Probabilistic relations for modelling epistemic and aleatoric uncertainty

 Its semantics and automated reasoning with theorem provingKangfeng Ye, Jim Woodcock, Simon Foster

```
ROBOSTAR
robostar.cs.york.ac.uk
June 28, 2023
```

Engineering and Physical Sciences Research Council

```

\section*{Outline}

\section*{Background and motivations}

Complexity of probabilistic reasoning and our approach

Basic definitions: ureal, Iverson brackets, and distributions

Probabilistic Relations: syntax and semantics

Examples

Conclusion

\section*{Outline}

\section*{Background and motivations}

\section*{Complexity of probabilistic reasoning and our approach}

Basic definitions: ureal, Iverson brackets, and distributions

\section*{Probabilistic Relations: syntax and semantics}

\section*{Examples}

Conclusion
ROBOSTAR

\section*{Why probability in robotics?}

Uncertainties in autonomous robots:
- Unpredictable environment,
- Sensor: limits and noise,
- Actuator: control noise, mechanical failure,
- Model (abstraction of real world) error, and
- Control algorithmic approximations.

Probabilism: widely used in society and science to model uncertainty
"A theory that certainty is impossible especially in the sciences and that probability suffices to govern belief and action."
- (Merriam-Webster dictionary)

\section*{Probabilistic models (PMs)}

Ubiquitous: distributed systems, machine learning, artificial intelligence, robotics and autonomous systems, quantum computation etc.

Major impact on machine intelligence

\section*{Probabilistic models (PMs)}

Ubiquitous: distributed systems, machine learning, artificial intelligence, robotics and autonomous systems, quantum computation etc.

Major impact on machine intelligence

\section*{Example (Intelligence)}

Intersection without a signal, an autonomous vehicle slows down and coordinates its actions with others by gathering their probabilistic information.

\title{
Motivation: why semantics for PMs or probabilistic programs (PPs)?
}
(1) Challenges to analyse PMs, subject to the size and complexity
(2) Errors are easily introduced in the development stage from PMs to PPs
(3) PPs are very difficult to be tested thoroughly

\title{
Motivation: why semantics for PMs or probabilistic programs (PPs)?
}
(3) PPs are very difficult to be tested thoroughly

For non-probabilistic programs,
"Program testing can be used to show the presence of bugs, ..."
- Edsger W. Dijkstra

\section*{Motivation: why semantics for PMs or probabilistic programs (PPs)?}
(3) PPs are very difficult to be tested thoroughly

For non-probabilistic programs,
"Program testing can be used to show the presence of bugs, ..."
- Edsger W. Dijkstra

For probabilistic programs,
"regular testing can't even establish that presence"

\section*{Motivation: why semantics for PMs or probabilistic programs (PPs)?}
(3) PPs are very difficult to be tested thoroughly

Challenges to debug a probabilistic program (locate and correct errors in the source code),
Example (Quantitative errors)
Quantitative information are the result of statistical analysis of many executions

\section*{Motivation: why semantics for PMs or probabilistic programs (PPs)?}
(1) Challenges to analyse PMs, subject to the size and complexity
(2) Errors are easily introduced in the development stage from PMs to PPs
(3) PPs are very difficult to be tested thoroughly

Needs: unambiguous and rigorous mathematical semantics, and analysed on a computer

\section*{Motivation: Probabilistic semantics for RoboChart}

RoboChart: reactive systems, CSP (nondeterminism, communication, and concurrency) with discrete-time (tock-CSP) semantics.
RoboSim: refinement of RoboChart to simulation level

\section*{Motivation: Probabilistic semantics for RoboChart}

RoboChart: reactive systems, CSP (nondeterminism, communication, and concurrency) with discrete-time (tock-CSP) semantics.
RoboSim: refinement of RoboChart to simulation level
What we want: Probabilistic semantics for RoboChart with all features + theorem proving

\section*{Motivation: Probabilistic semantics for RoboChart}

RoboChart: reactive systems, CSP (nondeterminism, communication, and concurrency) with discrete-time (tock-CSP) semantics.
RoboSim: refinement of RoboChart to simulation level
What we want: Probabilistic semantics for RoboChart with all features + theorem proving What we have now: Probabilistic semantics in
- Probabilistic designs [WCF \({ }^{+}\)19, YFW21]: nondeterministic probabilistic sequential programming, finite states

\section*{Motivation: Probabilistic semantics for RoboChart}

RoboChart: reactive systems, CSP (nondeterminism, communication, and concurrency) with discrete-time (tock-CSP) semantics.
RoboSim: refinement of RoboChart to simulation level
What we want: Probabilistic semantics for RoboChart with all features + theorem proving What we have now: Probabilistic semantics in
- Probabilistic designs [WCF \({ }^{+}\)19, YFW21]: nondeterministic probabilistic sequential programming, finite states
- PRISM [YCF \({ }^{+}\)22]: DTMC and MDP
- time in Markov chains are different from that in RoboChart;
- DTMC and MDP in PRISM: closed-world (no subject to inputs)
- No concept of refinement and equivalence

■ State space explosion problem

\section*{Motivation: Probabilistic semantics for RoboChart}

RoboChart: reactive systems, CSP (nondeterminism, communication, and concurrency) with discrete-time (tock-CSP) semantics.
