Automated Reasoning for Probabilistic Sequential Programs with Theorem Proving

Kangfeng Ye, Simon Foster, Jim Woodcock

University of York, UK

November 04, 2021

robostar.cs.york.ac.uk

Kangfeng Ye, Simon Foster, Jim Woodcock

Motivations	Relational semantics	Mechanisation in Isabelle/UTP	Examples	Conclusion
Overview				

Background

RoboChart¹: DSL for robotics (state machines: reactive+time+probability), unification of semantics (Unifying Theories of Programming or UTP)

Kangfeng Ye, Simon Foster, Jim Woodcock

Automated Reasoning for Probabilistic Programs

https://robostar.cs.york.ac.uk/notations/

Background

- RoboChart¹: DSL for robotics (state machines: reactive+time+probability), unification of semantics (Unifying Theories of Programming or UTP)
- Recent work²: probabilistic semantics to RoboChart (He et al.'s relational model³): sequential+probability

Kangfeng Ye, Simon Foster, Jim Woodcock

https://robostar.cs.york.ac.uk/notations/

²Woodcock et al.: Probabilistic semantics for RoboChart - A weakest completion approach. UTP 2019 ³He et al.: Deriving probabilistic semantics via the 'weakest completion'. ICFEM 2004

. . .

Background

- RoboChart¹: DSL for robotics (state machines: reactive+time+probability), unification of semantics (Unifying Theories of Programming or UTP)
- Recent work²: probabilistic semantics to RoboChart (He et al.'s relational model³): sequential+probability

Our contributions

► A formalisation of the proof that embedding sequential composition is a homomorphism,

Background

- RoboChart¹: DSL for robotics (state machines: reactive+time+probability), unification of semantics (Unifying Theories of Programming or UTP)
- Recent work²: probabilistic semantics to RoboChart (He et al.'s relational model³): sequential+probability

Our contributions

- ► A formalisation of the proof that embedding sequential composition is a homomorphism,
- ► A mechanisation of probabilistic designs in Isabelle/UTP for automated reasoning,

Background

- RoboChart¹: DSL for robotics (state machines: reactive+time+probability), unification of semantics (Unifying Theories of Programming or UTP)
- Recent work²: probabilistic semantics to RoboChart (He et al.'s relational model³): sequential+probability
- Our contributions
 - ► A formalisation of the proof that embedding sequential composition is a homomorphism,
 - ► A mechanisation of probabilistic designs in Isabelle/UTP for automated reasoning,
 - ▶ With mechanisation, more interesting details are disclosed.
 - PMFs are convex-closed,
 - Probabilistic choice is not idempotent in general,
 - ► Embedding sequential composition is a homomorphism only for finite state space.

Motivations	Relational semantics		Conclusion
Outline			

Motivations

Relational semantics

Mechanisation in Isabelle/UTP

Examples

Conclusion

Kangfeng Ye, Simon Foster, Jim Woodcock

Automated Reasoning for Probabilistic Programs

A RoboChart algorithm

Goal: a randomisation algorithm (the same probability 1/N to choose *i* from [0, N-1])

Kangfeng Ye, Simon Foster, Jim Woodcock

A RoboChart algorithm

Question: does this model correctly implement the randomisation algorithm for any N?

Analysis by PRISM on a Linux server:

- ▶ N = 100: model construction (4s) + checking (0.002s);
- ▶ N = 10,000: 8s + 0.004s;
- ▶ N = 100,000: 830s + 0.011s;
- ▶ N = 1,000,000: not finished after several hours;

► N = 1,.....?

A RoboChart algorithm

Question: does this model correctly implement the randomisation algorithm for any N?

Analysis by PRISM on a Linux server:

▶ N = 100: model construction (4s) + checking (0.002s);

- ▶ N = 10,000: 8s + 0.004s;
- ▶ N = 100,000: 830s + 0.011s;
- ▶ N = 1,000,000: not finished after several hours;

► N = 1,.....?

