Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

Formally Verified Animation for RoboChart Using Interaction Trees

Kangfeng Ye, Simon Foster, Jim Woodcock

robostar.cs.york.ac.uk

October 26, 2022

Kangfeng Ye, Simon Foster, Jim Woodcock

Formally Verified Animation for RoboChart Using Interaction Trees

Engineering and Physical Sciences Research Council

Background and motivations	d motivations RoboChart model Animation of		Operational Semantics for RoboChart	Conclusion
Outline				

Background and motivations

RoboChart model

Animation of RoboChart

Operational Semantics for RoboChart

Conclusion

Kangfeng Ye, Simon Foster, Jim Woodcock

Current practice and problems

Kangfeng Ye, Simon Foster, Jim Woodcocł

Current practice and problems

- No models, or models without precise syntax or formal semantics,
- Time and uncertainty: discussed informally,
- No tool support,
- Loose connections of artefacts,
- Trial-and-error,
- No assurance.

Background and motivations ○●○○○○○	und and motivations RoboChart model Animatic oo 000 000		Operational Semantics for RoboChart	Conclusion
RoboStar				

 RoboStar framework: modern modelling and verification technologies, software engineering of robotics

RoboStar

- RoboStar framework: modern modelling and verification technologies, software engineering of robotics
- Vision: model centred, mathematical semantics

Background and motivations	RoboChart model Animation of RoboChart		Operational Semantics for RoboChart	Conclusion
RoboChart				

Core notation of RoboStar, DSL for robotics, state machines + time + probability

Background and motivations Robot	RoboChart model Animation of RoboChart		Dperational Semantics for RoboChart	Conclusion
RoboChart				

- Core notation of RoboStar, DSL for robotics, state machines + time + probability
- A component model (platform independent + parallel composition of state machines)

Background and motivations	and motivations RoboChart model A		Operational Semantics for RoboChart	Conclusion
RoboChart				

- Core notation of RoboStar, DSL for robotics, state machines + time + probability
- A component model (platform independent + parallel composition of state machines)
- Denotational semantics (CSP and MDP) and verification (FDR and PRISM)

E	Background and motivations	hd and motivations RoboChart model A o 000 c		Operational Semantics for RoboChart	Conclusion
	RoboChart				

- Core notation of RoboStar, DSL for robotics, state machines + time + probability
- A component model (platform independent + parallel composition of state machines)
- Denotational semantics (CSP and MDP) and verification (FDR and PRISM)
- Animated available in FDR (ProBE animator), or in PRISM (simulator)

Background and motivations	and motivations RoboChart model Anim		Operational Semantics for RoboChart	Conclusion
RoboChart				

- Core notation of RoboStar, DSL for robotics, state machines + time + probability
- A component model (platform independent + parallel composition of state machines)
- Denotational semantics (CSP and MDP) and verification (FDR and PRISM)
- Animated available in FDR (ProBE animator), or in PRISM (simulator)
- but the animation is low-level and not very helpful (for our purpose)