RoboSim: refinement of RoboChart to simulation level
What we want: Probabilistic semantics for RoboChart with all features + theorem proving
Our first thought
What on literatures: probabilistic process algebras
- Probabilistic extensions: PTS, CCS, CSP, ACP
- Markov models: concurrent, interactive, Markovian process algebra (PEPA)
- Probabilistic I/O automata, Probabilistic and time extension of automata

No practical tool support or not support theorem proving

\section*{Our pathways to the goal}

Our goal
Probabilistic semantics for RoboChart supporting discrete time + nondeterminism + refinement + communication + concurrency + theorem proving

Pathways: a probabilistic programming language (PPL)
- A sequential PPL supporting discrete distributions with theorem proving
- Discrete time
- + Nondeterminism
- + Refinement

■ + Continuous distributions
- A concurrent PPL with communication

\section*{Our contributions}
- An imperative sequential PPL supporting discrete distributions
- A probabilistic semantic framework: probabilistic relations
- Model both epistemic (subjective Bayesian) and aleatoric uncertainties

Epistemic the lack of knowledge of information and reducible
Aleatoric the natural randomness of physical processes and irreducible
- Support theorem proving with a set of algebraic laws for simplification and verification
- Six verified probabilistic examples

\section*{Outline}

\section*{Background and motivations}

Complexity of probabilistic reasoning and our approach

\author{
Basic definitions: ureal, Iverson brackets, and distributions
}

\section*{Probabilistic Relations: syntax and semantics}

\section*{Examples}

\section*{Flip a coin - How important it is? How difficult to reason about?}

A fair die (Knuth and \(Y a o^{1}\) ), any discrete distribution (Mclver and Morgan \({ }^{2}\) ) Example (Flip a coin till heads)
while (outcome is tails) \(\{\) outcome \(=\) flip a coin \(\}\)
- What's its semantics?
- What's the probabilistic distribution?
- Does this loop terminate?
- On average, how many flips are needed?

\footnotetext{
\({ }^{1}\) Knuth, D., Yao, A.: The complexity of nonuniform random number generation.
\({ }^{2}\) Mclver, A., Morgan, C. (2020): Correctness by Construction for Probabilistic Programs.
}

\section*{Flip a coin - How important it is? How difficult to reason about?}

A fair die (Knuth and \(Y a o^{1}\) ), any discrete distribution (Mclver and Morgan \({ }^{2}\) ) Example (Flip a coin till heads)
while (outcome is tails) \(\{\) outcome \(=\) flip a coin \(\}\)
- What's its semantics? the outcome is heads
- What's the probabilistic distribution?
- Does this loop terminate?
- On average, how many flips are needed?

\footnotetext{
\({ }^{1}\) Knuth, D., Yao, A.: The complexity of nonuniform random number generation.
\({ }^{2}\) Mclver, A., Morgan, C. (2020): Correctness by Construction for Probabilistic Programs.
}

\section*{Flip a coin - How important it is? How difficult to reason about?}

A fair die (Knuth and \(Y a o^{1}\) ), any discrete distribution (Mclver and Morgan \({ }^{2}\) ) Example (Flip a coin till heads)
while (outcome is tails) \(\{\) outcome \(=\) flip a coin \(\}\)
- What's its semantics? the outcome is heads
- What's the probabilistic distribution? the outcome is heads in terms of iterations: \((1 / 2)^{n}\)
- Does this loop terminate?
- On average, how many flips are needed?

\footnotetext{
\({ }^{1}\) Knuth, D., Yao, A.: The complexity of nonuniform random number generation.
\({ }^{2}\) Mclver, A., Morgan, C. (2020): Correctness by Construction for Probabilistic Programs.
}

\section*{Flip a coin - How important it is? How difficult to reason about?}

A fair die (Knuth and \(Y a o^{1}\) ), any discrete distribution (Mclver and Morgan \({ }^{2}\) ) Example (Flip a coin till heads)
while (outcome is tails) \(\{\) outcome \(=\) flip a coin \(\}\)
- What's its semantics? the outcome is heads
- What's the probabilistic distribution? the outcome is heads in terms of iterations: \((1 / 2)^{n}\)
- Does this loop terminate? \(\sum_{n=0}^{\infty}(1 / 2)^{n}=1\), Almost-sure termination (AST)
- On average, how many flips are needed?

\footnotetext{
\({ }^{1}\) Knuth, D., Yao, A.: The complexity of nonuniform random number generation.
\({ }^{2}\) Mclver, A., Morgan, C. (2020): Correctness by Construction for Probabilistic Programs.
}

\section*{Flip a coin - How important it is? How difficult to reason about?}

A fair die (Knuth and \(Y a o^{1}\) ), any discrete distribution (Mclver and Morgan \({ }^{2}\) ) Example (Flip a coin till heads)
while (outcome is tails) \(\{\) outcome \(=\) flip a coin \(\}\)
- What's its semantics? the outcome is heads
- What's the probabilistic distribution? the outcome is heads in terms of iterations: \((1 / 2)^{n}\)
- Does this loop terminate? \(\sum_{n=0}^{\infty}(1 / 2)^{n}=1\), Almost-sure termination (AST)
- On average, how many flips are needed? \(\sum_{n=0}^{\infty}(1 / 2)^{n} * n=2\), Positive AST

\footnotetext{
\({ }^{1}\) Knuth, D., Yao, A.: The complexity of nonuniform random number generation.
\({ }^{2}\) Mclver, A., Morgan, C. (2020): Correctness by Construction for Probabilistic Programs.
}

\section*{(Symmetric) simple random walker}

Start from the origin \(x=0\), will the robot always return to it (recurrent) infinitely often?


\section*{(Symmetric) simple random walker}

Start from any position \(x\), will the robot terminate at 0 ?
On average, how many steps?


\section*{(Symmetric) simple random walker}

Start from any position \(x\), will the robot terminate at 0 ? On average, how many steps?