Our solution: theorem proving

Nondeterministic probabilistic sequential programming language

$pGCL^{1}$ $P ::= \perp \mid \mathbf{I} \mid x := e \mid P \lhd b \rhd Q \mid P \sqcap Q \mid P \oplus_{r} Q \mid P; \ Q \mid \mu X \bullet P(X)$

¹McIver,A.,Morgan,C.: Introduction to pGCL: Its logic and its model. Springer (January 2005)

Kangfeng Ye, Simon Foster, Jim Woodcock

University of York

Nondeterministic probabilistic sequential programming language

$pGCL^1$

 $P \quad ::= \quad \perp \mid \mathbf{I} \mid x := e \mid P \lhd b \rhd Q \mid P \sqcap Q \mid P \oplus_r Q \mid P; \ Q \mid \mu X \bullet P(X)$

Randomisation algorithm in pGCL

¹McIver,A.,Morgan,C.: Introduction to pGCL: Its logic and its model. Springer (January 2005)

Kangfeng Ye, Simon Foster, Jim Woodcock

	Relational semantics		Conclusion
Outline			

Motivations

Relational semantics

Mechanisation in Isabelle/UTP

Examples

Conclusion

Kangfeng Ye, Simon Foster, Jim Woodcock

Automated Reasoning for Probabilistic Programs

Embedding

$$\mathcal{K}(D) \triangleq D/\rho$$
 $D \triangleq (p \vdash_n R)$ Embeddeding

University of York

Embedding

 $Y/K \triangleq \neg (\neg Y; K^{-})$ Weakest prespecification

$$\mathcal{K}(D) \triangleq D/\rho$$
 $D \triangleq (p \vdash_n R)$ Embeddeding

Embedding

$$\begin{array}{ll} Y/K \triangleq \neg \ (\neg \ Y; \ K^-) & \mbox{Weakest prespecification} \\ \rho \triangleq \left(true \vdash prob(s') > 0 \right) & prob : PROB \ (\triangleq S \rightarrow [0,1]) & \mbox{Forgetful function} \\ \mathcal{K}(D) \triangleq D/\rho & D \triangleq \left(p \vdash_n R \right) & \mbox{Embeddeding} \end{array}$$

Embedding

$$\begin{array}{ll} Y/K \triangleq \neg \ (\neg \ Y; \ K^-) & \mbox{Weakest prespecification} \\ \rho \triangleq \left(true \vdash prob(s') > 0 \right) & prob : PROB \ (\triangleq S \rightarrow [0,1]) & \mbox{Forgetful function} \\ \mathcal{K}(D) \triangleq D/\rho & D \triangleq \left(p \vdash_n R \right) & \mbox{Embeddeding} \end{array}$$

Embedding

 $\begin{array}{ll} Y/K \triangleq \neg \ (\neg \ Y; \ K^-) & \mbox{Weakest prespecification} \\ \rho \triangleq \left(true \vdash prob(s') > 0 \right) & prob : PROB \ (\triangleq S \rightarrow [0,1]) & \mbox{Forgetful function} \\ \mathcal{K}(D) \triangleq D/\rho & D \triangleq \left(p \vdash_n R \right) & \mbox{Embeddeding} \end{array}$

 $\begin{aligned} \mathcal{K}(D); \ \rho &= D & \text{Retraction} \\ D &\sqsubseteq (P; \ \rho) \Leftrightarrow (D/\rho) \sqsubseteq P \end{aligned}$

Kangfeng Ye, Simon Foster, Jim Woodcock

Relational semantics (embedding: a homomorphism)

Homomorphism on the structure of standard programs

$$\begin{split} \mathcal{K}(\bot) &= \bot & \mathcal{K}(x := e) = \left(true \vdash prob'(\mathbf{v}[e/x]) = 1 \right) \\ \mathcal{K}(\varPi) &= \left(true \vdash prob'(\mathbf{v}) = 1 \right) & \mathcal{K}(P \lhd b \rhd Q) = \mathcal{K}(P) \lhd b \rhd \mathcal{K}(Q) \\ (P \oplus_r Q) &= \dots & \mu X \bullet P(X) = \bigcap \{ X \mid X \sqsupseteq P(X) \} \\ \mathcal{K}(P \sqcap Q) &= \left(\bigcap r \in [0..1] \bullet \mathcal{K}(P) \oplus_r \mathcal{K}(Q) \right) & \left(\sqsubseteq \mathcal{K}(P) \oplus_r \mathcal{K}(Q) \right) & \text{Nondeterminism}^* \\ \mathcal{K}(P; Q) &= \mathcal{K}(P); \uparrow \mathcal{K}(Q) \end{split}$$

