Probabilistic modelling and verification, and Animation in RoboChart

Kangfeng Ye, Jim Woodcock, and Simon Foster

robostar.cs.york.ac.uk

October, 2022

Engineering and Physical Sciences Research Council

Kangfeng Ye, Jim Woodcock, and Simon Foster

Probabilistic modelling: probabilistic junctions

Kangfeng Ye, Jim Woodcock, and Simon Foste

Probabilistic modelling and verification, and Animation

versity of York

Probabilistic verification: probabilistic property language

1	constants C1:	
2	ransacMOD::ransacRP::N set to 6,	
3	and ransacMOD::ransacRP::p set to 1/3	
4	prob property P_deadlock_free:	
5	not Exists [Finally deadlock]	
6	with constants C1	
7		
8	prob property P_goodfit:	
9	Prob=? of [Finally ransacMOD::ransacCTRL::stm_ref0	
10	is in ransacMOD::ransacCTRL::stm_ref0::goodFit]	
11		
12	prob property P_nr_of_choices:	
13	Reward {nrchoices} =? of [
14	Reachable ransacMOD::ransacCTRL::stm_ref0 is in	
15	ransacMOD::ransacCTRL::stm_ref0::goodFit]	
		'

ROBOSTAR

Probabilistic verification: model checking with PRISM

Result report

Assertion: P_deadlock_free

Assertion	states:	transitions:	result:	checkTime:
P_deadlock_free	3322	3742	true	0.004 seconds

Assertion: P_nr_of_tries

Assertion	states:	transitions:	result:	checkTime:
P_nr_of_tries	3322	3742	1.6998561958204306	0.055 seconds

Assertion: P_nr_of_choices

Assertion	on states: transitions: result:		result:	checkTime:
P_nr_of_choices	3322	3742	2.6998527952527036	0.092 seconds

Assertion: P_goodfit

Assertion	states:	transitions:	result:	checkTime:
P_goodfit	3322	3742	1.0	0.029 seconds

Kangfeng Ye, Jim Woodcock, and Simon Foster

State space explosion

Previous example analyses N = 6. However, if

- N = 100: construction (4s) + checking (0.002s);
- ▶ N = 10,000: 8s + 0.004s;
- ► N = 100,000: 830s + 0.011s;
- \triangleright N = 1,000,000: not finished after several hours;
- ▶ N = 1,?

Kangfeng Ye, Jim Woodcock, and Simon Foster

Statistical model checking

- Approximate results (vs. exact)
- Monte Carlo simulations (executions)
- Analyse properties on simulations

Random walker 30 x 30 squares

Theorem Proving (UTP, Isabelle/UTP) For any $N \ge 1$,

$$\begin{pmatrix} \textit{true} \vdash \begin{pmatrix} (\forall j \bullet j < (N-1) \Rightarrow (prob'(\mathbf{v}[j, false/i, c] = 1/N))) \land \\ prob'(\mathbf{v}[(N-1), true/i, c]) = 1/N \end{pmatrix} \end{pmatrix}$$

$$\sqsubseteq ChooseUniform(N) \end{pmatrix}$$

Jniversity of York

Kangfeng Ye, Jim Woodcock, and Simon Foster

Theorem Proving (UTP, Isabelle/UTP) For any $N \ge 1$,

$$\begin{pmatrix} \textit{true} \vdash \begin{pmatrix} (\forall j \bullet j < (N-1) \Rightarrow (prob'(\mathbf{v}[j, false/i, c] = 1/N))) \land \\ prob'(\mathbf{v}[(N-1), true/i, c]) = 1/N \end{pmatrix} \end{pmatrix}$$

$$\sqsubseteq ChooseUniform(N) \end{pmatrix}$$

Interpretation:

• If j is between 0 and (N-2), P(i = j) = 1/N and c = false

► If *j* is equal to
$$(N-1)$$
, $P(i = j) = 1/N$ and $c = true$

Kangfeng Ye, Jim Woodcock, and Simon Foster

Theorem Proving (epistemic uncertainty) Bayesian belief model: learn new facts

University of Yorl

Kangfeng Ye, Jim Woodcock, and Simon Foster

Theorem Proving (epistemic uncertainty) Bayesian belief model: learn new facts Imperfect door sensor: 4 times more likely to be right than wrong

Kangfeng Ye, Jim Woodcock, and Simon Foster

Theorem Proving (epistemic uncertainty) Bayesian belief model: learn new facts Imperfect door sensor: 4 times more likely to be right than wrong init

Robot's belief

Kangfeng Ye, Jim Woodcock, and Simon Foster

Theorem Proving (epistemic uncertainty) Bayesian belief model: learn new facts Imperfect door sensor: 4 times more likely to be right than wrong init init init || sdoor

Robot's belief

Theorem Proving (epistemic uncertainty) Bayesian belief model: learn new facts Imperfect door sensor: 4 times more likely to be right than wrong init init || sdoor (init || sdoor); mright

Robot's belief

Theorem Proving (epistemic uncertainty) Bayesian belief model: learn new facts Imperfect door sensor: 4 times more likely to be right than wrong init init || sdoor (init || sdoor); mright ((init || sdoor); mright) || sdoor

Robot's belief

Kangfeng Ye, Jim Woodcock, and Simon Foster

Theorem Proving (epistemic uncertainty)

Bayesian belief model: learn new facts

Imperfect door sensor: 4 times more likely to be right than wrong init

```
init || sdoor
(init || sdoor); mright
((init || sdoor); mright) || sdoor
(((init || sdoor); mright) || sdoor); mright
```


Robot's belief

Theorem Proving (epistemic uncertainty) Bayesian belief model: learn new facts Imperfect door sensor: 4 times more likely to be right than wrong init init || sdoor (init || sdoor); mright ((init || sdoor); mright) || sdoor (((init || sdoor); mright) || sdoor); mright ((((init || sdoor); mright) || sdoor); mright) || swall

Robot's belief

Kangfeng Ye, Jim Woodcock, and Simon Foster

Theorem Proving (epistemic uncertainty) Bayesian belief model: learn new facts Imperfect door sensor: 4 times more likely to be right than wrong init init || sdoor (init || sdoor); mright ((init || sdoor); mright) || sdoor (((init || sdoor); mright) || sdoor); mright ((((init || sdoor); mright) || sdoor); mright) || swall

Robot's belief

Animation of RoboChart

	Starting ITree animation
:	<pre>Events: (1) RandomWalkCall (); (2) Gas (Din, []);;</pre>
:	[Choose: 1-22]: 1
1	Events: (1) Gas []; (2) Gas [(0,0)]; (3) Gas [(0,1)];;
;	(9) Gas [(0,0),(1,1)];; (21) Gas [(1,1),(1,1)];
;	[Choose: 1-21]: 9
,	<pre>Events: (1) MoveCall (0,Chemical_Angle_Front);</pre>
;	[Choose: 1-1]: 1
)	Events: (1) Flag Dout;
)	[Choose: 1-1]: 1
	Terminated: ()

University of Yorl

Kangfeng Ye, Jim Woodcock, and Simon Foster

Animation of RoboChart

Kangfeng Ye, Jim Woodcock, and Simon Foster

Probabilistic modelling and verification, and Animation

ROBOSTAR

Thank you!

https://robostar.cs.york.ac.uk/

Kangfeng Ye, Jim Woodcock, and Simon Foste