\section*{(Symmetric) simple random walker}

Start from any position \(x\), will the robot terminate at 0 ? On average, how many steps?


The fair-in-the-limit random walk from Mclver et al. [MMKK17]

\section*{Probabilistic models - hardness on termination analysis}

Termination of non-probabilistic programs
- Absolute termination vs. non-termination (divergence)

Termination of probabilistic programs
- Almost-sure termination (AST) vs. non AST
- Positive AST vs. null AST
- Termination becomes an arithmetic problem

\section*{Probabilistic models - hardness on termination analysis}

\section*{Arithmetic (coin flip)}
- Summation of sequences, (geometric) series: \(\sum_{n=0}^{\infty}(1 / 2)^{n} * n=2\)
- Convergence: ratio test \(f(n) \widehat{=}(1 / 2)^{n} * n\)
- Solve an equation
\[
\begin{aligned}
& \sum_{n=0}^{\infty} f(n+1)=\sum_{n=0}^{\infty} f(n)+f(0)=\sum_{n=0}^{\infty} f(n) \\
& \sum_{n=0}^{\infty} f(n+1)=\sum_{n=0}^{\infty}(1 / 2)^{(n+1)} * n+\sum_{n=0}^{\infty}(1 / 2)^{(n+1)}=\left(\sum_{n=0}^{\infty} f(n)\right) / 2+1
\end{aligned}
\]

\section*{Probabilistic relations}


Probabilistic designs
\[
(S \rightarrow[0,1]) \times(S \rightarrow[0,1]) \rightarrow \mathbb{B}
\]


Hehner's PPP \({ }^{1}\)


Our Probabilistic Relations \(S \times S \rightarrow \mathbb{R}\)

\footnotetext{
\({ }^{1}\) Eric Hehner, Probabilistic predicative programming (PPP), MPC 2004.
}

\section*{Probabilistic relations}
- Formalise Hehner's syntax and semantics
- Iverson bracket notation \(\llbracket P \rrbracket\)
- Separate UTP relations and distributions to simplify reasoning
- Bridge semantic gap for loops in Hehner's work
- Enrich semantics domain to superdistributions and subdistributions
- Unit interval and its pointwise function as complete lattices
- Mechanised in Isabelle/UTP: 60 definitions +390 lemmas and theorems
- Six examples: 65 definitions +170 lemmas and theorems

\section*{Outline}

\section*{Background and motivations}

\section*{Complexity of probabilistic reasoning and our approach}

Basic definitions: ureal, Iverson brackets, and distributions

\section*{Probabilistic Relations: syntax and semantics}

\section*{Examples}

\section*{Unit real interval: ureal}
\[
\begin{aligned}
& \text { ureal and conversion } \\
& \text { ureal } \widehat{=}\{0 \ldots 1\} \\
& \bar{u} \widehat{=}(u:: \mathbb{R}) \\
& \underline{r} \widehat{=} \min (\max (0, r), 1) \\
& u_{1}+u_{2} \widehat{=}\left(\min \left(1, \overline{u_{1}}+\overline{u_{2}}\right)\right) \\
& u_{1}-u_{2} \widehat{=} \underline{\left(\max \left(0, \overline{u_{1}}-\overline{u_{2}}\right)\right)} \\
& u_{1} * u_{2} \widehat{=} \underline{\left(\overline{u_{1}} * \overline{u_{2}}\right)}
\end{aligned}
\]

\section*{Theorem: ureal}
\[
\begin{aligned}
& u_{1}<u_{2} \Rightarrow \overline{u_{1}}<\overline{u_{2}} \\
& \overline{(\bar{u})}=u \\
& (r \geq 0 \wedge r \leq 1) \Rightarrow \overline{(\underline{r})}=r
\end{aligned}
\]

\section*{Complete lattice}
(ureal, \(\leq,<, 0,1, \min , \max , \sqcap, \sqcup)\)

\section*{Unit real interval: ureal functions}


\section*{Pointwise functions}
\[
\begin{aligned}
& f-g \widehat{=}(\lambda x \bullet f(x)-g(x)) \\
& f+g \widehat{=}(\lambda x \bullet f(x)+g(x)) \\
& f \leq g \widehat{=}(\forall x \bullet f(x) \leq g(x)) \\
& f<g \widehat{=}(\forall x \bullet f(x)<g(x))
\end{aligned}
\]

\section*{Complete lattice}
([S]urexpr, \(\leq,<, 0,1 ̊, \sqcap, \sqcup, \sqcap, \sqcup)\)

\section*{Unit real interval: complete lattice}
\(1(\top)\)
\(\frac{3}{4}\)
\(\frac{1}{2}\)
\(\mid\)
\(\frac{1}{4}\)
\(O(\perp)\)


\section*{Iverson brackets}
\[
\begin{gathered}
\text { Iverson bracket } \\
\llbracket P \rrbracket:[S] \text { pred } \rightarrow(S \rightarrow \mathbb{R}) \\
\llbracket P \rrbracket=(\text { if } P \text { then } 1 \text { else } 0)_{e}
\end{gathered}
\]

\section*{Iverson brackets}

\section*{Theorems}
\[
\left.\begin{array}{lll}
\llbracket \text { false } \rrbracket=\dot{0} & \llbracket \text { true }=\dot{1} & Q \sqsubseteq P \Rightarrow \llbracket P \rrbracket \leq \llbracket Q \rrbracket
\end{array} \quad \llbracket \neg P \rrbracket=(1-\llbracket P \rrbracket)_{e}\right)
\]
\(\llbracket \lambda s \bullet s \in A \cap B \rrbracket=(\llbracket \lambda s \bullet s \in A \rrbracket * \llbracket \lambda s \bullet s \in B \rrbracket)_{e}\)