Relational semantics (previous [Woodcock et al.], a new contribution)

Homomorphism on the structure of standard programs

$$\begin{split} \mathcal{K}(\bot) &= \bot & \mathcal{K}(x := e) = \left(true \vdash prob'(\mathbf{v}[e/x]) = 1 \right) \\ \mathcal{K}(\varPi) &= \left(true \vdash prob'(\mathbf{v}) = 1 \right) & \mathcal{K}(P \lhd b \rhd Q) = \mathcal{K}(P) \lhd b \rhd \mathcal{K}(Q) \\ (P \oplus_r Q) &= \dots & \mu X \bullet P(X) = \bigcap \{ X \mid X \sqsupseteq P(X) \} \\ \mathcal{K}(P \sqcap Q) &= \left(\bigcap r \in [0..1] \bullet \mathcal{K}(P) \oplus_r \mathcal{K}(Q) \right) & (\sqsubseteq \mathcal{K}(P) \oplus_r \mathcal{K}(Q)) & \text{Nondeterminism}^* \\ \mathcal{K}(P; Q) &= \mathcal{K}(P); \uparrow \mathcal{K}(Q) & (P \sqsubseteq Q \Rightarrow (\uparrow P) \sqsubseteq (\uparrow Q)) & \text{Sequential composition+} \\ \end{split}$$

	Relational semantics	Mechanisation in Isabelle/UTP	Conclusion
Outline			

Motivations

Relational semantics

Mechanisation in Isabelle/UTP

Examples

Conclusion

Kangfeng Ye, Simon Foster, Jim Woodcock

Probabilistic state space and probabilistic choice

Probabilistic state space

- $prob :: [\alpha] pmf$ (Isabelle measure-based pmf).
- Probabilistic designs:

$$\mathcal{K}\left(p \vdash R(S,S)
ight) = \left(p \vdash \left(\Sigma i \in S \mid (R \textit{wp}(\mathbf{v}=i)) \bullet prob'(i)
ight) = 1
ight)$$

Probabilistic state space and probabilistic choice

Probabilistic state space

- $prob :: [\alpha] pmf$ (Isabelle measure-based pmf).
- Probabilistic designs:

 $\mathcal{K}\left(p \vdash R(S,S)\right) = \left(p \vdash \left(\Sigma i \in S \mid (R \textit{ wp } (\mathbf{v} = i)) \bullet prob'(i)\right) = 1\right)$

Probabilistic choice

- [S]pmf is convex-closed in terms of distribution combination operator $+_r$;
- $+_r$ is idempotent: $p +_r p = p$;
- \oplus_r is not idempotent: $P \oplus_r P = P$ only if prob' in P(s, prob') is convex-closed.
 - ► the distribution of a deterministic probabilistic program (singleton);
 - the distributions of embedding nondeterministic choice.

Sequential composition

Kleisli lifting

$$\uparrow (q \vdash R) \triangleq \left(\begin{array}{c} (\Sigma i \in \llbracket q \rrbracket \bullet prob\,(i) = 1) \vdash \\ (\forall ss \bullet prob'(ss) = \Sigma t \bullet prob(t) * (Q(t))(ss))) \land \\ \exists Q \bullet \left(\begin{array}{c} (\forall ss \bullet prob'(ss) = \Sigma t \bullet prob(t) * (Q(t))(ss))) \land \\ (\forall s \bullet \left(\neg (prob(\mathbf{v}') > \mathbf{0} \land \mathbf{v}' = s); \\ (\neg R; (\forall t \bullet prob(t) = (Q(s))(t))) \end{array} \right) \right) \end{array} \right)$$

