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Why probability in robotics?

Uncertainties in autonomous robots:
▶ Unpredictable environment,
▶ Sensor: limits and noise,
▶ Actuator: control noise, mechanical failure,
▶ Model (abstraction of real world) error, and
▶ Control algorithmic approximations.

Probabilism: widely used in society and science to model uncertainty
“A theory that certainty is impossible especially in the sciences and that probability suffices
to govern belief and action.” — (Merriam-Webster dictionary)
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Probabilistic models (PMs)

Ubiquitous: distributed systems, machine learning, artificial intelligence, robotics and
autonomous systems, quantum computation etc.
Major impact on machine intelligence

Example (Intelligence)
Intersection without a signal, an autonomous vehicle slows down and coordinates its actions
with others by gathering their probabilistic information.
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Motivation: why semantics for PMs or probabilistic programs (PPs)?

1 Challenges to analyse PMs, subject to the size and complexity

2 Errors are easily introduced in the development stage from PMs to PPs

3 PPs are very difficult to be tested thoroughly
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Motivation: why semantics for PMs or probabilistic programs (PPs)?

3 PPs are very difficult to be tested thoroughly

For non-probabilistic programs,
“Program testing can be used to show the presence of bugs, . . . ”

— Edsger W. Dijkstra

For probabilistic programs,
“regular testing can’t even establish that presence”

— Annabelle McIver and Carroll Morgan
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Motivation: why semantics for PMs or probabilistic programs (PPs)?

3 PPs are very difficult to be tested thoroughly

Challenges to debug a probabilistic program (locate and correct errors in the source code),

Example (Quantitative errors)
Quantitative information are the result of statistical analysis of many executions
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Motivation: why semantics for PMs or probabilistic programs (PPs)?

1 Challenges to analyse PMs, subject to the size and complexity

2 Errors are easily introduced in the development stage from PMs to PPs

3 PPs are very difficult to be tested thoroughly

Needs: unambiguous and rigorous mathematical semantics, and analysed on a computer
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Motivation: Probabilistic semantics for RoboChart

RoboChart: reactive systems, CSP (nondeterminism, communication, and concurrency) with
discrete-time (tock-CSP) semantics.
RoboSim: refinement of RoboChart to simulation level
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Motivation: Probabilistic semantics for RoboChart

RoboChart: reactive systems, CSP (nondeterminism, communication, and concurrency) with
discrete-time (tock-CSP) semantics.
RoboSim: refinement of RoboChart to simulation level
What we want: Probabilistic semantics for RoboChart with all features + theorem proving
What we have now: Probabilistic semantics in
▶ Probabilistic designs [WCF+19, YFW21]: nondeterministic probabilistic sequential

programming, finite states
▶ PRISM [YCF+22]: DTMC and MDP

time in Markov chains are different from that in RoboChart;
DTMC and MDP in PRISM: closed-world (no subject to inputs)
No concept of refinement and equivalence
State space explosion problem
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Motivation: Probabilistic semantics for RoboChart

RoboChart: reactive systems, CSP (nondeterminism, communication, and concurrency) with
discrete-time (tock-CSP) semantics.
RoboSim: refinement of RoboChart to simulation level
What we want: Probabilistic semantics for RoboChart with all features + theorem proving

Our first thought
What on literatures: probabilistic process algebras
▶ Probabilistic extensions: PTS, CCS, CSP, ACP
▶ Markov models: concurrent, interactive, Markovian process algebra (PEPA)
▶ Probabilistic I/O automata, Probabilistic and time extension of automata

No practical tool support or not support theorem proving
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Our pathways to the goal

Our goal
Probabilistic semantics for RoboChart supporting discrete time + nondeterminism +
refinement + communication + concurrency + theorem proving

Pathways: a probabilistic programming language (PPL)
▶ A sequential PPL supporting discrete distributions with theorem proving

Discrete time
+ Nondeterminism
+ Refinement
+ Continuous distributions

▶ A concurrent PPL with communication
▶ . . .
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Our contributions

▶ An imperative sequential PPL supporting discrete distributions
▶ A probabilistic semantic framework: probabilistic relations
▶ Model both epistemic (subjective Bayesian) and aleatoric uncertainties

Epistemic the lack of knowledge of information and reducible
Aleatoric the natural randomness of physical processes and irreducible

▶ Support theorem proving with a set of algebraic laws for simplification and verification
▶ Six verified probabilistic examples

Kangfeng Ye, Jim Woodcock, Simon Foster
Uncertainty modelling and verification with probabilistic relation 10 / 59



Background and motivations Hardness and our approach Basic definitions Syntax and semantics Examples Conclusion

Outline

Background and motivations

Complexity of probabilistic reasoning and our approach

Basic definitions: ureal, Iverson brackets, and distributions

Probabilistic Relations: syntax and semantics

Examples

Conclusion
Kangfeng Ye, Jim Woodcock, Simon Foster
Uncertainty modelling and verification with probabilistic relation 11 / 59



Background and motivations Hardness and our approach Basic definitions Syntax and semantics Examples Conclusion

Complexity for analysis

Flip a coin - How important it is? How difficult to reason about?

A fair die (Knuth and Yao1), any discrete distribution (McIver and Morgan2)

Example (Flip a coin till heads)

while (outcome is tails) { outcome = flip a coin }

▶ What’s its semantics?
▶ What’s the probabilistic distribution?
▶ Does this loop terminate?
▶ On average, how many flips are needed?