\((\llbracket \lambda s \bullet s \in A \rrbracket+\llbracket \lambda s \bullet s \in B \rrbracket)_{e}=(\llbracket \lambda s \bullet s \in A \cap B \rrbracket+\llbracket \lambda s \bullet s \in A \cup B \rrbracket)_{e}\)
\((\max (x, y))_{e}=(x * \llbracket x>y \rrbracket+y * \llbracket x \leq y \rrbracket)_{e} \quad(\min (x, y))_{e}=\cdots\)
\(\sum_{P(k)} f(k)=\sum_{k}(f * \llbracket P \rrbracket)_{e}(k)\)

\section*{Type Abbreviation and conversions}
\begin{tabular}{rl} 
& Types \\
{\([V, S]\) expr } & \(\widehat{=} S \rightarrow V\) \\
{\([S]\) rexpr } & \(\widehat{=}[\mathbb{R}, S]\) expr \\
{\(\left[S_{1}, S_{2}\right]\) rvfun } & \(\widehat{=}\left[\mathbb{R}, S_{1} \times S_{2}\right]\) expr \\
{\([S]\) rvhfun } & \(\widehat{=}[S, S]\) rvfun \\
{\([S]\) urexpr } & \(\widehat{=}[\) ureal, \(S]\) expr \\
{\(\left[S_{1}, S_{2}\right]\) prfun } & \(\widehat{=}\left[\right.\) ureal, \(\left.S_{1} \times S_{2}\right]\) urexpr \\
{\([S]\) prhfun } & \(\widehat{=}[S, S]\) prfun
\end{tabular}

\section*{Conversion}
\(P:\left[S_{1}, S_{2}\right]\) prfun
\(f:\left[S_{1}, S_{2}\right] r v f u n\)
\(\bar{P} \widehat{=}\) rvfun_of_prfun \((P)\)
\(\underline{f} \widehat{=}\) prfun_of_rvfun \((f)\)

\section*{Distribution functions}

\section*{Probability and distribution functions}
\[
\begin{aligned}
& \underset{\cup}{p} \widehat{=} \forall \bullet(p)_{e}(s) \quad \text { is_prob }(p) \widehat{=} p \geq 0 \wedge p \leq 1 \\
& \text { is_dist }(p) \widehat{=} \text { is_prob }(p) \wedge \Sigma_{\infty} s \bullet p(s)=1 \\
& \text { is_subdist }(p) \widehat{=} \text { is_prob }(p) \wedge \Sigma_{\infty} s \bullet p(s)>0 \wedge \Sigma_{\infty} s \bullet p(s) \leq 1
\end{aligned}
\]

\section*{Theorems}
\[
\text { is_prob }(\llbracket p \rrbracket) \quad \text { is_dist }(p) \Rightarrow \text { is_subdist }(p) \quad \text { is_prob }(\bar{P}) \quad \text { is_prob }(\mathrm{i}-\bar{P})
\]
\[
\underline{(\bar{P})}=P \quad \text { if } P:\left[S_{1}, S_{2}\right] p r f u n \quad \text { is_prob }(p) \Rightarrow \overline{(\underline{p})}=p \quad \overline{(\llbracket p \rrbracket)}=\llbracket p \rrbracket
\]

\section*{Distribution functions}

\section*{Probability and distribution functions over final states}
\[
\begin{aligned}
& \tilde{p} \widehat{=} \lambda s s^{\prime} \bullet p\left(s, s^{\prime}\right) \quad \text { is_final_prob }(p) \widehat{=} \text { is_prob }(\tilde{p}) \\
& \text { is_final_dist }(p) \widehat{=} \text { is_dist }(\tilde{p}) \quad \text { is_final_subdist }(p) \widehat{=} \text { is_subdist }(\tilde{p}) \\
& \text { summable_on_final }(p) \widehat{=}(\forall s \bullet \text { summable }(\tilde{p}(s), \mathbb{U})) \\
& \text { summable_on_final } 2(p, q) \widehat{=}\left(\forall s \bullet \operatorname{summable}\left(\lambda s^{\prime} \bullet p\left(s, s^{\prime}\right) * q\left(s, s^{\prime}\right), \mathbb{U}\right)\right) \\
& \text { final_reachable }(p) \widehat{=}\left(\forall s \bullet \exists s^{\prime} \bullet p\left(s, s^{\prime}\right)>0\right) \\
& \text { final_reachable2 }(p, q) \widehat{=}\left(\forall s \bullet \exists s^{\prime} \bullet p\left(s, s^{\prime}\right)>0 \wedge q\left(s, s^{\prime}\right)>0\right)
\end{aligned}
\]

\section*{Distribution functions}

\section*{Final distributions and subdistributions}
\[
\begin{aligned}
& \text { is_final_dist }(p) \Rightarrow\binom{i s \_p r o b(p) \wedge\left(\forall s \bullet \Sigma_{\infty} s^{\prime} \bullet p\left(s, s^{\prime}\right)=1\right) \wedge}{\text { summable_on_final }(p) \wedge \text { final_reachable }(p)} \\
& \text { is_final_subdist }(p) \Rightarrow\left(\begin{array}{l}
i s \_p r o b(p) \wedge\left(\forall s \bullet \Sigma_{\infty} s^{\prime} \bullet p\left(s, s^{\prime}\right)>0\right) \wedge \\
\left(\forall s \bullet \Sigma_{\infty} s^{\prime} \bullet p\left(s, s^{\prime}\right) \leq 1\right) \\
\text { summable_on_final }(p) \wedge \text { final_reachable }(p)
\end{array}\right)
\end{aligned}
\]

\section*{Normalisation}

\section*{Normalisation}
\[
\begin{aligned}
& \mathcal{N}(p) \widehat{=}\left(p /\left(\Sigma_{\infty} s: S \bullet p(s)\right)\right)_{e} \\