Kangfeng Ye, Simon Foster, Jim Woodcock

University of Yor

Sequential composition

Kleisli lifting

$$\uparrow (q \vdash R) \triangleq \left(\begin{array}{c} (\Sigma i \in \llbracket q \rrbracket \bullet prob(i) = 1) \vdash \\ (\forall ss \bullet prob'(ss) = \Sigma t \bullet prob(t) * (Q(t))(ss))) \land \\ \exists Q \bullet \left(\begin{array}{c} (\forall ss \bullet prob'(ss) = \Sigma t \bullet prob(t) * (Q(t))(ss))) \land \\ (\forall s \bullet \left(\neg (prob(\mathbf{v}') > \mathbf{0} \land \mathbf{v}' = s); \\ (\neg R; (\forall t \bullet prob(t) = (Q(s))(t))) \end{array} \right) \right) \end{array} \right)$$

Lifting

 $\uparrow (\mathcal{K} (\boldsymbol{\varPi})) = (\boldsymbol{true} \vdash prob' = prob)$ $P \sqsubseteq Q \Rightarrow \uparrow P \sqsubseteq \uparrow Q$

Kangfeng Ye, Simon Foster, Jim Woodcock

University of York

Sequential composition

Kleisli lifting

$$\uparrow (q \vdash R) \triangleq \left(\begin{array}{c} (\Sigma i \in \llbracket q \rrbracket \bullet prob(i) = 1) \vdash \\ (\forall ss \bullet prob'(ss) = \Sigma t \bullet prob(t) * (Q(t))(ss))) \land \\ \exists Q \bullet \left(\begin{array}{c} (\forall ss \bullet prob'(ss) = \Sigma t \bullet prob(t) * (Q(t))(ss))) \land \\ (\forall s \bullet \left(\neg (prob(\mathbf{v}') > \mathbf{0} \land \mathbf{v}' = s); \\ (\neg R; (\forall t \bullet prob(t) = (Q(s))(t))) \end{array} \right) \end{array} \right) \right)$$

Sequential composition

Lifting

$$\uparrow (\mathcal{K} (\mathbf{I})) = (\textit{true} \vdash prob' = prob)$$
$$P \sqsubseteq Q \Rightarrow \uparrow P \sqsubseteq \uparrow Q$$

$$\begin{split} P & ;_p Q \triangleq P ; \uparrow Q \\ P & ;_p \mathcal{K} (\mathbf{I}) = P = \mathcal{K} (\mathbf{I}) ;_p P \\ \mathcal{K} (P; Q) & = \mathcal{K} (P) ;_p \mathcal{K} (Q) \end{split} \qquad \begin{array}{l} \text{(left/right unit)} \\ \text{Only if } S \text{ is finite} \end{array}$$

Kangfeng Ye, Simon Foster, Jim Woodcock

Automated Reasoning for Probabilistic Programs

Recursion

Theorem (Refinement introduction)

We assume

- R is a well-founded relation: $\mathbf{wf}R$;
- ► *F* is monotonic: $\forall P \ Q \bullet \llbracket P \sqsubseteq Q$; *P* is **N**; *Q* is **N** $\rrbracket \Rightarrow F(P) \sqsubseteq F(Q)$;
- *F* is a **N**-healthy function: $F \in \mathbf{N} \to \mathbf{N}$;
- ▶ Induct step: $\forall st \bullet ((p \land e = st) \vdash Q) \sqsubseteq F((p \land (e, st) \in R) \vdash Q);$

then

 $(p\vdash Q)\sqsubseteq \mu\ F$

Relational semantics	Examples	Conclusion

Outline

Motivations

Relational semantics

Mechanisation in Isabelle/UTP

Examples

Conclusion

Kangfeng Ye, Simon Foster, Jim Woodcock

Automated Reasoning for Probabilistic Programs

Probabilistic choice¹

$$P1 \triangleq (\mathcal{K} (x := 0) \oplus_{1/3} \mathcal{K} (x := 1))$$

$$P2 \triangleq (\mathcal{K} (x := x + 2) \oplus_{1/2} \mathcal{K} (x := x + 3))$$

$$P3 \triangleq (\mathcal{K} (x := x + 4) \oplus_{1/4} \mathcal{K} (x := x + 5))$$

$$P1 ;_{p} (P2 \lhd x = 0 \rhd P3) = \left(true \vdash \begin{pmatrix} prob' (\mathbf{v}[2/x]) = 1/6 \land prob' (\mathbf{v}[3/x]) = 1/6 \land prob' (\mathbf{v}[6/x]) = 1/2 \\ prob' (\mathbf{v}[5/x]) = 1/6 \land prob' (\mathbf{v}[6/x]) = 1/2 \end{pmatrix} \right)$$