1Knuth, D., Yao, A.: The complexity of nonuniform random number generation.
2McIver, A., Morgan, C. (2020): Correctness by Construction for Probabilistic Programs.
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Example (Flip a coin till heads)

while (outcome is tails) { outcome = flip a coin }

▶ What’s its semantics? the outcome is heads
▶ What’s the probabilistic distribution? the outcome is heads in terms of iterations: (1/2)n

▶ Does this loop terminate?
∑∞

n=0(1/2)
n = 1, Almost-sure termination (AST)

▶ On average, how many flips are needed?
∑∞

n=0(1/2)
n ∗ n = 2, Positive AST

1Knuth, D., Yao, A.: The complexity of nonuniform random number generation.
2McIver, A., Morgan, C. (2020): Correctness by Construction for Probabilistic Programs.
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Complexity for analysis

(Symmetric) simple random walker

Start from the origin x = 0, will the robot always return to it (recurrent) infinitely often?
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Complexity for analysis

(Symmetric) simple random walker

Start from any position x , will the robot terminate at 0?
On average, how many steps?
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(Symmetric) simple random walker

Start from any position x , will the robot terminate at 0?
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x=0 x=1 x=2 x=3 x=4 x=5 x=6x=4x=0 . . .. . .
p

1 − p

p

1 − p

p

1 − p

p

1 − p

p

1 − p

1 − p

.

Kangfeng Ye, Jim Woodcock, Simon Foster
Uncertainty modelling and verification with probabilistic relation 13 / 59



Background and motivations Hardness and our approach Basic definitions Syntax and semantics Examples Conclusion

Complexity for analysis

(Symmetric) simple random walker

Start from any position x , will the robot terminate at 0?
On average, how many steps?
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The fair-in-the-limit random walk from McIver et al. [MMKK17]
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Complexity for analysis

Probabilistic models - hardness on termination analysis

Termination of non-probabilistic programs
▶ Absolute termination vs. non-termination (divergence)

Termination of probabilistic programs
▶ Almost-sure termination (AST) vs. non AST
▶ Positive AST vs. null AST
▶ Termination becomes an arithmetic problem
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Complexity for analysis

Probabilistic models - hardness on termination analysis

Arithmetic (coin flip)
▶ Summation of sequences, (geometric) series:

∑∞
n=0(1/2)

n ∗ n = 2

▶ Convergence: ratio test f (n) =̂ (1/2)n ∗ n
▶ Solve an equation

∞∑
n=0

f (n + 1) =

∞∑
n=0

f (n) + f (0) =

∞∑
n=0

f (n)

∞∑
n=0

f (n + 1) =

∞∑
n=0

(1/2)(n+1) ∗ n +

∞∑
n=0

(1/2)(n+1) =

( ∞∑
n=0

f (n)

)
/2 + 1
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Our approach: probabilistic relations

Probabilistic relations

UTP Relations

Probability

prob : S → [0, 1]

Probabilistic designs
(S → [0, 1]) × (S → [0, 1]) → B

Probability

Relations

Hehner’s PPP1

Probability

UTP Relations

Our Probabilistic Relations
S × S → R

1Eric Hehner, Probabilistic predicative programming (PPP), MPC 2004.
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Our approach: probabilistic relations

Probabilistic relations

▶ Formalise Hehner’s syntax and semantics
▶ Iverson bracket notation [[P ]]

Separate UTP relations and distributions to simplify reasoning
▶ Bridge semantic gap for loops in Hehner’s work

Enrich semantics domain to superdistributions and subdistributions
Unit interval and its pointwise function as complete lattices

▶ Mechanised in Isabelle/UTP: 60 definitions + 390 lemmas and theorems
▶ Six examples: 65 definitions + 170 lemmas and theorems

Kangfeng Ye, Jim Woodcock, Simon Foster
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Unit real interval

Unit real interval: ureal

ureal and conversion

ureal =̂ {0 . . 1}
u =̂ (u :: R)
r =̂ min (max (0, r) , 1)
u1 + u2 =̂ (min (1, u1 + u2))

u1 − u2 =̂ (max (0, u1 − u2))

u1 ∗ u2 =̂ (u1 ∗ u2)

Theorem: ureal

u1 < u2 ⇒ u1 < u2

(u) = u

(r ≥ 0 ∧ r ≤ 1) ⇒ (r) = r

Complete lattice

(ureal,≤, <, 0, 1,min,max,
d
,
⊔
)

Kangfeng Ye, Jim Woodcock, Simon Foster
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Unit real interval

Unit real interval: ureal functions

Function type

[S ]urexpr =̂ S → ureal

constants

0̇ =̂ λ s • 0 1̇ =̂ λ s • 1

0̊ =̂ λ s • 0 1̊ =̂ λ s • 1

Pointwise functions

f − g =̂ (λ x • f (x )− g(x ))

f + g =̂ (λ x • f (x ) + g(x ))

f ≤ g =̂ (∀ x • f (x ) ≤ g(x ))

f < g =̂ (∀ x • f (x ) < g(x ))

Complete lattice(
[S ]urexpr,≤, <, 0̊, 1̊,⊓,⊔,

d
,
⊔)
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Unit real interval

Unit real interval: complete lattice
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⟨ 37 , 1⟩
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Iverson brackets

Iverson brackets

Iverson bracket

[[P ]] : [S ]pred → (S → R)
[[P ]] =̂ (if P then 1 else 0)e

Kangfeng Ye, Jim Woodcock, Simon Foster
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Iverson brackets