& \mathcal{N}_{f}(p) \widehat{=}\left(p /\left(\Sigma_{\infty} v_{0}: S_{2} \bullet p\left[v_{0} / \mathbf{v}^{\prime}\right]\right)\right)_{e} \\
& \mathcal{N}_{\alpha}(x, p) \widehat{=}\left(p /\left(\Sigma_{\infty} x_{0}: T_{x} \bullet p\left[x_{0} / x^{\prime}\right]\right)\right)_{e} \text { Alphabetised } \\
& \mathcal{U}(x, A) \hat{=} \mathcal{N}_{\alpha}(x, \llbracket \bigsqcup v \in A \bullet x:=v \rrbracket) \text { Uniform distributions }
\end{aligned}
\]

\section*{Normalisation is final distribution}
is_nonneg \((p) \wedge\) final_reachable \((p) \wedge\) summable_on_final \((p) \Rightarrow\) is_final_dist \(\left(\mathcal{N}_{f}(p)\right)\)

\section*{Outline}

\section*{Background and motivations}

\section*{Complexity of probabilistic reasoning and our approach}

Basic definitions: ureal, Iverson brackets, and distributions

Probabilistic Relations: syntax and semantics
```

Examples

```

\section*{Syntax and semantics}
\[
\begin{align*}
\Pi_{p} & \widehat{\boxed{\llbracket \Pi \rrbracket}}  \tag{skip}\\
\left(x:==_{p} e\right) & \widehat{=} \llbracket x:=e \rrbracket \\
\left(P \oplus_{r} Q\right) & \widehat{=(\bar{r} * \bar{P}+(\dot{1}-\bar{r}) * \bar{Q})_{e}} \\
\left(\text { if }_{c} b \text { then } P \text { else } Q\right) & \widehat{(\text { if } b \text { then } \bar{P} \text { else } \bar{Q})_{e}} \\
P ; Q & \widehat{=} \overline{\left(\Sigma_{\infty} v_{0} \bullet \bar{P}\left[v_{0} / \mathbf{v}^{\prime}\right] * \bar{Q}\left[v_{0} / \mathbf{v}\right]\right)_{e}} \\
R \| T & \widehat{=} \overline{\mathcal{N}_{f}(R * T)_{e}} \\
\mathcal{F}_{P}^{b}(X) \widehat{=} \mathcal{F}(b, P, X) & \widehat{=} \mathbf{i f}_{c} b \text { then }(P ; X) \text { else } \Pi_{p} \\
\text { while }_{p} b \text { do } P \text { od } & \widehat{=} \mu_{p} X \bullet \mathcal{F}_{P}^{b}(X) \\
\text { while }_{p}^{\top} b \text { do } P \text { od } & \widehat{=} \nu_{p} X \bullet \mathcal{F}_{P}^{b}(X)
\end{align*}
\]
(assignment) (probabilistic choice) (conditional choice) (sequential composition) (parallel composition) (loop characterisation function) (while loop by least fixed point)


\section*{Subjective Bayesian}

Sequential composition: conditional probability (for actions) Parallel composition: joint probability (for new knowledge)
\[
\text { posterior }=\frac{\text { prior } * \text { likelihood }}{\text { evidence }} \quad \text { or } \quad P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)}
\]

Programs
(prior; action) || (likelihood)

\section*{Top, bottom, skip, and assignment}


\section*{Skip and assignment}
\[
\begin{aligned}
& \Pi_{p}=\left(x:=_{p} x\right) \\
& \text { is_final_dist }\left(\overline{\Pi_{p}}\right) \\
& \overline{(\llbracket \Pi \rrbracket)}=\llbracket \Pi \rrbracket \\
& \text { is_final_dist }\left(\bar{x}:==_{p} e\right)
\end{aligned}
\]

\section*{Probabilistic choice}

\section*{Probabilistic choice}
\[
\begin{aligned}
& \text { is_final_dist }(\bar{P}) \wedge \text { is_final_dist }(\bar{Q}) \Rightarrow \text { is_final_dist }\left(\overline{P \oplus_{r} Q}\right) \\
& \left(P \oplus_{0}^{\circ} Q\right)=Q \quad\left(P \oplus_{\mathrm{i}} Q\right)=P \\
& \left(P \oplus_{r} Q\right)=\left(Q \oplus_{\mathrm{i}-r} P\right) \quad\left(P \oplus_{r} Q\right)=\bar{r} * \bar{P}+(\mathrm{i}-\bar{r}) * \bar{Q} \\
& r^{\Uparrow} \widehat{=} \lambda\left(s, s^{\prime}\right) \bullet r(s) \\
& \binom{\left(\mathbb{1}-w_{1}\right) *\left(1-w_{2}\right)=\left(\AA-r_{2}\right)}{\wedge w_{1}=r_{1} * r_{2}} \Rightarrow\left(P \oplus_{w_{1}^{\Uparrow}}\left(Q \oplus_{w_{2}^{\Uparrow}} R\right)\right)=\left(\left(P \oplus_{r_{1}^{\Uparrow}} Q\right) \oplus_{r_{2}^{\Uparrow}} R\right)
\end{aligned}
\]

\section*{Conditional choice}

\section*{Conditional choice}
is_final_dist \((\bar{P}) \wedge\) is_final_dist \((\bar{Q}) \Rightarrow\) is_final_dist \(\left(\overline{i f}_{c} b\right.\) then \(P\) else \(\left.Q\right)\) \(\left(\mathbf{i f}_{c} b\right.\) then \(P\) else \(\left.P\right)=P\)
\(\left(\right.\) if \(_{c} b\) then \(P\) else \(\left.Q\right)=\left(P \oplus_{\llbracket b \rrbracket} Q\right)\)
\(\left(P_{1} \leq P_{2} \wedge Q_{1} \leq Q_{2}\right) \Rightarrow\left(\mathbf{i f}_{c} b\right.\) then \(P_{1}\) else \(\left.Q_{1}\right) \leq\left(\mathbf{i f}_{c} b\right.\) then \(P_{2}\) else \(\left.Q_{2}\right)\)