¹Hehner, E.C.R.: Probabilistic predicative programming. MPC2004

Kangfeng Ye, Simon Foster, Jim Woodcock

University of York

Probabilistic choice and nondeterministic choice¹

$$P \triangleq (\mathcal{K} (x := 0) \sqcap \mathcal{K} (x := 1))$$

$$Q \triangleq (\mathcal{K} (y := 0) \oplus_{1/2} \mathcal{K} (y := 1))$$

$$P ;_{p} Q = \left(true \vdash \left((prob' (\mathbf{v}[0, 0/x, y]) = 1/2 \land prob' (\mathbf{v}[0, 1/x, y]) = 1/2) \lor \right) \right)$$

$$Q ;_{p} P = \left(true \vdash \left((prob' (\mathbf{v}[0, 0/x, y]) = 1/2 \land prob' (\mathbf{v}[0, 1/x, y]) = 1/2) \lor \right) \right)$$

¹Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. SCP 1997

Kangfeng Ye, Simon Foster, Jim Woodcock

Probabilistic choice and nondeterministic choice¹

$$\begin{split} P &\triangleq (\mathcal{K} \left(x := 0 \right) \sqcap \mathcal{K} \left(x := 1 \right)) \\ Q &\triangleq \left(\mathcal{K} \left(y := 0 \right) \oplus_{1/2} \mathcal{K} \left(y := 1 \right) \right) \\ P \,;_p Q &= \left(\textbf{true} \vdash \left(\begin{array}{c} \left(prob' \left(\mathbf{v}[0, 0/x, y] \right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y] \right) = 1/2 \right) \lor \\ \left(prob' \left(\mathbf{v}[1, 0/x, y] \right) = 1/2 \land prob' \left(\mathbf{v}[1, 1/x, y] \right) = 1/2 \right) \end{array} \right) \right) \\ Q \,;_p P &= \left(\textbf{true} \vdash \left(\begin{array}{c} \left(\textbf{t} \right) \right) \right) \right) \right) \right) \\ \textbf{true} \left(\textbf{true} \vdash \left(\begin{array}{c} \left(\textbf{t} \right) \right) \right) \right) \right) \right) \\ \textbf{true} \left(\textbf{true} \vdash \left(\begin{array}{c} \left(\textbf{true} \vdash \left(\begin{array}{c} \left(\textbf{true} \vdash \left(\begin{array}{c} \left(\textbf{t} \right) \right) \right) \right) \right) \\ \textbf{true} \left(\textbf{true} \vdash \left(\begin{array}{c} \left(\textbf{true} \vdash \left(\begin{array}{c} \left(\textbf{true} \vdash \left(\begin{array}{c} \left(\textbf{t} \right) \right) \right) \right) \\ \textbf{t} \right) \\ \textbf{true} \left(\textbf{true} \vdash \left(\begin{array}{c} \left(\textbf{true} \vdash \left(\begin{array}{c} \left(\textbf{t} \right) \right) \right) \\ \textbf{t} \right) \\ \textbf{t} \right) \\ \textbf{t} \right) \\ \textbf{t} \right) \end{array} \right) \\ \end{array} \right) \end{pmatrix}$$

¹Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. SCP 1997

Kangfeng Ye, Simon Foster, Jim Woodcock

Probabilistic choice and nondeterministic choice¹

$$\begin{split} P &\triangleq (\mathcal{K} \, (x := 0) \sqcap \mathcal{K} \, (x := 1)) \\ Q &\triangleq \left(\mathcal{K} \, (y := 0) \oplus_{1/2} \mathcal{K} \, (y := 1) \right) \\ P \, ;_p \, Q &= \left(true \vdash \left(\begin{array}{c} (prob' \left(\mathbf{v}[0, 0/x, y] \right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y] \right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[1, 0/x, y] \right) = 1/2 \land prob' \left(\mathbf{v}[1, 1/x, y] \right) = 1/2 \right) \end{matrix} \right) \right) \\ Q \, ;_p \, P &= \left(true \vdash \left(\begin{array}{c} (prob' \left(\mathbf{v}[0, 0/x, y] \right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y] \right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[0, 0/x, y] \right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y] \right) = 1/2 \right) \lor \\ \end{array} \right) \right) \end{split}$$