Iverson brackets

Theorems

[[false]] = 0̇ [[true]] = 1̇ Q ⊑ P ⇒ [[P ]] ≤ [[Q ]] [[¬ P ]] = (1− [[P ]])e
[[P ∧ Q ]] = ([[P ]] ∗ [[Q ]])e [[P ∨ Q ]] = ([[P ]] + [[Q ]]− [[P ]] ∗ [[Q ]])e
[[λ s • s ∈ A ∩ B ]] = ([[λ s • s ∈ A]] ∗ [[λ s • s ∈ B ]])e
([[λ s • s ∈ A]] + [[λ s • s ∈ B ]])e = ([[λ s • s ∈ A ∩ B ]] + [[λ s • s ∈ A ∪ B ]])e
(max (x , y))e = (x ∗ [[x > y ]] + y ∗ [[x ≤ y ]])e (min (x , y))e = · · ·∑
P(k)

f (k) =
∑
k

(f ∗ [[P ]])e (k)

Kangfeng Ye, Jim Woodcock, Simon Foster
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Iverson brackets

Type Abbreviation and conversions

Types

[V ,S ]expr =̂ S → V

[S ]rexpr =̂ [R,S ]expr
[S1,S2]rvfun =̂ [R,S1 × S2]expr

[S ]rvhfun =̂ [S ,S ]rvfun
[S ]urexpr =̂ [ureal,S ]expr

[S1,S2]prfun =̂ [ureal,S1 × S2]urexpr
[S ]prhfun =̂ [S ,S ]prfun

Conversion

P : [S1,S2]prfun
f : [S1,S2]rvfun
P =̂ rvfun of prfun(P)

f =̂ prfun of rvfun(f )

Kangfeng Ye, Jim Woodcock, Simon Foster
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Distributions

Distribution functions

Probability and distribution functions

p =̂ ∀ s • (p)e (s) is prob(p) =̂ p ≥ 0 ∧ p ≤ 1

is dist(p) =̂ is prob(p) ∧ Σ∞s • p(s) = 1

is subdist(p) =̂ is prob(p) ∧ Σ∞s • p(s) > 0 ∧ Σ∞s • p(s) ≤ 1

Theorems

is prob([[p]]) is dist(p) ⇒ is subdist(p) is prob
(
P
)

is prob
(
1̇− P

)
(
P
)
= P if P : [S1,S2]prfun is prob(p) ⇒

(
p
)
= p

(
[[p]]
)
= [[p]]

Kangfeng Ye, Jim Woodcock, Simon Foster
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Distributions

Distribution functions

Probability and distribution functions over final states

p̃ =̂ λ s s ′ • p(s, s ′) is final prob(p) =̂ is prob(p̃)

is final dist(p) =̂ is dist(p̃) is final subdist(p) =̂ is subdist(p̃)

summable on final(p) =̂ (∀ s • summable (p̃(s),U))
summable on final2(p, q) =̂

(
∀ s • summable

(
λ s ′ • p(s, s ′) ∗ q(s, s ′),U

))
final reachable(p) =̂

(
∀ s • ∃ s ′ • p(s, s ′) > 0

)
final reachable2(p, q) =̂

(
∀ s • ∃ s ′ • p(s, s ′) > 0 ∧ q(s, s ′) > 0

)

Kangfeng Ye, Jim Woodcock, Simon Foster
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Distributions

Distribution functions

Final distributions and subdistributions

is final dist(p) ⇒
(

is prob(p) ∧ (∀ s • Σ∞s ′ • p(s, s ′) = 1) ∧
summable on final(p) ∧ final reachable(p)

)

is final subdist(p) ⇒

 is prob(p) ∧ (∀ s • Σ∞s ′ • p(s, s ′) > 0) ∧
(∀ s • Σ∞s ′ • p(s, s ′) ≤ 1)
summable on final(p) ∧ final reachable(p)
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Normalisation

Normalisation

Normalisation

N (p) =̂ (p/ (Σ∞s : S • p(s)))e
Nf (p) =̂

(
p/
(
Σ∞v0 : S2 • p[v0/v

′]
))

e

Nα(x , p) =̂
(
p/
(
Σ∞x0 : Tx • p[x0/x

′]
))

e
Alphabetised

U (x ,A) =̂ Nα

(
x ,
[[⊔

v ∈ A • x := v
]])

Uniform distributions

Normalisation is final distribution

is nonneg(p) ∧ final reachable(p) ∧ summable on final(p) ⇒ is final dist (Nf (p))

Kangfeng Ye, Jim Woodcock, Simon Foster
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Syntax and semantics

IIp =̂ [[II]] (skip)
(x :=p e) =̂ [[x := e]] (assignment)
(P ⊕r Q) =̂

(
r ∗ P +

(
1̇− r

)
∗Q

)
e

(probabilistic choice)

(if c b then P else Q) =̂
(
if b then P else Q

)
e

(conditional choice)

P ;Q =̂
(
Σ∞v0 • P [v0/v

′] ∗Q [v0/v]
)
e

(sequential composition)

R ∥T =̂ Nf (R ∗ T )e (parallel composition)

Fb
P (X ) =̂ F (b,P ,X ) =̂ if c b then (P ;X ) else IIp (loop characterisation function)

whilep b do P od =̂ µp X • Fb
P (X ) (while loop by least fixed point)

while⊤p b doP od =̂ νp X • Fb
P (X ) (while loop by strongest fixed point)

Kangfeng Ye, Jim Woodcock, Simon Foster
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Subjective Bayesian

Sequential composition: conditional probability (for actions)
Parallel composition: joint probability (for new knowledge)

posterior = prior ∗ likelihood
evidence or P(A | B) =

P(A)P(B | A)
P(B)