Animation using FDR

emicalDetector::0
<pre>r: sbisim(diamond((ChemicalDetector::0::Buffer@(<)[_]((ChemicalDetector::ctrl_ref0::0(0,0,0,0,0,0,0)[[_]][_]sbisim(diamond((sbisim(diamond(d))))</pre>
<pre>r: sbisim(diamond((ChemicalDetector::0::Buffer@(~)[_]((ChemicalDetector::ctrl_ref0::0(0,0,0,0,0,0,0,0)[[_]][_]sbisim(diamond((sbisim(diamond(d)))</pre>
t: sbisim(diamond((ChemicalDetector::0::Buffer@(\Rightarrow)[_]((ChemicalDetector::ctrl_ref0::0(0,0,0,0,0,0,0)[[_]][_]sbisim(diamond((sbisim(diamond(d)))])
:: sbisim(diamond((ChemicalDetector::0::Buffer@(ϕ)[_]((sbisim(diamond((sbisim(diamond(dbisim(sbisim(ChemicalDetector::ctrl_ref0::0P_changeDirect
<pre>r: sbisim(diamond((ChemicalDetector::0::Buffer@(~)[_]((sbisim(diamond((sbisim(diamond(dbisim(sbisim(ChemicalDetector::ctrl_ref0::0P_changeDirect</pre>
:: sbisim(diamond((ChemicalDetector::0::Buffer@(\Rightarrow)[_]((sbisim(diamond((sbisim(diamond(dbisim(sbisim(ChemicalDetector::ctrl_ref0::0P_changeDirect
:: sbisim(diamond((ChemicalDetector::o::Buffer@(<>)[]_]]((sbisim(diamond((sbisim(diamond(dbisim(sbisim(ChemicalDetector::ctrl_ref@::OP_changeDin
1: sbisim(diamond((ChemicalDetector::c::Buffer@(~>)[]_]]((sbisim(diamond((sbisim(diamond(dbisim(sbisim(chemicalDetector::ctrl_ref@::OP_chanaeDir
1: sbisin(diamond((ChemicalDetector::0::1: ::::::::::::::::::::::::::::::::::::
1: sbisim(diamond((ChemicalDetector::0::Buffer0(<>)[_]((sbisim(diamond((sbisim(diamond(dbisim(sbisim(ChemicalDetector::ctrl_ref0::0P_cham)))
: sbisim(diamond((ChemicalDetector::0::Buffer@(<>)[_]((sbisim(diamond((sbisim(diamond(dbisim(sbisim(ChemicalDetector::ctrl_ref0::0P_change
: sbisim(diamond((ChemicalDetector::0::Buffer0(⇔)[]]((sbisim(diamond((sbisim(diamond(dbisim(sbisim(ChemicalDetector::ctrl_ref0::0P_changeDir
ː: sbisim(diamond((ChemicalDetector::0::Buffer0(⇔)[]]((sbisim(diamond((sbisim(diamond(dbisim(sbisim(ChemicalDetector::ctrl_ref0::0P_changeDir
: sbisim(diamond((ChemicalDetector::0::Buffer8(<>)[])(sbisim(diamond((sbisim(diamond(dbisim(sbisim(ChemicalDetector::ctrl_ref8::0P_changeDir

Kangfeng Ye, Simon Foster, Jim Woodcock

Animation using PRISM

Model Properties Simulator	Log Options												
atic exploration Manual	exploration -									- 1	Path informati	20	
Simulate	Module/[acti	ion] P	robability			U	pdate			1 1 7	State labels	Path form	nulae
* moo	l_sys_ctrl_rel	f1_stm_0.333	333333333	it mod_sys_o	:trl_ref1_stm	_ref0_s0_exi	t_9'=4			1.811	💥 init		
mod	_sys_ctrl_rel	f2_stm(0.333	3333333333	it mod_sys_e	trl_ref2_stm	0_lock_7'=0	FIN_RP_ex	t_pow24∨St	atus_28'-tru		🗶 deadlock		
racking mod	l_sys_ctrl_rel	ro_stm_0.333	333333333	E[mod_sys_i	:trl_ref0_stm	_ref0_disabl	eH∨_arg'⇔tru	e, mod_sys	_ctrl_ref0_stm				
Backtrack													
• • 1													
Step		BUF_int	BUF	ext_pow2	4_1_17	BUF_	int_underLi	nit_20					
Module/[action]		BUF_int_D	BUF_ext	EVT_IN_B.	FIN_OUT.	BUF_int_u.	. EVT_IN_B	FIN_OUT	FIN_IN_B	mod_sys	mod_sys	. mod_sys_	m
	0	(false)	(false)	φ	(true)	(false)	φ	(true)	(true)	φ	φ	φ	
mod_sys_ctrl_ref3_stm0	1										_		
mod_sys_ctrl_ref2_stm0	2												
[RP_ext_pow24VStatus_28]	3										_		
mod_sys_ctrl_rer0_stm_rer0													
IDD summer Finte 261	6												
mod pus ctrl ref0 stm ref0	7												
P1B	0												
mod sys ctrl ref2 stm0	9												
IBP currentState 261	10												
mod sys ctrl ref0 stm ref0	11												
mod_sys_ctrl_ref0_stm_ref0	12												
mod_sys_ctrl_ref1_stm_ref0	13												
P1B	14												
[OUT_BUFext_pow24_1_17]	15				(faise)								
BUF_ext_pow24_1_17	16		(true)	¢	(true)								
[RP_int_pwmSignal_18]	17												
mod_sys_ctrl_ref0_stm_ref0	18												\rightarrow
mod_sys_ctrl_ref2_stm0	19												\rightarrow
mod_sys_ctrl_ref0_stm_ref0	20												+
	21												
mod_sys_ctrl_ref0_stm_ref0													