\section*{Sequential composition}

\section*{Sequential composition}
is_final_dist \((\bar{P}) \wedge\) is_final_dist \((\bar{Q}) \Rightarrow\) is_final_dist \((\overline{P ; Q})\)
\(\grave{0} ; P=0 \quad P ; 0=0 \quad \Pi_{p} ; P=P \quad P ; \Pi_{p}=P\)
is_final_dist \((\bar{P}) \Rightarrow P ; 1=\AA \quad\left(P_{1} \leq P_{2} \wedge Q_{1} \leq Q_{2}\right) \Rightarrow\left(P_{1} ; Q_{1}\right) \leq\left(P_{2} ; Q_{2}\right)\)
is_final_subdist \((\bar{P}) \wedge \cdots(\bar{Q}) \wedge \cdots(\bar{R}) \Rightarrow(P ;(Q ; R)=(P ; Q) ; R)\)
is_final_subdist \((\bar{P}) \Rightarrow\)
\[
\left(P ;\left(\mathbf{i f}_{c} b \text { then } Q \text { else } R\right)=\underline{\left.(\overline{(P ;(\llbracket b \rrbracket * Q))}+\overline{(P ;(\llbracket \neg b \rrbracket * R))})_{e}\right)}\right.
\]

\section*{Sequential composition}

\section*{Sequential composition}
\[
\begin{aligned}
& \boxed{\llbracket p \rrbracket ; \underline{\llbracket \rrbracket}=\left(\Sigma_{\infty} v_{0} \bullet \llbracket p\left[v_{0} / \mathbf{v}^{\prime}\right] \wedge q\left[v_{0} / \mathbf{v} \rrbracket \rrbracket\right)_{e}\right.} \\
& c_{1} \neq c_{2} \Rightarrow \llbracket x^{\prime}=c_{1} \rrbracket ; \llbracket x=c_{2} \rrbracket=0 \\
& \llbracket x=c_{0} \wedge x:=c_{1} \rrbracket ; \llbracket x=c_{1} \rrbracket=\llbracket x=c_{0} \rrbracket \\
& \llbracket x=c_{0} \wedge x:=c_{1} \rrbracket ; \llbracket x=c_{1} \wedge x:=c_{2} \rrbracket=\llbracket x=c_{0} \wedge x^{\prime}=c_{2} \rrbracket
\end{aligned}
\]

\section*{Uniform distribution}

\section*{Uniform distribution}
\[
\begin{aligned}
& \mathcal{U}(x, \varnothing)=\dot{0} \\
& \text { finite }(A) \Rightarrow \text { is_prob }(\mathcal{U}(x, A)) \\
& \operatorname{finite}(A) \wedge A \neq \varnothing \Rightarrow \text { is_final_dist }(\mathcal{U}(x, A)) \\
& \operatorname{finite}(A) \wedge A \neq \varnothing \Rightarrow\left(\forall v \in A \bullet \mathcal{U}(x, A) ; \llbracket x=v \rrbracket=(1 / \operatorname{card}(A))_{e}\right) \\
& \operatorname{finite}(A) \wedge A \neq \varnothing \Rightarrow(\mathcal{U}(x, A)=\llbracket \bigcup v \in A \bullet x:=v \rrbracket / \operatorname{card}(A)) \\
& \operatorname{finite}(A) \wedge A \neq \varnothing \Rightarrow\left(\underline{\mathcal{U}(x, A)} ; P=\underline{\left(\Sigma_{\infty} v \in A \bullet \bar{P}[v / x]\right) / \operatorname{card}(A)}\right)
\end{aligned}
\]

\section*{Parallel composition}

\section*{Parallel composition}
is_nonneg \((p * q) \Rightarrow \operatorname{is\_ prob}\left(\mathcal{N}_{f}(p * q)_{e}\right)\)
\(\left(\begin{array}{l}\text { is_final_prob }(p) \wedge \text { is_final_prob }(q) \wedge \\ (\text { summable_on_final }(p) \vee \text { summable_on_final }(q)) \\ \wedge \text { final_reachable2 }(p, q)\end{array}\right) \Rightarrow \operatorname{is\_ final\_ dist~}(p \| q)\)
(is_nonneg \((p) \wedge\) is_nonneg \((q) \wedge \neg\) final_reachable2 \((p, q)) \Rightarrow p \| q=0\)
\(\dot{0}\|p=0 \quad p\| \dot{0}=0 \quad p\|q=q\| p\)
\(c \neq 0 \wedge\) is_final_dist \((p) \Rightarrow(\lambda s \bullet c) \| p=\underline{p}\)
\(c \neq 0 \wedge\) is_final_dist \((p) \Rightarrow p \|(\lambda s \bullet c)=\underline{p}\)

\section*{Parallel composition}

\section*{Parallel composition}
\[
\begin{aligned}
& \left(\begin{array}{l}
\text { is_nonneg }(p) \wedge \text { is_nonneg }(q) \wedge \text { is_nonneg }(r) \wedge \\
\text { summable_on_final2 }(p, q) \wedge \text { summable_on_final2 }(q, r) \wedge \\
\text { final_reachable2 }(p, q) \wedge \text { final_reachable2 }(q, r)
\end{array}\right) \\
& \quad \Rightarrow(p \| q)\|r=p\|(q \| r) \\
& \text { summable_on_final }(\bar{Q}) \Rightarrow(\bar{P} \| \bar{Q})\|\bar{R}=\bar{P}\|(\bar{Q} \| \bar{R}) \\
& \text { finite }(A) \wedge A \neq \varnothing \Rightarrow \\
& \qquad \mathcal{U}(x, A) \| p=\left(\left(\Sigma_{\infty} v \in A \bullet \llbracket x:=v \rrbracket * p\left[v / x^{\prime}\right]\right) /\left(\Sigma_{\infty} v \in A \bullet p\left[v / x^{\prime}\right]\right)\right)_{e}
\end{aligned}
\]

ROBOSTAR

\section*{Semantic gap for loops in Hehner's PPP}

\section*{Semantic gap for loops}
1. PPP: semantics for basic constructs like sequential composition, probabilistic and conditional choice
2. ???