Programs

(prior ; action) ∥ (likelihood)

Kangfeng Ye, Jim Woodcock, Simon Foster
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Top, bottom, skip, and assignment

Top and bottom

⊤ = 1̊ ⊥ = 0̊ 1̇ = 1̊

0̇ = 0̊ 1̊ = 1̇ 0̊ = 0̇

P ≤ 1̊ P ≥ 0̊ P ∗ 1̊ = P

p ∗ 0̇ = 0̇ p ∗ 1̇ = p P ∗ 0̊ = 0̊

Skip and assignment

IIp = (x :=p x )

is final dist (IIp)(
[[II]]

)
= [[II]]

is final dist (x :=p e)

Kangfeng Ye, Jim Woodcock, Simon Foster
Uncertainty modelling and verification with probabilistic relation 29 / 59



Background and motivations Hardness and our approach Basic definitions Syntax and semantics Examples Conclusion

Probabilistic choice

Probabilistic choice

is final dist
(
P
)
∧ is final dist

(
Q
)
⇒ is final dist

(
P ⊕r Q

)
(
P ⊕0̊ Q

)
= Q

(
P ⊕1̊ Q

)
= P

(P ⊕r Q) =
(
Q ⊕1̊−r P

)
(P ⊕r Q) = r ∗ P +

(
1̇− r

)
∗Q

r⇑ =̂ λ(s, s ′) • r(s)( (̊
1− w1

)
∗
(̊
1− w2

)
=
(̊
1− r2

)
∧ w1 = r1 ∗ r2

)
⇒
(
P ⊕

w⇑
1

(
Q ⊕

w⇑
2
R
))

=
((

P ⊕
r⇑1

Q
)
⊕

r⇑2
R
)
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Conditional choice

Conditional choice

is final dist
(
P
)
∧ is final dist

(
Q
)
⇒ is final dist

(
if c b then P else Q

)
(if c b then P else P) = P

(if c b then P else Q) =
(
P ⊕[[b]] Q

)
(P1 ≤ P2 ∧ Q1 ≤ Q2) ⇒ (if c b then P1 else Q1) ≤ (if c b then P2 else Q2)

Kangfeng Ye, Jim Woodcock, Simon Foster
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Sequential composition

Sequential composition

is final dist
(
P
)
∧ is final dist

(
Q
)
⇒ is final dist

(
P ;Q

)
0̊ ; P = 0̊ P ; 0̊ = 0̊ IIp ; P = P P ; IIp = P

is final dist(P) ⇒ P ; 1̊ = 1̊ (P1 ≤ P2 ∧ Q1 ≤ Q2) ⇒ (P1 ;Q1) ≤ (P2 ;Q2)

is final subdist
(
P
)
∧ · · ·

(
Q
)
∧ · · ·

(
R
)
⇒ (P ;(Q ; R) = (P ;Q) ; R)

is final subdist
(
P
)
⇒(

P ; (if c b then Q else R) =
(
(P ; ([[b]] ∗Q)) + (P ; ([[¬ b]] ∗ R))

)
e

)
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Sequential composition

Sequential composition

[[p]] ; [[q ]] =
(
Σ∞v0 • [[p[v0/v

′] ∧ q [v0/v]]]
)
e

c1 ̸= c2 ⇒ [[x ′ = c1]] ; [[x = c2]] = 0̊

[[x = c0 ∧ x := c1]] ; [[x = c1]] = [[x = c0]]

[[x = c0 ∧ x := c1]] ; [[x = c1 ∧ x := c2]] = [[x = c0 ∧ x ′ = c2]]
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Uniform distribution

Uniform distribution

U (x ,∅) = 0̇

finite(A) ⇒ is prob (U (x ,A))

finite(A) ∧ A ̸= ∅ ⇒ is final dist (U (x ,A))

finite(A) ∧ A ̸= ∅ ⇒ (∀ v ∈ A • U (x ,A) ;[[x = v ]] = (1/ card(A))e)

finite(A) ∧ A ̸= ∅ ⇒
(
U (x ,A) =

[[⋃
v ∈ A • x := v

]]
/ card(A)

)
finite(A) ∧ A ̸= ∅ ⇒

(
U (x ,A) ; P =

(
Σ∞v ∈ A • P [v/x ]

)
/ card(A)

)
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Parallel composition

Parallel composition

is nonneg(p ∗ q) ⇒ is prob (Nf (p ∗ q)e) is final prob(p) ∧ is final prob(q) ∧
(summable on final(p) ∨ summable on final(q))
∧ final reachable2(p, q)

⇒ is final dist (p ∥ q)

(
is nonneg(p) ∧ is nonneg(q) ∧ ¬ final reachable2(p, q)

)
⇒ p ∥ q = 0̊

0̇ ∥ p = 0̊ p ∥ 0̇ = 0̊ p ∥ q = q ∥ p
c ̸= 0 ∧ is final dist(p) ⇒ (λ s • c) ∥ p = p

c ̸= 0 ∧ is final dist(p) ⇒ p ∥(λ s • c) = p
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Parallel composition

Parallel composition is nonneg(p) ∧ is nonneg(q) ∧ is nonneg(r) ∧
summable on final2(p, q) ∧ summable on final2(q , r) ∧
final reachable2(p, q) ∧ final reachable2(q , r)


⇒ (p ∥ q) ∥ r = p ∥ (q ∥ r)

summable on final(Q) ⇒
(
P ∥Q

)
∥R = P ∥

(
Q ∥R

)
finite(A) ∧ A ̸= ∅ ⇒

U (x ,A) ∥ p =
((
Σ∞v ∈ A • [[x := v ]] ∗ p[v/x ′]