Kangfeng Ye, Simon Foster, Jim Woodcock

ROBOSTAR

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion
Why Animation?				

(Kazmierczak et al. 1998)

Easily automated and cheap to perform (vs. formal verification),

Background and motivations RoboChart model		Animation of RoboChart	Operational Semantics for RoboChart	Conclusion			
M/by Animation?							

(Kazmierczak et al. 1998)

- Easily automated and cheap to perform (vs. formal verification),
- Require little expertise (vs. model-checking and theorem proving),

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

(Kazmierczak et al. 1998)

- Easily automated and cheap to perform (vs. formal verification),
- Require little expertise (vs. model-checking and theorem proving),
- Suitable for early iterations of developing models,

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

(Kazmierczak et al. 1998)

- Easily automated and cheap to perform (vs. formal verification),
- Require little expertise (vs. model-checking and theorem proving),
- Suitable for early iterations of developing models,
- Demonstration: insight into models and implicit assumptions,

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

(Kazmierczak et al. 1998)

- Easily automated and cheap to perform (vs. formal verification),
- Require little expertise (vs. model-checking and theorem proving),
- Suitable for early iterations of developing models,
- Demonstration: insight into models and implicit assumptions,
- Understanding of behaviour of robot controllers in particular scenarios,

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

(Kazmierczak et al. 1998)

- Easily automated and cheap to perform (vs. formal verification),
- Require little expertise (vs. model-checking and theorem proving),
- Suitable for early iterations of developing models,
- Demonstration: insight into models and implicit assumptions,
- Understanding of behaviour of robot controllers in particular scenarios,
- Interactive testing of models and properties,

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

(Kazmierczak et al. 1998)

- Easily automated and cheap to perform (vs. formal verification),
- Require little expertise (vs. model-checking and theorem proving),
- Suitable for early iterations of developing models,
- Demonstration: insight into models and implicit assumptions,
- Understanding of behaviour of robot controllers in particular scenarios,
- Interactive testing of models and properties,
- Shorten learning curve of RoboChart (semantics): students, roboticists, formal experts.

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion
Recent work				

Foster, S., Hur, C.K., Woodcock, J.: Formally verified simulations of state-rich processes using interaction trees in Isabelle/HOL. CONCUR (2021)

- Interaction trees (ITrees) in Isabelle/HOL, with ITrees-based semantics for CSP,
- ► Formally verified animation for CSP (code generator in Isabelle/HOL),
- Implemented most CSP processes and operators.

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion
Contributions				

- Operational semantics for RoboChart: ITrees-based CSP,
- Mechanisation of the semantics of the autonomous chemical detector model in Isabelle,
- Animation of the model,
- Implementation of three extra CSP operators (interrupt, exception, and renaming),
- Implementation of a bounded sequence type for code generation.

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion
Contributions				

- Contributions
 - Operational semantics for RoboChart: ITrees-based CSP,
 - Mechanisation of the semantics of the autonomous chemical detector model in Isabelle,
 - Animation of the model,
 - ▶ Implementation of three extra CSP operators (interrupt, exception, and renaming),
 - Implementation of a bounded sequence type for code generation.

Benefits

- Unification of verification and animation,
- Support richer RoboChart types and expressions, and functions,
- Characterise systems with an infinite number of states symbolically,
- Functional algorithms and data refinement: automated,
- Could be fully automated: from RoboChart models to final Haskell code.

