Probabilistic modelling and verification, and Animation in RoboChart

Kangfeng Ye, Jim Woodcock, and Simon Foster

October, 2022

Probabilistic modelling: probabilistic junctions

ChooseUniformInf
\mathbf{X} c: boolean
$\mathbf{X i}^{\text {i: nat }}$

ROBOSTAR

Probabilistic verification: probabilistic property language


```
constants C1:
    ransacMOD::ransacRP::N set to 6,
    and ransacMOD::ransacRP::% set to 1/3
prob property P_deadlock_free:
    not Exists [ Finally deadlock]
    with constants C1
prob property P_goodfit:
    Prob=? of [Finally ransacMOD::ransacCTRL::stm_ref0
        is in ransacMOD::ransacCTRL::stm_ref0::goodFit]
prob property P_nr_of_choices:
    Reward {nrchoices} =? of [
        Reachable ransacMOD::ransacCTRL::stm_ref0 is in
            ransacMOD::ransacCTRL::stm_ref0::goodFit]
```


Probabilistic verification: model checking with PRISM

Result report

Assertion: P_deadlock_free

Assertion	states:	transitions:	result:	checkTime:
P_deadlock_free	3322	3742	true	0.004 seconds

Assertion: P_nr_of_tries

Assertion	states:	transitions:	result:	checkTime:
P_nr_of_tries	3322	3742	1.6998561958204306	0.055 seconds

Assertion: P_nr_of_choices

Assertion	states:	transitions:	result:	checkTime:
P_nr_of_choices	3322	3742	2.6998527952527036	0.092 seconds

Assertion: P_goodfit

Assertion	states:	transitions:	result:	checkTime:
P_goodfit	3322	3742	1.0	0.029 seconds

Large finite model or infinite model

State space explosion

Previous example analyses $N=6$. However, if

- $N=100$: construction (4s) + checking (0.002s);
- $N=10,000: 8 \mathrm{~s}+0.004 \mathrm{~s}$;
- $N=100,000: 830 \mathrm{~s}+0.011 \mathrm{~s}$;
- $N=1,000,000$: not finished after several hours;

- $N=1, \ldots \ldots \ldots \ldots .$. ?

Large finite model or infinite model

Statistical model checking

- Approximate results (vs. exact)
- Monte Carlo simulations (executions)
- Analyse properties on simulations

Random walker 30×30 squares

Large finite model or infinite model

Theorem Proving (UTP, Isabelle/UTP)

For any $N \geq 1$,

$$
\begin{aligned}
& \left(\text { true } \vdash\binom{\left(\forall j \bullet j<(N-1) \Rightarrow\left(\operatorname{prob}^{\prime}(\mathbf{v}[j, \text { false } / i, c]=1 / N)\right)\right) \wedge}{\operatorname{prob} b^{\prime}(\mathbf{v}[(N-1), \text { true } / i, c])=1 / N}\right) \\
& \sqsubseteq \operatorname{ChooseUniform}(N)
\end{aligned}
$$

ChooseUniforminf \mathbf{X} c: boolean $\mathbf{X i}_{\text {i: nat }}$

Large finite model or infinite model

Theorem Proving (UTP, Isabelle/UTP)

For any $N \geq 1$,

$$
\begin{aligned}
& \left(\text { true } \vdash\binom{\left(\forall j \bullet j<(N-1) \Rightarrow\left(\text { prob }^{\prime}(\mathbf{v}[j, \text { false } / i, c]=1 / N)\right)\right) \wedge}{\operatorname{prob} b^{\prime}(\mathbf{v}[(N-1), \text { true } / i, c])=1 / N}\right) \\
& \sqsubseteq \operatorname{ChooseUniform}(N)
\end{aligned}
$$

Interpretation:

- If j is between 0 and $(N-2), P(i=j)=1 / N$ and $c=$ false
- If j is equal to $(N-1), P(i=j)=1 / N$ and

$$
c=\text { true }
$$

Large finite model or infinite model

Theorem Proving (epistemic uncertainty)
Bayesian belief model: learn new facts

Large finite model or infinite model

Theorem Proving (epistemic uncertainty)
Bayesian belief model: learn new facts Imperfect door sensor: 4 times more likely to be right than wrong