)
/
(
Σ∞v ∈ A • p[v/x ′]

))
e

Kangfeng Ye, Jim Woodcock, Simon Foster
Uncertainty modelling and verification with probabilistic relation 35 / 59



Background and motivations Hardness and our approach Basic definitions Syntax and semantics Examples Conclusion

Probabilistic loops

Semantic gap for loops in Hehner’s PPP

Semantic gap for loops
1. PPP: semantics for basic constructs like sequential composition, probabilistic and

conditional choice
2. ???
3. ???
4. ???
5. PPP: find a fixed point
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Probabilistic loops

Semantic gap for loops in Hehner’s PPP

Our approach
1. PPP: semantics for basic constructs like sequential composition, probabilistic and

conditional choice
2. Scott-Continuity
3. Kleene fixed point theorem
4. Unique fixed point theorem
5. PPP: find a fixed point
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Probabilistic loops

Semantic gap for loops in Hehner’s PPP

Our approach
1. PPP: semantics for basic constructs like sequential composition, probabilistic and

conditional choice
2. Scott-Continuity
3. Kleene fixed point theorem
4. Unique fixed point theorem
5. PPP: find a fixed point

Only for probabilistic programs P whose possible final states are always finite
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Probabilistic loops

Semantics of loops

Knaster–Tarski fixed-point theorem

▶ Provided (X ,≤) is a complete lattice and F : X → X is monotonic,
▶ then the set of fixed points of F also forms a complete lattice.
▶ The LFP is the infimum of the pre-fixed points, and the GFP is the supremum of the

post-fixed points.
µF =̂

l
{u : X | F (u) ≤ u}

νF =̂
⊔

{u : X | u ≤ F (u)}

Kangfeng Ye, Jim Woodcock, Simon Foster
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Probabilistic loops

While loops

While loops

is final dist
(
P
)
⇒ whilep b do P od = Fb

P (whilep b do P od)
whilep false do P od = IIp

whilep true do P od = 0̊

is final dist
(
P
)
⇒ while⊤p b doP od = Fb

P

(
while⊤p b doP od

)
while⊤p false doP od = IIp

is final dist
(
P
)
⇒ while⊤p true doP od = 1̊

Kangfeng Ye, Jim Woodcock, Simon Foster
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Probabilistic loops

Continuity and Kleene fixed-point theorem

Scott continuity

▶ Suppose (X ,≤) and (X ′,≤′) are complete lattices,
▶ A function F : X → X ′ is Scott-continuous or continuous if, for every non-empty

chain S ⊆ X ,
F (
⊔

X S ) =
⊔

X’ F (S )

▶ F (S ) =̂ {d ∈ S • F (d)}: the relational image of S under F or the range of F
domain restricted to S .

Kangfeng Ye, Jim Woodcock, Simon Foster
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Probabilistic loops

Continuity and Kleene fixed-point theorem

Kleene fixed-point theorem

▶ Provided (X ,≤) is a complete lattice, and F : X → X is continuous,
▶ then F has a least fixed point µF and a greatest fixed point νF ,

µF =
⊔

n ≥ 0 F
n(⊥)

νF =
l

n ≥ 0 F
n(⊤)

▶ Here we use
⊔

n ≥ 0 F
n(⊥) to denote

⊔
{n : N • F n(⊥)}

Kangfeng Ye, Jim Woodcock, Simon Foster
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Probabilistic loops

Continuity and Kleene fixed-point theorem: loop iterations

Loop iteration and iteration difference

I (n, b,P ,X ) =̂
(
if n = 0 then X else Fb

P (I (n − 1, b,P ,X ))
)

F0(b,P ,X ) =̂ if c b then (P ;X ) else 0̊

ID (n, b,P ,X ) =̂ (if n = 0 then X else F0 (b,P , ID (n − 1, b,P ,X )))

Increasing and decreasing chains

is final dist
(
P
)
⇒ incseq

(
λn • I

(
n, b,P , 0̊

))
is final dist

(
P
)
⇒ decseq

(
λn • I

(
n, b,P , 1̊

))
Kangfeng Ye, Jim Woodcock, Simon Foster
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Probabilistic loops

Continuity of loop iteration functions

Finite possible final states

finite final(P) =̂ ∀ s • finite
{
s ′ : S | P(s, s ′) > 0

}
Continuity of loop iteration functions(

is final dist
(
P
)
∧ finite final(P)

)
⇒
(

Fb
P

(⊔
n • I

(
n, b,P , 0̊

))
=
(⊔

n • I
(
n, b,P , 0̊

))
Fb
P

(d
n • I

(
n, b,P , 1̊

))
=
(d

n • I
(
n, b,P , 1̊

)) )
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Probabilistic loops

Kleene fixed-point theorem of probabilistic loops

Semantics of probabilistic loops by iterations(
is final dist

(
P
)
∧ finite final(P)

)
⇒
(

whilep b do P od =
(⊔

n • I
(
n, b,P , 0̊

))
while⊤p b doP od =

(d
n • I

(
n, b,P , 1̊

)) )
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Probabilistic loops

Unique fixed-point theorem: motivation example

Flip a fair coin till heads

Tcoin ::= hd | tl
alphabet cstate = c :: Tcoin

cflip =̂ c :=p hd ⊕1/2 c :=p tl

flip =̂ whilep c = tl do cflip od
Fc =̂ Fc=tl

cflip (X )

0 2 4 6 8 10 12

0.00

0.50

1.00

1.50

2.00

Fc (̊0)