Animation of RoboChart

Autonomous chemical detector - module

From the papers (Hilder et al. 2012) and (Miyazawa et al., 2019).

ROBOSTAR

Background and motivations RoboChart model Animation of RoboChart ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Operational Semantics for RoboChart	Conclusion
---	-------------------------------------	------------

Autonomous chemical detector - main controller

Autonomous chemical detector - micro controller

Animation of RoboChart (video)

- Model
- Controllers
- State machines
- Code generation in Isabelle, animation (Isabelle console or OS console)

Animation of RoboChart - our approach

Kangfeng Ye, Simon Foster, Jim Woodcock

Animation of RoboChart

Operational Semantics for RoboChar

Animation of RoboChart - our approach (semantics)

Kangfeng Ye, Simon Foster, Jim Woodcock

Interaction Trees (Xia et al. 2019) in Isabelle/HOL

Coinductive trees, with potentially infinite breadth and depth, used to represent the ways a process communicates with its environment and evolves over time.

Definition (Interaction trees)

```
codatatype ('e, 'r) itree =
  Ret 'r | - < Terminate, returning a value >
  Sil "('e, 'r) itree" | - < Invisible event >
  Vis "'e +> ('e, 'r) itree" - < Visible events and continuations >
```

Notation: \checkmark_v for Ret $v, \tau P$ for Sil $P, [] e \in E \rightarrow P(e)$ for Vis $(\lambda e \in E \bullet P(e))$.

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

Existing CSP Processes and Operators

- ▶ skip, stop, div, run
- lnput event: $inp_in c A$
- Output event: outp c v
- Sequential composition (monad): $P \gg K$
 - $\blacktriangleright do \{x \leftarrow inp_in c A; outp d (2 \cdot x); Ret x\}$
- External choice: $P \Box Q$
- ▶ Parallel composition: $P \parallel_A Q$ (interleave |||).
- Hiding: $P \setminus A$

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

Definition (Interrupt)

 $P \bigtriangleup Q$ behaves like P except that if at any time Q performs one of its initial events then it takes over, defined corecursively.

Definition (Interrupt)

 $P \bigtriangleup Q$ behaves like P except that if at any time Q performs one of its initial events then it takes over, defined corecursively.

 $\begin{array}{ll} (\textit{Sil} P') \bigtriangleup Q = \textit{Sil} (P' \bigtriangleup Q) & P \bigtriangleup (\textit{Sil} Q') = \textit{Sil} (P \bigtriangleup Q') \\ (\textit{Ret} x) \bigtriangleup Q = \textit{Ret} x & P \bigtriangleup (\textit{Ret} x) = \textit{Ret} x \\ (\textit{Vis} F) \bigtriangleup (\textit{Vis} G) = \textit{Vis} \left(\begin{array}{l} \{e \mapsto (P' \bigtriangleup Q) \mid (e \mapsto P') \in (\mathsf{dom}(G) \triangleleft F) \} \oplus G \end{array} \right) \end{array}$

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

Definition (Interrupt)

 $P \bigtriangleup Q$ behaves like P except that if at any time Q performs one of its initial events then it takes over, defined corecursively.

 $\begin{array}{ll} (\textit{Sil} P') \bigtriangleup Q = \textit{Sil} (P' \bigtriangleup Q) & P \bigtriangleup (\textit{Sil} Q') = \textit{Sil} (P \bigtriangleup Q') \\ (\textit{Ret} x) \bigtriangleup Q = \textit{Ret} x & P \bigtriangleup (\textit{Ret} x) = \textit{Ret} x \\ (\textit{Vis} F) \bigtriangleup (\textit{Vis} G) = \textit{Vis} \left(\begin{array}{l} e \mapsto (P' \bigtriangleup Q) \mid (e \mapsto P') \in (\textit{dom}(G) \triangleleft F) \right\} \oplus G \end{array} \right) \end{array}$

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

Definition (Interrupt)

 $P \bigtriangleup Q$ behaves like P except that if at any time Q performs one of its initial events then it takes over, defined corecursively.

