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Overview

Background
I RoboChart1: DSL for robotics (state machines: reactive+time+probability), unification of

semantics (Unifying Theories of Programming or UTP)

I Recent work2: probabilistic semantics to RoboChart (He et al.’s relational model3):
sequential+probability

Our contributions
I A formalisation of the proof that embedding sequential composition is a homomorphism,
I A mechanisation of probabilistic designs in Isabelle/UTP for automated reasoning,
I With mechanisation, more interesting details are disclosed.

1https://robostar.cs.york.ac.uk/notations/
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2Woodcock et al.: Probabilistic semantics for RoboChart - A weakest completion approach. UTP 2019
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semantics (Unifying Theories of Programming or UTP)
I Recent work2: probabilistic semantics to RoboChart (He et al.’s relational model3):

sequential+probability

Our contributions
I A formalisation of the proof that embedding sequential composition is a homomorphism,
I A mechanisation of probabilistic designs in Isabelle/UTP for automated reasoning,
I With mechanisation, more interesting details are disclosed.

I PMFs are convex-closed,
I Probabilistic choice is not idempotent in general,
I Embedding sequential composition is a homomorphism only for finite state space.
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A RoboChart algorithm

Goal: a randomisation algorithm (the same probability 1/N to choose i from [0,N − 1] )

Kangfeng Ye, Simon Foster, Jim Woodcock University of York
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A RoboChart algorithm

Question: does this model correctly implement the randomisation algorithm for any N ?

Analysis by PRISM on a Linux server:
I N = 100: model construction (4s) + checking (0.002s);
I N = 10, 000: 8s + 0.004s;
I N = 100, 000: 830s + 0.011s;
I N = 1, 000, 000: not finished after several hours;
I N = 1, ............: ?
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Question: does this model correctly implement the randomisation algorithm for any N ?

Analysis by PRISM on a Linux server:
I N = 100: model construction (4s) + checking (0.002s);
I N = 10, 000: 8s + 0.004s;
I N = 100, 000: 830s + 0.011s;
I N = 1, 000, 000: not finished after several hours;
I N = 1, ............: ?

Our solution: theorem proving
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Nondeterministic probabilistic sequential programming language

pGCL1

P ::= ⊥ | II | x := e | P C b B Q | P uQ | P ⊕r Q | P ; Q | µX • P(X)

1McIver,A.,Morgan,C.: Introduction to pGCL: Its logic and its model. Springer (January 2005)
Kangfeng Ye, Simon Foster, Jim Woodcock University of York
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Nondeterministic probabilistic sequential programming language

pGCL1

P ::= ⊥ | II | x := e | P C b B Q | P uQ | P ⊕r Q | P ; Q | µX • P(X)

Randomisation algorithm in pGCL

ChooseUniform(N ) ,

i := 0 ; c := true ;

µX •
( (

(c := false)⊕1/(N−i) (i := i + 1)
)

; X
C (i < (N − 1) ∧ c) B II

)

1McIver,A.,Morgan,C.: Introduction to pGCL: Its logic and its model. Springer (January 2005)
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Relational semantics [He et al.] of sequential probabilistic programs

Embedding

Y /K , ¬ (¬ Y ; K−) Weakest prespecification

ρ ,
(
true ` prob(s′) > 0

)

prob : PROB (, S → [0, 1])

Forgetful function

K(D) , D/ρ D , (p `n R) Embeddeding

Kangfeng Ye, Simon Foster, Jim Woodcock University of York
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Relational semantics of sequential probabilistic programs

Embedding

Y /K , ¬ (¬ Y ; K−) Weakest prespecification

ρ ,
(
true ` prob(s′) > 0

)
prob : PROB (, S → [0, 1]) Forgetful function

K(D) , D/ρ D , (p `n R) Embeddeding

S

S

PROB

D

P

retract

embed Standard

Probabilistic

K(D); ρ = D Retraction

D v (P; ρ)⇔ (D/ρ) v P
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Relational semantics (embedding: a homomorphism)

Homomorphism on the structure of standard programs

K(⊥) = ⊥ K(x := e) =
(
true ` prob′(v[e/x]) = 1

)
K(II) =

(
true ` prob′(v) = 1

)
K(P C b B Q) = K(P) C b BK(Q)

(P ⊕r Q) = . . . µX • P(X) =
l
{X | X w P(X)}

K(P u Q) = (
l

r ∈ [0..1] • K(P)⊕r K(Q)) (v K(P)⊕r K(Q)) Nondeterminism*

K(P; Q) = K(P); ↑ K(Q)

(P v Q ⇒ (↑ P) v (↑ Q))

Kangfeng Ye, Simon Foster, Jim Woodcock University of York
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Relational semantics (previous [Woodcock et al.], a new contribution)

Homomorphism on the structure of standard programs

K(⊥) = ⊥ K(x := e) =
(
true ` prob′(v[e/x]) = 1

)
K(II) =

(
true ` prob′(v) = 1

)
K(P C b B Q) = K(P) C b BK(Q)

(P ⊕r Q) = . . . µX • P(X) =
l
{X | X w P(X)}

K(P u Q) = (
l

r ∈ [0..1] • K(P)⊕r K(Q)) (v K(P)⊕r K(Q)) Nondeterminism*

K(P; Q) = K(P); ↑ K(Q) (P v Q ⇒ (↑ P) v (↑ Q)) Sequential composition+
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Probabilistic state space and probabilistic choice

Probabilistic state space

I prob :: [α]pmf (Isabelle measure-based pmf ).
I Probabilistic designs:

K (p ` R(S ,S)) =
(
p `

(
Σi ∈ S | (R wp (v = i)) • prob′(i)

)
= 1
)

Probabilistic choice

I [S ]pmf is convex-closed in terms of distribution combination operator +r ;
I +r is idempotent: p +r p = p;
I ⊕r is not idempotent: P ⊕r P = P only if prob′ in P(s, prob′) is convex-closed.