Fc (̊1)
2 2 1 1

2
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Probabilistic loops

Unique fixed-point theorem

Unique fixed-point theorem
is final dist

(
P
)
∧

finite final(P) ∧(
∀ s •

(
λn • ID

(
n, b,P , 1̊

)
(s)
)

n→∞−−−→ 0
)
∧

Fb
P (fp) = fp


⇒ (whilep b do P od = fp) ∧

(
while⊤p b doP od = fp

)
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Probabilistic loops

Unique fixed-point theorem

Unique fixed-point theorem
is final dist

(
P
)
∧

finite final(P) ∧(
∀ s •

(
λn • ID

(
n, b,P , 1̊

)
(s)
)

n→∞−−−→ 0
)
∧

Fb
P (fp) = fp


⇒ (whilep b do P od = fp) ∧

(
while⊤p b doP od = fp

)
Finding the semantics of a probabilistic loop is merely to prove the four assumptions:

▶ Hehner: the first and fourth assumptions
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Probabilistic loops

Semantic gap for loops in Hehner’s PPP is filled

Semantic gap for loops: our approach
1. PPP: semantics for basic constructs like sequential composition, probabilistic and

conditional choice
2. Scott-Continuity
3. Kleene fixed point theorem
4. Unique fixed point theorem
5. PPP: find a fixed point

Only for probabilistic programs P whose possible final states are always finite
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Outline

Background and motivations

Complexity of probabilistic reasoning and our approach

Basic definitions: ureal, Iverson brackets, and distributions

Probabilistic Relations: syntax and semantics

Examples

Conclusion
Kangfeng Ye, Jim Woodcock, Simon Foster
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DWTA

Doctor Who’s Tardis Attack

Two robots, the Cyberman C and the Dalek D, attack Doctor Who’s Tardis once a day
between them.
C has a probability of 1/2 of a successful attack, while D has a probability of 3/10 of a
successful attack.
C attacks more often than D, with a probability of 3/5 on a particular day (and so D
attacks with a probability of 2/5 on that day).
What is the probability that there is a successful attack today?

Kangfeng Ye, Jim Woodcock, Simon Foster
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DWTA

Doctor Who’s Tardis Attack

DWTA

Attacker ::= C | D Status ::= S | F
alphabet dwtastate = a :: Attacker s :: Status

dwta =̂

(
(a :=p C ) ;

(
s :=p S ⊕1/2 s :=p F

))
⊕3/5(

(a :=p D) ;
(
s :=p S ⊕3/10 s :=p F

))
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Uncertainty modelling and verification with probabilistic relation 48 / 59



Background and motivations Hardness and our approach Basic definitions Syntax and semantics Examples Conclusion

DWTA

Doctor Who’s Tardis Attack

DWTA

dwta =


3/10 ∗ [[a ′ = C ∧ s ′ = S ]]+
3/10 ∗ [[a ′ = C ∧ s ′ = F ]]+
6/50 ∗ [[a ′ = D ∧ s ′ = S ]]+
14/50 ∗ [[a ′ = D ∧ s ′ = F ]]


e

dwta ; [[s = S ]] = (21/50)e

Kangfeng Ye, Jim Woodcock, Simon Foster
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Monty hall problem

Monty hall problem

From wikipedia:

A game, three doors, one car and two goats, the host knows which door has the car, the
contestant is offered to choose a door (let’s say door 1), then the host opens door 3, the

contestant has an opportunity to change the door. Should the contestant switch to door 2?
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Monty hall problem

Monty hall problem

Modelling

alphabet mhstate = p :: N c :: N m :: N
init =̂ U (p, {0 . . 2}) ; U (c, {0 . . 2})

mc =̂
(
(m :=p (c + 1)mod 3)⊕1/2 (m :=p (c + 2)mod 3)

)
mha =̂

(
if cc = p then mc else m := 3− c − p

)
mha nc =̂ init ;mha ; IIp

mha c =̂ init ;mha ; c := 3− c −m

Kangfeng Ye, Jim Woodcock, Simon Foster
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Monty hall problem

Monty hall problem

Win probability

mha nc ; [[c = p]] = (1/3)e

mha c ; [[c = p]] = (2/3)e

So the contestant should switch because of the higher probability (2/3 vs. 1/3) to win.

Kangfeng Ye, Jim Woodcock, Simon Foster
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Forgetful Monty problem

Forgetful Monty problem

Suppose now that Monty forgets which door has the prize behind it. He just opens either
of the doors not chosen by the contestant.
If the prize is revealed (m ′ = p ′), then obviously the contestant switches their choice to
that door. So the contestant will surely win.
However, if the prize is not revealed (m ′ ̸= p′), should the contestant switch?

New fact learned

Kangfeng Ye, Jim Woodcock, Simon Foster
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Forgetful Monty problem

Forgetful Monty problem

Modelling

alphabet mhstate = p :: N c :: N m :: N
init =̂ U (p, {0 . . 2}) ; U (c, {0 . . 2})

mc =̂
(
(m :=p (c + 1)mod 3)⊕1/2 (m :=p (c + 2)mod 3)

)
forgetful monty =̂ init ;mc

learn fact =̂ forgetful monty ∥ [[m ′ ̸= p ′]]

Kangfeng Ye, Jim Woodcock, Simon Foster
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Forgetful Monty problem

Forgetful Monty problem

Win probability

learn fact =

(
[[p ′ ∈ {0 . . 2}]] ∗ [[c′ ∈ {0 . . 2}]] ∗ [[m ′ ̸= p′]]∗
([[m ′ = (c′ + 1)%3]] + [[m ′ = (c′ + 2)%3]]) /12