 $\begin{array}{ll} (\textit{Sil}\ P') \bigtriangleup Q = \textit{Sil}\ (P' \bigtriangleup Q) & P \bigtriangleup (\textit{Sil}\ Q') = \textit{Sil}\ (P \bigtriangleup Q') \\ (\textit{Ret}\ x) \bigtriangleup Q = \textit{Ret}\ x & P \bigtriangleup (\textit{Ret}\ x) = \textit{Ret}\ x \\ (\textit{Vis}\ F) \bigtriangleup (\textit{Vis}\ G) = \textit{Vis}\ (\ \{e \mapsto (P' \bigtriangleup Q) \mid (e \mapsto P') \in (\textsf{dom}(G) \triangleleft F)\} \oplus G \) \end{array}$

Definition (Interrupt)

 $P \bigtriangleup Q$ behaves like P except that if at any time Q performs one of its initial events then it takes over, defined corecursively.

 $\begin{array}{ll} (\textit{Sil}\,P') \bigtriangleup Q = \textit{Sil}\;(P'\bigtriangleup Q) & P\bigtriangleup(\textit{Sil}\,Q') = \textit{Sil}\;(P\bigtriangleup Q') \\ (\textit{Ret}\,x) \bigtriangleup Q = \textit{Ret}\,x & P\bigtriangleup(\textit{Ret}\,x) = \textit{Ret}\,x \\ (\textit{Vis}\,F) \bigtriangleup(\textit{Vis}\,G) = \textit{Vis}\,\big(\;\{e\mapsto(P'\bigtriangleup Q)\mid(e\mapsto P')\in(\textsf{dom}(G)\preccurlyeq F)\}\oplus G\;\big) \\ \end{array}$

Example

•
$$(\operatorname{\textit{Ret}} x) \bigtriangleup Q = \operatorname{\textit{Ret}} x$$
, and $(a \to P) \bigtriangleup (\operatorname{\textit{Ret}} x) = \operatorname{\textit{Ret}} x$

• Priority to
$$Q$$
: $(a \to P) \bigtriangleup (a \to Q) = a \to Q$

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

RoboChart semantics

Kangfeng Ye, Simon Foster, Jim Woodcock

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion 0000

RoboChart data types

RoboChart types	Isabelle types	Note
basic primitive types: nat, int,	natural, integer,	target language types
abstract primitive type	PrimType	Chem, Intensity
enumerations	datatype	
records	record	
mathematical types: sets, relations,	Z mathematical toolkit	Bounded finite sequences

Definition (Abstract primitive type to finite enumerations)

```
datatype ('t, 'a::finite) PrimType = PrimTypeC 'a
```

Definition (Bounded finite sequence)

```
typedef ('a,'n::finite) blist = {xs::'a list. length xs<CARD('n)}</pre>
```


Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

RoboChart functions

fx intensity(gs: Seq(GasSensor)): Intensity
 size(gs)>0
 forall x: nat | 0<=x/\x<size(gs) @ goreq(result, gs[x].i)
 exists y: nat | 0<=y/\y<size(gs) @ result==gs[y].i

Definition (intensity function)

definition "pre_Chemical_intensity gs = (blength gs > 0)"
definition "Chemical_intensity gs = (THE result.
 (∀x::nat<blength gs. Chemical_goreq(result, gs_i (bnth gs x)))^
 (∃x::nat<blength gs. result = gs_i (bnth gs x)))"</pre>

Detected an error in the original model where $x \le size(gs)$ is used.

Kangfeng Ye, Simon Foster, Jim Woodcocł

Formally Verified Animation for RoboChart Using Interaction Trees

21/28

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion
Channel type				
A process is of type (Two processes in par	(E, V) <i>itree</i> ; allel compositio	n have the same tvr	be: E and V .	
<pre>chantype Chan_Mov internal_Moveme terminate_Movem</pre>	rement = ent :: TIDS_ ment :: unit	Movement		٩
enter_Movement get_l_Movement	:: "SIDS :: "Loca"	_Movement×SIDS_N tion_Loc" tion_Loc"	lovement"	
set_EXT_l_Movem obstacle_Movem	ent :: "Loca" ent :: "Loca" ent :: "TIDS	tion_Loc" tion_Loc" _Movement×InOut;	×Location Loc"	
obstacle_Moveme moveCall_Moveme	ent :: "InOu ent :: "core	t×Location_Loc" _real×Chemical_A	 Angle"	ROBOSTAR