¹Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. SCP 1997

Kangfeng Ye, Simon Foster, Jim Woodcock

Probabilistic choice and nondeterministic choice¹

$$\begin{split} P &\triangleq (\mathcal{K} \, (x := 0) \sqcap \mathcal{K} \, (x := 1)) \\ Q &\triangleq \left(\mathcal{K} \, (y := 0) \oplus_{1/2} \mathcal{K} \, (y := 1) \right) \\ P \, ;_p \, Q &= \left(\textit{true} \vdash \left(\begin{array}{c} (prob' \left(\mathbf{v}[0, 0/x, y] \right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y] \right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[1, 0/x, y] \right) = 1/2 \land prob' \left(\mathbf{v}[1, 1/x, y] \right) = 1/2 \right) \lor \\ Q \, ;_p \, P &= \left(\textit{true} \vdash \left(\begin{array}{c} (prob' \left(\mathbf{v}[0, 0/x, y] \right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y] \right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[1, 0/x, y] \right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y] \right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[1, 0/x, y] \right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y] \right) = 1/2 \right) \lor \\ \end{array} \right) \end{split}$$

¹Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. SCP 1997

Kangfeng Ye, Simon Foster, Jim Woodcock

Probabilistic choice and nondeterministic choice¹

$$\begin{split} P &\triangleq (\mathcal{K} \, (x := 0) \sqcap \mathcal{K} \, (x := 1)) \\ Q &\triangleq \left(\mathcal{K} \, (y := 0) \oplus_{1/2} \mathcal{K} \, (y := 1)\right) \\ P \, ;_p \, Q &= \left(\textit{true} \vdash \left(\begin{array}{c} (prob' \left(\mathbf{v}[0, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y]\right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[1, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[1, 1/x, y]\right) = 1/2 \right) \lor \\ Q \, ;_p \, P &= \left(\textit{true} \vdash \left(\begin{array}{c} (prob' \left(\mathbf{v}[0, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y]\right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[1, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y]\right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[0, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[1, 1/x, y]\right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[0, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[1, 1/x, y]\right) = 1/2 \right) \lor \\ \end{pmatrix} \end{split} \right) \end{split}$$

¹Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. SCP 1997

Kangfeng Ye, Simon Foster, Jim Woodcock

Probabilistic choice and nondeterministic choice¹

$$\begin{split} P &\triangleq (\mathcal{K} \, (x := 0) \sqcap \mathcal{K} \, (x := 1)) \\ Q &\triangleq \left(\mathcal{K} \, (y := 0) \oplus_{1/2} \mathcal{K} \, (y := 1)\right) \\ P \, ;_p \, Q &= \left(\textit{true} \vdash \left(\begin{array}{c} (prob' \left(\mathbf{v}[0, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y]\right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[1, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[1, 1/x, y]\right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[0, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y]\right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[0, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y]\right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[0, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[0, 1/x, y]\right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[0, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[1, 1/x, y]\right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[1, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[1, 1/x, y]\right) = 1/2 \right) \lor \\ (prob' \left(\mathbf{v}[1, 0/x, y]\right) = 1/2 \land prob' \left(\mathbf{v}[1, 1/x, y]\right) = 1/2 \right) \end{split} \right) \end{split}$$

¹Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. SCP 1997

Example 3: the randomisation algorithm in RoboChart

Assume $N \ge 1$,

$$\left(\textit{true} \vdash \left(\left(\begin{array}{c} c \land i < (N-1) \Rightarrow \\ \begin{pmatrix} \forall j < (N-i-1) \bullet \\ prob'(\mathbf{v}[j+i, false/i, c]) = 1/(N-i) \end{pmatrix} \land \\ prob'(\mathbf{v}[N-1, true/i, c] = 1/(N-i))) \end{pmatrix} \land \right) \right) \land \\ \end{pmatrix} \right) \\ \sqsubseteq (\mu X \bullet ChooseUniformBody(N, X))$$