Large finite model or infinite model

Theorem Proving (epistemic uncertainty) Bayesian belief model: learn new facts Imperfect door sensor: 4 times more likely to be right than wrong
init

Robot's belief

Large finite model or infinite model

Theorem Proving (epistemic uncertainty)
Bayesian belief model: learn new facts
Imperfect door sensor: 4 times more likely to be right than wrong
init
init || sdoor

Robot's belief

Large finite model or infinite model

Theorem Proving (epistemic uncertainty)
Bayesian belief model: learn new facts
Imperfect door sensor: 4 times more likely to be right than wrong
init
init || sdoor
(init || sdoor) ; mright

Robot's belief

Large finite model or infinite model

Theorem Proving (epistemic uncertainty)
Bayesian belief model: learn new facts
Imperfect door sensor: 4 times more likely to be right than wrong
init
init || sdoor
(init || sdoor) ; mright
((init || sdoor) ; mright) || sdoor

Robot's belief

Large finite model or infinite model

```
Theorem Proving (epistemic uncertainty)
Bayesian belief model: learn new facts
Imperfect door sensor: }4\mathrm{ times more likely to be
right than wrong
init
init || sdoor
(init || sdoor); mright
((init || sdoor) ; mright) || sdoor
(((init | sdoor); mright) || sdoor); mright
```


Robot's belief

Large finite model or infinite model

```
Theorem Proving (epistemic uncertainty)
Bayesian belief model: learn new facts
Imperfect door sensor: 4 times more likely to be
right than wrong
init
init || sdoor
(init | sdoor); mright
((init || sdoor) ; mright) || sdoor
(((init | sdoor); mright) | sdoor); mright
((((init || sdoor) ; mright) | sdoor) ; mright) |
swall
```


Robot's belief

Large finite model or infinite model

Theorem Proving (epistemic uncertainty)
 Bayesian belief model: learn new facts Imperfect door sensor: 4 times more likely to be right than wrong
 init
 init || sdoor
 (init || sdoor) ; mright
 ((init || sdoor) ; mright) || sdoor
 (((init || sdoor) ; mright) || sdoor) ; mright ((((init || sdoor) ; mright) || sdoor) ; mright) || swall

 Robot's belief

Animation of RoboChart


```
Starting ITree animation...
Events: (1) RandomWalkCall (); (2) Gas (Din, []); ...;
[Choose: 1-22]: 1
Events: (1) Gas []; (2) Gas [(0,0)]; (3) Gas [(0,1)]; ...;
    (9) Gas [(0,0),(1,1)]; ...; (21) Gas [(1,1),(1,1)];
[Choose: 1-21]: 9
Events: (1) MoveCall (Q,Chemical_Angle_Front);
[Choose: 1-1]: 1
Events: (1) Flag Dout;
[Choose: 1-1]: 1
Terminated: ()
```


Animation of RoboChart


```
[Choose: 1-22]: 1 RandomWalkCall ()
[Choose: 1-21]: 4 Gas (Din,[(1, 0)])
[Choose: 1-22]: 1 MoveCall (1,Chemical_Angle_Front)
[Choose: 1-24]: 2 Obstacle (Din,Location_Loc_right)
[Choose: 1-23]: 1 Odometer (Din,0)
[Choose: 1-22]: 1 MoveCall (1,Chemical_Angle_Left)
[Choose: 1-21]: }8\mathrm{ Gas (Din,[(0, 0), (1, 0)])
[Choose: 1-22]: 1 MoveCall (1,Chemical_Angle_Front)
[Choose: 1-24]: 1 Obstacle (Din, Location_Loc_left)
[Choose: 1-23]: 2 Odometer (Din,1)
[Choose: 1-23]: 1 Odometer (Din,0)
[Choose: 1-22]: 1 MoveCall (1,Chemical_Angle_Right)
[Choose: 1-21]: 4 Gas (Din,[(1, 0)])
[Choose: 1-22]: 1 MoveCall (1,Chemical_Angle_Front)
[Choose: 1-24]: 2 Obstacle (Din,Location_Loc_right)
[Choose: 1-23]: 1 Odometer (Din,0)
[Choose: 1-22]: 1 Stuck_timeout Din
[Choose: 1-22]: 1 ShortRandomWalkCall ()
```


Thank you!

https://robostar.cs.york.ac.uk/

