age, method='linear', rule=1) 

    end = which(is.na(interpdiv$y)) 

    if (length(end) == 0) { 

      div_rates = interpdiv$y 

      ft = seaLevel$SL 

    } else { 

      div_rates = interpdiv$y[-end] 

      ft = seaLevel$SL[-end] 

    } 

     

    # Now do the correlation 

    c = DCCA(as.numeric(unlist(div_rates)),as.numeric(unlist(ft)),length(ft)/10) 

     

    ## Store the correlation co-efficient 

    cors_seaLevel_T_E[count] = c[1] 

     

    # Increase your count by 1 ready to do the next. 

    count = count+1 

  } 

} 

#Create a sink for wilcox test of terrestrial extinction-sea level coefficients 

sink(file='ExtinctionTerrestrialSealevel.txt') 

print(summary(cors_seaLevel_T_E)) 

print(quantile(cors_seaLevel_T_E, c(0.025, 0.975))) 

Tstats4 <- (wilcox.test(cors_seaLevel_T_E, mu=0.0, paired = F)) 

Tstats4$p.value 

sink() 

 

#Generate data sets for marine extinction-sea level analysis 

Mtimes= abs(rtt_M$times-max(rtt_M$times)) 

MnumberOfSims2 = length(rtt_M$mu)/length(rtt_M$times) 



numberOfSamples = 2000 

cors_sealevel_M_E <- rep(NA, numberOfSamples) 

Msamples2 = sample(1:MnumberOfSims2, numberOfSamples, replace = F) 

count = 1 

#Generate correlation coefficients 

# This loops from 1 to the number of simulations, which is 9,001. 

for (i in 1:MnumberOfSims2 ) { 

   

  # Is it one of our samples? 

  if (i %in% Msamples2){ 

     

    # If yes, do the correlation. 

    # Again, we have to start by interpolating the data. 

    interpdiv = approx(Mtimes, rtt_M$mu[i,], seaLevel$Age, method='linear', rule=1) 

    end = which(is.na(interpdiv$y)) 

    if (length(end) == 0) { 

      div_rates = interpdiv$y 

      ft = seaLevel$SL 

    } else { 

      div_rates = interpdiv$y[-end] 

      ft = seaLevel$SL[-end] 

    } 

     

    # Now do the correlation 

    c = DCCA(as.numeric(unlist(div_rates)),as.numeric(unlist(ft)),length(ft)/10) 

     

    ## Store the correlation co-efficient 

    cors_sealevel_M_E[count] = c[1] 

     

    # Increase your count by 1 ready to do the next. 

    count = count+1 

  } 

} 

#Create a sink for wilcox test of marine extinction-sea level coefficients 



sink(file='ExtinctionMarineSealevel.txt') 

print(summary(cors_sealevel_M_E)) 

print(quantile(cors_sealevel_M_E, c(0.025, 0.975))) 

Mstats4 <- (wilcox.test(cors_sealevel_M_E, mu=0.0, paired = F)) 

Mstats4$p.value 

sink() 

############################################################### 

 

#Plotting speciation-temperature for terrestrial 

qplot(cors_temp_T, geom = 'histogram', bins=30) + 

  theme_classic(base_size=17)+ 

  scale_y_continuous(expand = c(0,0)) + 

  scale_x_continuous(expand = c(0,0)) + 

  xlab("Correlation coefficient") + 

  ylab("Count") + 

  annotate('text', x=0, y=150, label="Mean: 0.2713") 

   

 #Plotting speciation-temperature for marine 

qplot(cors_temp_M, geom = 'histogram', bins=30) + 

  theme_classic(base_size=17)+ 

  scale_y_continuous(expand = c(0,0)) + 

  scale_x_continuous(expand = c(0,0)) + 

  xlab("Correlation coefficient") + 

  ylab("Count") + 

  annotate('text', x=0, y=150, label="Mean: 0.2388") 

 
#Plotting speciation-sealevel for terrestrial 

qplot(cors_seaLevel_T, geom = 'histogram', bins=30) + 

  theme_classic(base_size=17)+ 

  scale_y_continuous(expand = c(0,0)) + 

  scale_x_continuous(expand = c(0,0)) + 

  xlab("Correlation coefficient") + 

  ylab("Count") + 

  annotate('text', x=-0.05, y=150, label="Mean: -0.4214") 



 
#Plotting speciation-sealevel for marine 

qplot(cors_seaLevel_M, geom = 'histogram', bins=30) + 

  theme_classic(base_size=17)+ 

  scale_y_continuous(expand = c(0,0)) + 

  scale_x_continuous(expand = c(0,0)) + 

  xlab("Correlation coefficient") + 

  ylab("Count") + 

  annotate('text', x=0.1, y=100, label="Mean: -0.17586") 

 
#Plotting extinction-temperature for terrestrial 

qplot(cors_temp_T_E, geom = 'histogram', bins=30) + 

  theme_classic(base_size=17)+ 

  scale_y_continuous(expand = c(0,0)) + 

  scale_x_continuous(expand = c(0,0)) + 

  xlab("Correlation coefficient") + 

  ylab("Count") + 

  annotate('text', x=-0.2, y=150, label="Mean: 0.035943") 

 

#Plotting extinction-temperature for marine 

qplot(cors_temp_M_E, geom = 'histogram', bins=30) + 

  theme_classic(base_size=17)+ 

  scale_y_continuous(expand = c(0,0)) + 

  scale_x_continuous(expand = c(0,0)) + 

  xlab("Correlation coefficient") + 

  ylab("Count") + 

  annotate('text', x=-0.1, y=150, label="Mean: -0.33712") 

 
#Plotting extinction-SeaLevel for terrestrial  

qplot(cors_seaLevel_T_E, geom = 'histogram', bins=30) + 

  theme_classic(base_size=17)+ 

  scale_y_continuous(expand = c(0,0)) + 

  scale_x_continuous(expand = c(0,0)) + 

  xlab("Correlation coefficient") + 



  ylab("Count") + 

  annotate('text', x=0, y=150, label="Mean: 0.2937") 

 
#Plotting extinction-sealevel for marine 

qplot(cors_sealevel_M_E, geom = 'histogram', bins=30) + 

  theme_classic(base_size=17)+ 

  scale_y_continuous(expand = c(0,0)) + 

  scale_x_continuous(expand = c(0,0)) + 

  xlab("Correlation coefficient") + 

  ylab("Count") + 

  annotate('text', x=0.1, y=150, label="Mean: 0.2983") 

 


