Probabilistic modelling and verification using RoboChart and PRISM

Kangfeng Ye, Ana Cavalcanti, Simon Foster, Alvaro Miyazawa, Jim Woodcock

robostar.cs.york.ac.uk

October 27, 2022

Probabilistic modelling and verification using RoboChart and PRISM

Engineering and Physical Sciences Research Council

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion
Outline				

Background and motivations

Probabilistic modelling and property language

Automated verification in RoboTool

Probabilistic semantics in PRISM

Conclusion

Kangfeng Ye, Ana Cavalcanti, Simon Foster, Alvaro Miyazawa, Jim Woodcock

Current practice and problems

Kangfeng Ye, Ana Cavalcanti, Simon Foster, Alvaro Miyazawa, Jim Woodcock

Conclusio 00

Current practice and problems

- No models, or models without precise syntax or formal semantics,
- Time and uncertainty: discussed informally,
- No tool support,
- Loose connections of artefacts,
- Trial-and-error,
- No assurance.

Kangfeng Ye, Ana Cavalcanti, Simon Foster, Alvaro Miyazawa, Jim Woodcock

Background and motivations ○●○○○	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion
RoboStar				

 RoboStar framework: modern modelling and verification technologies, software engineering of robotics

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion

RoboStar

- RoboStar framework: modern modelling and verification technologies, software engineering of robotics
- Vision: model centred, mathematical semantics

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion
RoboChart				

Core notation of RoboStar, DSL for robotics, state machines

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion
BoboChart				

- Core notation of RoboStar, DSL for robotics, state machines
- A component model (platform independent + parallel composition of state machines)

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion

RoboChart

- Core notation of RoboStar, DSL for robotics, state machines
- A component model (platform independent + parallel composition of state machines)
- Previous work: modelling and verification of RoboChart with time

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion

RoboChart

- Core notation of RoboStar, DSL for robotics, state machines
- A component model (platform independent + parallel composition of state machines)
- Previous work: modelling and verification of RoboChart with time
- but not uncertainty

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion
Uncertainty in	n robotics			

Unpredictable environment, sensors, actuators, model errors, and control algorithmic approximations (EKF SLAM, swarm robots).

Uncertainty in robotics

Unpredictable environment, sensors, actuators, model errors, and control algorithmic approximations (EKF SLAM, swarm robots).

"Managing uncertainty is possibly the most important step towards robust realworld robot systems."

— Sebastian Thrun et al.

Uncertainty in robotics

Unpredictable environment, sensors, actuators, model errors, and control algorithmic approximations (EKF SLAM, swarm robots).

"Managing uncertainty is possibly the most important step towards robust realworld robot systems."

— Sebastian Thrun et al.

In RoboChart, we use probabilism to model uncertainty.

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion

Novel contributions

- Extension of RoboChart with probabilistic junctions,
- RoboChart's probabilistic semantics: given in PRISM,
- A metamodel for PRISM,
- A probabilistic property language,
- Implementation in RoboTool for automated verification,

Probabilistic Modelling

A simple foraging robot with a randomising device, every time step (flip), limited number of choices (N)

ROBOSTAB

PRISM's property language (PCTL*) enriched with RoboChart elements

Computation Tree Logic (CTL)

prob property P_deadlock_free: not Exists [Finally deadlock] with constant N from set {2 to 20 by step 2}

Deadlock freedom for various values of N

PRISM's property language (PCTL*) enriched with RoboChart elements

- Computation Tree Logic (CTL)
- ► Linear Temporal Logic (LTL)

```
prob property P_1:
Forall [Globally (Finally (fd==2) and (Next (fd==0)))]
```

For all paths, always eventually fd is 2 and fd is 0 immediately afterwards.

PRISM's property language (PCTL*) enriched with RoboChart elements

- Computation Tree Logic (CTL)
- ► Linear Temporal Logic (LTL)
- Probabilistic CTL (quantitative)

```
prob property P_min_terminate:
Prob min=? of [Finally FgSTM is in STOP]
with constant N from set {2 to 20 by step 2}
```

```
prob property P_max_terminate:
Prob max=? of [Finally FgSTM is in STOP]
with constant N from set {2 to 20 by step 2}
```

What's the minimum and maximum probabilities of FgSTM finally in state STOP?

PRISM's property language (PCTL*) enriched with RoboChart elements

- Computation Tree Logic (CTL)
- Linear Temporal Logic (LTL)
- Probabilistic CTL (quantitative)
- Rewards/costs

```
rewards nr_of_forages =

[forage.out] true : 1;

endrewards

prob property R_max_stop:

Reward {nr_of_forages} max=? of [Reachable FgSTM is in

STOP]

with constant N set to 10
```

Each synchronisation on event forage costs 1, and what's the maximum expectation of the cost when $\frac{1}{\sqrt{2}}$ FgSTM reaches STOP, considering N is 10. ROBOSTAR

PRISM's property language (PCTL*) enriched with RoboChart elements

- Computation Tree Logic (CTL)
- ► Linear Temporal Logic (LTL)
- Probabilistic CTL (quantitative)
- Rewards/costs
- Simulations

prob property P_max_terminate_sim: Prob max=? of [Finally FgSTM is in STOP] using sim with CI at alpha=0.01, n=1000, and pathlen=10000 with constant N from set {2 to 20 by step 2}

What's the maximum probabilities of FgSTM finally in state STOP using statistic model checking with method CI (confidence interval)?