)
e

learn fact ; [[c = p]] = (1/2)e

So it doesn’t matter whether the contestant switches or not.
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Robot localisation

Robot localisation

A circular room has two doors and a wall. A robot is equipped with a noisy door sensor
which maps position to door or wall .
Doors are at position 0 and 2, and position 1 is a blank wall.
ine a predicate door(p) =̂ p = 0 ∨ p = 2 and introduce a program variable bel ∈ {0 . . 2}
to denote the position of the robot that we believe.
When the reading of the door sensor is door , it has four times more likely to be right
than wrong.
We are interested in questions like how many measurements and moves are necessary to
get a confident estimation of the robot’s location?
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Robot localisation

Robot localisation

Modelling

alphabet state = bel :: N
door(p) =̂ p = 0 ∨ p = 2

scale door =̂
(
3 ∗ [[door(bel ′)]] + 1

)
e

scale wall =̂
(
3 ∗ [[¬ door(bel ′)]] + 1

)
e

init =̂ U (bel , {0 . . 2})
move right =̂ (bel := (bel + 1)mod 3)

Kangfeng Ye, Jim Woodcock, Simon Foster
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Robot localisation

Robot localisation

Belief

init

=

 1/3 ∗ [[bel ′ = 0]]+
1/3 ∗ [[bel ′ = 1]]+
1/3 ∗ [[bel ′ = 2]]
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Robot localisation

Robot localisation

Belief

init ∥ scale door

=

 4/9 ∗ [[bel ′ = 0]]+
1/9 ∗ [[bel ′ = 1]]+
4/9 ∗ [[bel ′ = 2]]
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Robot localisation

Robot localisation

Belief

(init ∥ scale door) ;move right

=

 4/9 ∗ [[bel ′ = 0]]+
4/9 ∗ [[bel ′ = 1]]+
1/9 ∗ [[bel ′ = 2]]
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Robot localisation

Robot localisation

Belief

init ∥ scale door

;move right

∥ scale door

=

 2/3 ∗ [[bel ′ = 0]]+
1/6 ∗ [[bel ′ = 1]]+
1/6 ∗ [[bel ′ = 2]]
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Robot localisation

Robot localisation

Belief

init ∥ scale door

;move right

∥ scale door

;move right

=

 1/6 ∗ [[bel ′ = 0]]+
2/3 ∗ [[bel ′ = 1]]+
1/6 ∗ [[bel ′ = 2]]
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Robot localisation

Robot localisation

Belief

init ∥ scale door

;move right

∥ scale door

;move right

∥ scale wall

=

 1/18 ∗ [[bel ′ = 0]]+
8/9 ∗ [[bel ′ = 1]]+
1/18 ∗ [[bel ′ = 2]]
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COVID diagnosis

COVID diagnosis

Consider people use a COVID test to diagnose if they may or may not have contracted
COVID. The test result is binary and could be positive or negative. The test, however,
is imperfect. It doesn’t not always give a correct result. We are interested in several
questions.
How likely a randomly selected person has covid if the first test result is positive?
Is it necessary to have the second test to reassure the result?
How much can the second test contribute to the diagnosis?

Kangfeng Ye, Jim Woodcock, Simon Foster
Uncertainty modelling and verification with probabilistic relation 52 / 59



Background and motivations Hardness and our approach Basic definitions Syntax and semantics Examples Conclusion

COVID diagnosis

COVID diagnosis

Modelling

CovidTest ::= Pos | Neg alphabet cdstate = c :: bool ct :: CovidTest

Init =̂ ifp p1 then c := True else c := False

TestAction =̂ if c c then (ct :=p Pos ⊕p2
ct :=p Neg) else (ct :=p Pos ⊕p3

ct :=p Neg)

FirstTestPos =̂ (Init ; TestAction) ∥[[ct ′ = Pos]]

SecondTestPos =̂ (FirstTestPos ; TestAction) ∥[[ct ′ = Pos]]

The prior probability of a randomly selected patient having COVID is p1.
The sensitivity (true positive) of the test is p2, and

The specificity (true negative) is 1− p3.
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COVID diagnosis

COVID diagnosis

Results

FirstTestPos =

 (
[[c′]] ∗ [[ct ′ = Pos]] ∗ p1 ∗ p2+
[[¬ c′]] ∗ [[ct ′ = Pos]] ∗ (1− p1) ∗ p3

)
/ (p1 ∗ p2 + (1− p1) ∗ p3)


e

SecondTestPos =

 (
[[c′]] ∗ [[ct ′ = Pos]] ∗ p1 ∗ p22+
[[¬ c′]] ∗ [[ct ′ = Pos]] ∗ (1− p1) ∗ p23

)
/
(
p1 ∗ p22 + (1− p1) ∗ p23

)


e

Provided p1 = 0.002, p2 = 0.89, and p3 = 0.05, the probability of the patient having COVID is
3.4% (given one positive test) and
38.84% (given two positive tests).
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Flip a coin till heads

Flip a coin till heads - Parametric model and verification

Modelling - parametric

Tcoin ::= hd | tl
alphabet cstate = c :: Tcoin

cflip =̂ c :=p hd ⊕1/2 c :=p tl

flip =̂ whilep c = tl do cflip od
pflip(p) =̂ whilep c = tl do c :=p hd ⊕p c :=p tl od
alphabet cstate t = t :: N c :: Tcoin

pflip t(p) =̂ whilep c = tl do
(
c :=p hd ⊕p c :=p tl

)
; t :=p t + 1 od
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Flip a coin till heads