Choose in Theorem (refinement introduction): $e = N - i - (0 \triangleleft c \triangleright 1)$ and $R = \{(x, y) | x < y\}$

Example 3: the randomisation algorithm in RoboChart

Assume $N \ge 1$,

$$\left(\textit{true} \vdash \left(\begin{array}{c} c \land i < (N-1) \Rightarrow \\ \begin{pmatrix} \forall j < (N-i-1) \bullet \\ prob'(\mathbf{v}[j+i, false/i, c]) = 1/(N-i) \end{pmatrix} \land \\ prob'(\mathbf{v}[N-1, true/i, c] = 1/(N-i))) \end{pmatrix} \land \right) \right) \land \right) \right)$$

 $\sqsubseteq (\mu X \bullet ChooseUniformBody(N, X))$

Choose in Theorem (refinement introduction): $e = N - i - (0 \lhd c \triangleright 1)$ and $R = \{(x, y) | x < y\}$

$$\begin{pmatrix} \textit{true} \vdash \begin{pmatrix} (\forall j \bullet j < (N-1) \Rightarrow (prob'(\mathbf{v}[j, false/i, c] = 1/N))) \land \\ prob'(\mathbf{v}[(N-1), true/i, c]) = 1/N \\ \sqsubseteq ChooseUniform(N) \end{pmatrix} \end{pmatrix}$$

Relational semantics		Conclusion

Outline

Motivations

Relational semantics

Mechanisation in Isabelle/UTP

Examples

Conclusion

Kangfeng Ye, Simon Foster, Jim Woodcock

Automated Reasoning for Probabilistic Programs

	Relational semantics		Conclusion
Conclusion			

Formalisation of the proof that embedding sequential composition is a homomorphism;

	Relational semantics		Conclusion
Conclusion			

- **Formalisation** of the proof that embedding sequential composition is a homomorphism;
- Mechanisation of the relational semantics in Isabelle/UTP;

	Relational semantics		Conclusion
Conclusion			

- **Formalisation** of the proof that embedding sequential composition is a homomorphism;
- Mechanisation of the relational semantics in Isabelle/UTP;
- Mechanisation shows that
 - (1) PMFs are convex-closed;

- **Formalisation** of the proof that embedding sequential composition is a homomorphism;
- Mechanisation of the relational semantics in Isabelle/UTP;
- Mechanisation shows that
 - (1) PMFs are convex-closed;
 - (2) the probabilistic choice is not idempotent in general;

	Relational semantics		Conclusion
Conclusion			

- **Formalisation** of the proof that embedding sequential composition is a homomorphism;
- Mechanisation of the relational semantics in Isabelle/UTP;
- Mechanisation shows that
 - (1) PMFs are convex-closed;
 - (2) the probabilistic choice is not idempotent in general;
 - (3) embedding distributes through sequential composition for finite state space.

	Relational semantics		Conclusion
Conclusion			

- **Formalisation** of the proof that embedding sequential composition is a homomorphism;
- Mechanisation of the relational semantics in Isabelle/UTP;
- Mechanisation shows that
 - (1) PMFs are convex-closed;
 - (2) the probabilistic choice is not idempotent in general;
 - (3) embedding distributes through sequential composition for finite state space.
- Analysed several examples;

	Relational semantics		Conclusion
Conclusion			

- **Formalisation** of the proof that embedding sequential composition is a homomorphism;
- Mechanisation of the relational semantics in Isabelle/UTP;
- Mechanisation shows that
 - (1) PMFs are convex-closed;
 - (2) the probabilistic choice is not idempotent in general;
 - (3) embedding distributes through sequential composition for finite state space.
- Analysed several examples;
- Future work: lift probabilistic designs to deal with reactive (instead of sequential) probabilistic systems.

Thank you!

https://robostar.cs.york.ac.uk/

Kangfeng Ye, Simon Foster, Jim Woodcock

University of York