I the distribution of a deterministic probabilistic program (singleton);
I the distributions of embedding nondeterministic choice.

Kangfeng Ye, Simon Foster, Jim Woodcock University of York
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Sequential composition

Kleisli lifting

↑ (q ` R) ,


(Σi ∈ [[q]] • prob (i) = 1) `

∃Q •

 (∀ ss • prob′(ss) = Σt • prob(t) ∗ (Q(t))(ss))) ∧(
∀ s •

(
¬ (prob(v′) > 0 ∧ v′ = s) ;
(¬ R ; (∀ t • prob(t) = (Q(s))(t)))

)) 


Lifting

↑ (K (II)) =
(
true ` prob′ = prob

)
P v Q ⇒↑ P v↑ Q

Sequential composition

P ;p Q , P ; ↑ Q
P ;pK (II) = P = K (II) ;p P (left/right unit)

K(P; Q) = K(P) ;pK(Q) Only if S is finite

Kangfeng Ye, Simon Foster, Jim Woodcock University of York
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Recursion

Theorem (Refinement introduction)
We assume

I R is a well-founded relation: wfR;
I F is monotonic: ∀P Q • JP v Q; P is N; Q is NK⇒ F(P) v F(Q);
I F is a N-healthy function: F ∈ N→ N;
I Induct step: ∀ st • ((p ∧ e = st) ` Q) v F ((p ∧ (e, st) ∈ R) ` Q);

then

(p ` Q) v µ F

Kangfeng Ye, Simon Foster, Jim Woodcock University of York
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Example 1

Probabilistic choice1

P1 ,
(
K (x := 0)⊕1/3 K (x := 1)

)
P2 ,

(
K (x := x + 2)⊕1/2 K (x := x + 3)

)
P3 ,

(
K (x := x + 4)⊕1/4 K (x := x + 5)

)
P1 ;p (P2 C x = 0 B P3) =

(
true `

(
prob′ (v[2/x]) = 1/6 ∧ prob′ (v[3/x]) = 1/6 ∧
prob′ (v[5/x]) = 1/6 ∧ prob′ (v[6/x]) = 1/2

))

1Hehner, E.C.R.: Probabilistic predicative programming. MPC2004
Kangfeng Ye, Simon Foster, Jim Woodcock University of York

Automated Reasoning for Probabilistic Programs 13 / 18
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Example 2

Probabilistic choice and nondeterministic choice1

P , (K (x := 0) u K (x := 1))

Q ,
(
K (y := 0)⊕1/2 K (y := 1)

)
P ;p Q =

(
true `

(
(prob′ (v[0, 0/x, y]) = 1/2 ∧ prob′ (v[0, 1/x, y]) = 1/2) ∨

(prob′ (v[1, 0/x, y]) = 1/2 ∧ prob′ (v[1, 1/x, y]) = 1/2)

))

Q ;p P =

true `



(prob′ (v[0, 0/x, y]) = 1/2 ∧ prob′ (v[0, 1/x, y]) = 1/2) ∨
(prob′ (v[1, 0/x, y]) = 1/2 ∧ prob′ (v[0, 1/x, y]) = 1/2) ∨
(prob′ (v[0, 0/x, y]) = 1/2 ∧ prob′ (v[1, 1/x, y]) = 1/2) ∨
(prob′ (v[1, 0/x, y]) = 1/2 ∧ prob′ (v[1, 1/x, y]) = 1/2)




1Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. SCP 1997
Kangfeng Ye, Simon Foster, Jim Woodcock University of York

Automated Reasoning for Probabilistic Programs 14 / 18
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Example 3: the randomisation algorithm in RoboChart

Assume N ≥ 1,true `




c ∧ i < (N − 1)⇒ (
∀ j < (N − i − 1) •

prob′ (v[j + i, false/i, c]) = 1/(N − i)

)
∧

prob′ (v[N − 1, true/i, c] = 1/(N − i)))


 ∧

(¬ (c ∧ i < (N − 1))⇒ prob′(v) = 1)
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Conclusion

I Formalisation of the proof that embedding sequential composition is a homomorphism;

I Mechanisation of the relational semantics in Isabelle/UTP;
I Mechanisation shows that

(1) PMFs are convex-closed;
(2) the probabilistic choice is not idempotent in general;
(3) embedding distributes through sequential composition for finite state space.

I Analysed several examples;
I Future work: lift probabilistic designs to deal with reactive (instead of sequential)

probabilistic systems.
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Thank you!
https://robostar.cs.york.ac.uk/
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