Flip a coin till heads - Parametric model and verification

Semantics

flip = [[c′ = hd ]] p ̸= 0 ⇒ pflip(p) = [[c′ = hd ]]

p ̸= 0 ⇒ pflip t(p) =

(
[[c = hd ]] ∗ [[c′ = hd ]] ∗ [[t ′ = t ]]+

[[c = tl ]] ∗ [[c′ = hd ]] ∗ [[t ′ ≥ t + 1]] ∗ (1− p)t
′−t−1 ∗ p

)
e

Termination and expected run time

p ̸= 0 ⇒ pflip t(p) ; [[c = hd ]] = (1)e

p ̸= 0 ⇒ flip t p(p) ; t = ([[c = hd ]] ∗ t + [[c = tl ]] ∗ (t + 1/p))e

Kangfeng Ye, Jim Woodcock, Simon Foster
Uncertainty modelling and verification with probabilistic relation 53 / 59



Background and motivations Hardness and our approach Basic definitions Syntax and semantics Examples Conclusion

Throw a pair of dice

Throw a pair of dice

Modelling

Tdice ::= {1..6}
alphabet dstate t = t :: N d1 :: Tdice d2 :: Tdice

dice t =̂ whilep d1 ̸= d2 do U (d1,Tdice) ; U (d2,Tdice) ; t :=p t + 1 od
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Throw a pair of dice

Throw a pair of dice

Semantics, termination, and expected run time

dice t =

(
[[d1 = d2]] ∗ [[t ′ = t ∧ d ′

1 = d1 ∧ d ′
2 = d2]]+

[[d1 ̸= d2]] ∗ [[d ′
1 = d ′

2]] ∗ [[t ′ ≥ t + 1]] ∗ (5/6)t ′−t−1 ∗ (1/36)

)
e

dice t ; [[d1 = d2]] = (1)e

dice t ; t = ([[d1 = d2]] ∗ t + [[d1 ̸= d2]] ∗ (t + 6))e
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Outline

Background and motivations

Complexity of probabilistic reasoning and our approach

Basic definitions: ureal, Iverson brackets, and distributions

Probabilistic Relations: syntax and semantics

Examples

Conclusion
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Conclusion

▶ Probabilistic relations (PR): A PPL and also a probabilistic semantics framework
▶ Syntax and semantics of PR
▶ A collection of algebraic laws for each construct of PR
▶ Particularly, semantics for probabilistic loops using iterations
▶ Probabilistic examples: two contain loops
▶ Mechanisation of the PPL, theorems, and examples in Isabelle/UTP
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Future work

▶ Discrete time
Time primitives of RoboChart: clock, reset, since, deadline, wait etc.
Semantics to (PRISM) DTMCs, equivalence to simplify models (tractable for model checking)
• Make time in DTMCs explicitly
• Combine more commands into fewer (i.e. simultaneous assignments)

▶ Nondeterminism
▶ Refinement and abstraction
▶ Probabilistic programs that have infinite possible final states in the loop body
▶ Continuous distributions: measure theory
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Future work

▶ Discrete time
▶ Nondeterminism

Parametrised models
• P ⊓ Q =⇒ (PQ(b) =̂ if c b then P else Q): boolean parameter
• whilep b do P ⊓ Q od =⇒ (PQWhile(bf : N → B) =̂ whilep b do PQ(bf (t)) od)
• Functions (bf whose domain is the iteration index) as parameters

Schedule or policy becomes the full or partial instantiation of models by their parameters
The complexity of nondeterministic models is the same as the deterministic models
Semantics to (PRISM) MDPs, equivalence and parametric (tractable for model checking)

▶ Refinement and abstraction
▶ Probabilistic programs that have infinite possible final states in the loop body
▶ Continuous distributions: measure theory
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Future work

▶ Discrete time
▶ Nondeterminism
▶ Refinement and abstraction

1. From nondeterministic models to deterministic models,
2. Superdistributions to distributions,
3. Discrete distributions into uniform distributions such as random number generators
4. Data refinement: abstract types (such as int) into concrete types (int32, int64 etc.)
Correctness-by-Construction
Abstraction to simplify PRISM DTMCs and MDPs

▶ Probabilistic programs that have infinite possible final states in the loop body
▶ Continuous distributions: measure theory
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Future work

▶ Discrete time
▶ Nondeterminism
▶ Refinement and abstraction
▶ Probabilistic programs that have infinite possible final states in the loop body

Cousot’s constructive version of the Knaster–Tarski fixed-point theorem1

Weaken continuity into monotonicity
Treat the least fixed point as the stationary limit of transfinite iteration sequences

▶ Continuous distributions: measure theory

1P. Cousot, R. Cousot, Constructive versions of Tarski’s fixed point theorems, Pacific Journal of Mathematics 81 (1) (1979) 43–57.
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Future work

▶ Discrete time
▶ Nondeterminism
▶ Refinement and abstraction
▶ Probabilistic programs that have infinite possible final states in the loop body
▶ Continuous distributions: measure theory
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An potential application

PRISM MDPs PR
Unification:  semantics of MDPs in PR

Model-based transformation

Abstract PR

Abstraction &
Equivalence

Abstract MDPs
Model-based transformation

Unification:  semantics of MDPs in PR

Abstraction
Possibly property oriented simplification

(abstraction and equivalence)

Theorem proving
2

Theorem proving
3

Model checking
4

RoboChart 
Model

Model-based transformation

Model checking
1
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Thank you!
https://robostar.cs.york.ac.uk/
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