3. ???
4. ???
5. PPP: find a fixed point

\section*{Semantic gap for loops in Hehner's PPP}

Our approach
1. PPP: semantics for basic constructs like sequential composition, probabilistic and conditional choice
2. Scott-Continuity
3. ???
4. ???
5. PPP: find a fixed point

\section*{Semantic gap for loops in Hehner's PPP}

Our approach
1. PPP: semantics for basic constructs like sequential composition, probabilistic and conditional choice
2. Scott-Continuity
3. Kleene fixed point theorem
4. ???
5. PPP: find a fixed point

\section*{Semantic gap for loops in Hehner's PPP}

Our approach
1. PPP: semantics for basic constructs like sequential composition, probabilistic and conditional choice
2. Scott-Continuity
3. Kleene fixed point theorem
4. Unique fixed point theorem
5. PPP: find a fixed point

\section*{Semantic gap for loops in Hehner's PPP}

Our approach
1. PPP: semantics for basic constructs like sequential composition, probabilistic and conditional choice
2. Scott-Continuity
3. Kleene fixed point theorem
4. Unique fixed point theorem
5. PPP: find a fixed point

Only for probabilistic programs \(P\) whose possible final states are always finite

\section*{Semantics of loops}

\section*{Knaster-Tarski fixed-point theorem}
- Provided \((X, \leq)\) is a complete lattice and \(F: X \rightarrow X\) is monotonic,
- then the set of fixed points of \(F\) also forms a complete lattice.
- The LFP is the infimum of the pre-fixed points, and the GFP is the supremum of the post-fixed points.
\[
\begin{aligned}
& \mu F \widehat{=}\{u: X \mid F(u) \leq u\} \\
& \nu F \widehat{=} \bigsqcup\{u: X \mid u \leq F(u)\}
\end{aligned}
\]

\section*{While loops}

\section*{While loops}
is_final_dist \((\bar{P}) \Rightarrow \boldsymbol{w h i l e}_{p} b\) do \(P\) od \(=\mathcal{F}_{P}^{b}\left(\boldsymbol{w h i l e}_{p} b\right.\) do \(P\) od \()\) \(\boldsymbol{w h i l e}_{p}\) false do \(P\) od \(=\Pi_{p}\)
\(\boldsymbol{w h i l e}_{p}\) true do \(P\) od \(=0\)
is_final_dist \((\bar{P}) \Rightarrow \boldsymbol{w h i l e}_{p}^{\top} b\) do \(P\) od \(=\mathcal{F}_{P}^{b}\left(\boldsymbol{w h i l e}_{p}^{\top} b \boldsymbol{d o} P\right.\) od \()\)
\(\boldsymbol{w h i l e}_{p}^{\top}\) false do \(P\) od \(=\Pi_{p}\)
is_final_dist \((\bar{P}) \Rightarrow \boldsymbol{w h i l e}_{p}^{\top}\) true do \(P\) od \(=1\)

\section*{Continuity and Kleene fixed-point theorem}

\section*{Scott continuity}
- Suppose \((X, \leq)\) and \(\left(X^{\prime}, \leq^{\prime}\right)\) are complete lattices,
- A function \(F: X \rightarrow X^{\prime}\) is Scott-continuous or continuous if, for every non-empty chain \(S \subseteq X\),
- \(F\left(\bigsqcup_{x} S\right)=\bigsqcup_{x} F(S)\)
- \(F(S) \widehat{=}\{d \in S \bullet F(d)\}\) : the relational image of \(S\) under \(F\) or the range of \(F\) domain restricted to \(S\).