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart 0000000●0	Conclusion

RoboChart States

Kangfeng Ye, Simon Foster, Jim Woodcocl

ROBOSTAB

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion

RoboChart Module

Kangfeng Ye, Simon Foster, Jim Woodcock

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion ●000
Conclusion				

Operational semantics for RoboChart, ITrees-based CSP,

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion ●000
Conclusion				

- Operational semantics for RoboChart, ITrees-based CSP,
- Manual generation of the semantics of the autonomous chemical detector model,

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion ●000
Conclusion				

- Operational semantics for RoboChart, ITrees-based CSP,
- Manual generation of the semantics of the autonomous chemical detector model,
- Animation of the model,

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion ●○○○
Conclusion				

- Operational semantics for RoboChart, ITrees-based CSP,
- Manual generation of the semantics of the autonomous chemical detector model,
- Animation of the model,
- Implementation of three extra CSP operators and one bounded finite sequence type.

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion ○●○○
Future work				

Nondeterminism: static (resolved in the beginning), oracle (another process to resolve), or randomly,

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion
Future work				

- Nondeterminism: static (resolved in the beginning), oracle (another process to resolve), or randomly,
- Automation of semantics generation,

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion 0000
Future work				

- Nondeterminism: static (resolved in the beginning), oracle (another process to resolve), or randomly,
- Automation of semantics generation,
- Graphical animation (in RoboChart state machines),

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion 0000
Future work				

- Nondeterminism: static (resolved in the beginning), oracle (another process to resolve), or randomly,
- Automation of semantics generation,
- Graphical animation (in RoboChart state machines),
- Support more RoboChart constructs: composite states, timed semantics,

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion 0000
Future work				

- Nondeterminism: static (resolved in the beginning), oracle (another process to resolve), or randomly,
- Automation of semantics generation,
- Graphical animation (in RoboChart state machines),
- Support more RoboChart constructs: composite states, timed semantics,
- ▶ Verification (refinement or temporal logics) in addition to animation,

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion 0000
Future work				

- Nondeterminism: static (resolved in the beginning), oracle (another process to resolve), or randomly,
- Automation of semantics generation,
- Graphical animation (in RoboChart state machines),
- Support more RoboChart constructs: composite states, timed semantics,
- ► Verification (refinement or temporal logics) in addition to animation,
- Extension to other semantics domains: probability (DTMC), ...

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion 0000
Future work				

- Nondeterminism: static (resolved in the beginning), oracle (another process to resolve), or randomly,
- Automation of semantics generation,
- Graphical animation (in RoboChart state machines),
- Support more RoboChart constructs: composite states, timed semantics,
- Verification (refinement or temporal logics) in addition to animation,
- Extension to other semantics domains: probability (DTMC), ...
- Applications: sound runtime monitors, concrete implementation of RoboChart controllers (for verified ROS nodes).

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion 00●0
References				

- Kazmierczak et al. Verifying model oriented specifications through animation. APSEC. (1998).
- Hilder et al. Chemical detection using the receptor density algorithm. IEEE Trans. Syst. Man Cybern. (2012)
- Miyazawa et al. RoboChart: modelling and verification of the functional behaviour of robotic applications. Softw. Syst. Model. (2019)
- Xia et al. Interaction trees: representing recursive and impure programs in Coq. POPL (2019)
- Foster et al. Formally verified simulations of state-rich processes using interaction trees in Isabelle/HOL. CONCUR (2021)

Background and motivations	RoboChart model	Animation of RoboChart	Operational Semantics for RoboChart	Conclusion ○○○●

Thank you!

https://robostar.cs.york.ac.uk/

Kangfeng Ye, Simon Foster, Jim Woodcock