Automated verification in RoboTool

Results of probabilistic analysis of assertions in simulation.assertions using PRISM

Assertion: P_max_terminate

Assertion	Const	states:	transitions:	result:	checkTime:
P_max_terminate	foraging::foraging::stm_ref0::N=2	16	20	0.75	0.004 seconds
P_max_terminate	foraging::foraging::stm_ref0::N=4	30	38	0.9375	0.007 seconds
P_max_terminate	foraging::foraging::stm_ref0::N=6	44	56	0.984375	0.011 seconds
P_max_terminate	foraging::foraging::stm_ref0::N=8	58	74	0.99609375	0.008 seconds
P_max_terminate	foraging::foraging::stm_ref0::N=10	72	92	0.9990234375	0.012 seconds
P_max_terminate	$for a ging:: for a ging:: stm_ref0:: N = 12$	86	110	0.999755859375	0.013 seconds

Assertion: P_max_terminate_sim

Assertion	Const	states:	transitions:	result:	checkTime:
$P_{max_terminate_sim}$	$for aging{::} for aging{::} stm_ref0{::} N{=}2$			0.738	
$P_{max_terminate_sim}$	foraging::foraging::stm_ref0::N=4			0.947	
P_max_terminate_sim	foraging::foraging::stm_ref0::N=6			0.977	
P_max_terminate_sim	foraging::foraging::stm_ref0::N=8			0.995	
P_max_terminate_sim	foraging::foraging::stm_ref0::N=10			1.0	
P_max_terminate_sim	foraging::foraging::stm_ref0::N=12			1.0	

Kangfeng Ye, Ana Cavalcanti, Simon Foster, Alvaro Miyazawa, Jim Woodcock

Automated verification in RoboTool - approach

Modelling techniques and mathematical semantics

Kangfeng Ye, Ana Cavalcanti, Simon Foster, Alvaro Miyazawa, Jim Woodcock

Automated verification in RoboTool - approach

Modelling techniques and mathematical semantics

Kangfeng Ye, Ana Cavalcanti, Simon Foster, Alvaro Miyazawa, Jim Woodcock

Probabilistic Semantics

- Nondeterministic choice resolved at states,
- Transitions that exit states implicitly or explicitly enter probabilistic choices,
- ► Given as DTMC and MDP,
- Defined by a formal translation to PRISM: for verification.

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion

Challenges

(1) Component model,

2 State machines and composite states,

Transitions and actions,

(4) Communication: input/output triggers and actions,

5 Operations, asynchronous communication, during actions, ...

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion

Challenges

1 Component model,

State machines and composite states,

Transitions and actions,

(4) Communication: input/output triggers and actions,

5 Operations, asynchronous communication, during actions, ...

Solutions

two-stage translation and its Formalisation:

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion

Challenges

(1) Component model,

State machines and composite states,

Transitions and actions,

(4) Communication: input/output triggers and actions,

5 Operations, asynchronous communication, during actions, ...

Solutions

two-stage translation and its Formalisation:

normalisation of RoboChart, and

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM ○●○	Conclusion

Challenges

(1) Component model,

State machines and composite states,

Transitions and actions,

(4) Communication: input/output triggers and actions,

5 Operations, asynchronous communication, during actions, ...

Solutions

two-stage translation and its Formalisation:

- normalisation of RoboChart, and
- transformation to PRISM.

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM ○○●	Conclusion

Formalisation

Rules: functions and Z notation.

$$\llbracket x : Tx, y : Ty, z : Tz, \cdots \rrbracket_{\mathcal{S}} : T_1 \times T_2 \times \cdots$$

$$(e_1, e_2, \cdots)$$
where
$$e_1 \triangleq \cdots$$

$$e_2 \triangleq \cdots$$

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion

Formalisation

Rules: functions and Z notation.

12 normalisation rules and 84 transformation rules (RoboChart reference manual)

Kangfeng Ye, Ana Cavalcanti, Simon Foster, Alvaro Miyazawa, Jim Woodcock

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion ●○
Conclusion				

Extension of RoboChart with probabilistic junction;

Background and motivations	Probabilistic modelling and property language oo	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion ●○
Conclusion				

- Extension of RoboChart with probabilistic junction;
- Probabilistic semantics of RoboChart in PRISM;

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion ●○
Conclusion				

- Extension of RoboChart with probabilistic junction;
- Probabilistic semantics of RoboChart in PRISM;
- Formalisation of semantics by two-stage translation;

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion ●○
Canalusian				

Conclusion

- Extension of RoboChart with probabilistic junction;
- Probabilistic semantics of RoboChart in PRISM;
- Formalisation of semantics by two-stage translation;
- A probabilistic property language;

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion ●○

Conclusion

- Extension of RoboChart with probabilistic junction;
- Probabilistic semantics of RoboChart in PRISM;
- Formalisation of semantics by two-stage translation;
- A probabilistic property language;
- Automation and verification support in RoboTool;

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion ●○
Conclusion				

Conclusion

- Extension of RoboChart with probabilistic junction;
- Probabilistic semantics of RoboChart in PRISM;
- Formalisation of semantics by two-stage translation;
- A probabilistic property language;
- Automation and verification support in RoboTool;
- Future work: time, during actions, rich types/expressions (data refinement), more case studies

Background and motivations	Probabilistic modelling and property language	Automated verification in RoboTool	Probabilistic semantics in PRISM	Conclusion

Thank you!

https://robostar.cs.york.ac.uk/

Kangfeng Ye, Ana Cavalcanti, Simon Foster, Alvaro Miyazawa, Jim Woodcock