\section*{Continuity and Kleene fixed-point theorem}

\section*{Kleene fixed-point theorem}
- Provided \((X, \leq)\) is a complete lattice, and \(F: X \rightarrow X\) is continuous,
- then \(F\) has a least fixed point \(\mu F\) and a greatest fixed point \(\nu F\),
\[
\begin{aligned}
\mu F & =\bigsqcup_{n \geq 0} F^{n}(\perp) \\
\nu F & =\square{ }_{n \geq 0} F^{n}(\top)
\end{aligned}
\]
- Here we use \(\bigsqcup_{n \geq 0} F^{n}(\perp)\) to denote \(\bigsqcup\left\{n: \mathbb{N} \bullet F^{n}(\perp)\right\}\)

\section*{Continuity and Kleene fixed-point theorem: loop iterations}

\section*{Loop iteration and iteration difference}
\[
\begin{aligned}
& \mathcal{I}(n, b, P, X) \widehat{=}\left(\text { if } n=0 \text { then } X \text { else } \mathcal{F}_{P}^{b}(\mathcal{I}(n-1, b, P, X))\right) \\
& \mathcal{F}_{0}(b, P, X) \widehat{=} \text { if }_{c} b \text { then }(P ; X) \text { else } 0 \\
& \mathcal{I D}(n, b, P, X) \widehat{=}\left(\text { if } n=0 \text { then } X \text { else } \mathcal{F}_{0}(b, P, \mathcal{I D}(n-1, b, P, X))\right)
\end{aligned}
\]

\section*{Increasing and decreasing chains}
\[
\begin{aligned}
& \text { is_final_dist }(\bar{P}) \Rightarrow \operatorname{incseq}(\lambda n \bullet \mathcal{I}(n, b, P, 0 ̊)) \\
& \text { is_final_dist }(\bar{P}) \Rightarrow \operatorname{decseq}(\lambda n \bullet \mathcal{I}(n, b, P, 1))
\end{aligned}
\]

\section*{Continuity of loop iteration functions}

\section*{Finite possible final states}
\[
\text { finite_final }(P) \widehat{=} \forall s \bullet \text { finite }\left\{s^{\prime}: S \mid P\left(s, s^{\prime}\right)>0\right\}
\]

\section*{Continuity of loop iteration functions}
(is_final_dist \((\bar{P}) \wedge\) finite_final \((P)\) )
\[
\Rightarrow\binom{\mathcal{F}_{P}^{b}(\bigsqcup n \bullet \mathcal{I}(n, b, P, 0 ̊))=(\bigsqcup n \bullet \mathcal{I}(n, b, P, 0 \circ))}{\mathcal{F}_{P}^{b}(\square n \bullet \mathcal{I}(n, b, P, 1))=(\square n \bullet \mathcal{I}(n, b, P, 1))}
\]

\section*{Kleene fixed-point theorem of probabilistic loops}

\section*{Semantics of probabilistic loops by iterations}
(is_final_dist \((\bar{P}) \wedge\) finite_final \((P)\) )
\[
\Rightarrow\binom{\boldsymbol{w h i l e}_{p} b \text { do } P \text { od }=(\bigsqcup n \bullet \mathcal{I}(n, b, P, 0 ̊))}{\text { while }_{p}^{\top} b \text { do } P \text { od }=(\square n \bullet \mathcal{I}(n, b, P, \grave{1}))}
\]

\section*{Unique fixed-point theorem: motivation example}

\section*{Flip a fair coin till heads}

Tcoin \(::=h d \mid t l\)
alphabet cstate \(=c::\) Tcoin
cflip \(\widehat{=} c:={ }_{p} h d \oplus_{1 / 2} c:={ }_{p} t l\)
flip \(\widehat{=} \boldsymbol{w h i l e}_{p} c=t l\) do cflip od
\(\mathcal{F}_{c} \widehat{=} \mathcal{F}_{c f f i p}^{c=t l}(X)\)

robostar

\section*{Unique fixed-point theorem}

\section*{Unique fixed-point theorem}
\[
\begin{aligned}
& \left(\begin{array}{l}
\text { is_final_dist }(\bar{P}) \wedge \\
\text { finite_final }(P) \wedge \\
(\forall s \bullet(\lambda n \bullet \overline{\mathcal{I D}(n, b, P, \grave{1})}(s)) \xrightarrow{n \rightarrow \infty} 0) \wedge \\
\mathcal{F}_{P}^{b}(f p)=f p \\
\Rightarrow\left(\text { while }_{p} b \text { do } P \text { od }=f p\right) \wedge\left(\boldsymbol{w h i l e}_{p}^{\top} b \text { do } P \text { od }=f p\right)
\end{array}\right.
\end{aligned}
\]

\section*{Unique fixed-point theorem}

\section*{Unique fixed-point theorem}
\[
\begin{aligned}
& \left(\begin{array}{l}
\text { is_final_dist }(\bar{P}) \wedge \\
\text { finite_final }(P) \wedge \\
(\forall s \bullet(\lambda n \bullet \overline{\mathcal{I D}(n, b, P, \overline{1})}(s)) \xrightarrow{n \rightarrow \infty} 0) \wedge \\
\mathcal{F}_{P}^{b}(f p)=f p
\end{array}\right. \\
& \Rightarrow\left(\boldsymbol{w h i l e}_{p} b \text { do } P \text { od }=f p\right) \wedge\left(\boldsymbol{w h i l e}_{p}^{\top} b \text { do } P \text { od }=f p\right)
\end{aligned}
\]

Finding the semantics of a probabilistic loop is merely to prove the four assumptions:
- Hehner: the first and fourth assumptions

\section*{Semantic gap for loops in Hehner's PPP is filled}

Semantic gap for loops: our approach
1. PPP: semantics for basic constructs like sequential composition, probabilistic and conditional choice
2. Scott-Continuity
3. Kleene fixed point theorem
4. Unique fixed point theorem
5. PPP: find a fixed point

Only for probabilistic programs \(P\) whose possible final states are always finite

\section*{Outline}

\section*{Background and motivations}

\section*{Complexity of probabilistic reasoning and our approach}

Basic definitions: ureal, Iverson brackets, and distributions

Probabilistic Relations: syntax and semantics

\section*{Examples}

\section*{Doctor Who's Tardis Attack}

Two robots, the Cyberman C and the Dalek D, attack Doctor Who's Tardis once a day between them.
\(C\) has a probability of \(1 / 2\) of a successful attack, while \(D\) has a probability of \(3 / 10\) of a successful attack.
\(C\) attacks more often than \(D\), with a probability of \(3 / 5\) on a particular day (and so \(D\) attacks with a probability of \(2 / 5\) on that day).
What is the probability that there is a successful attack today?

\section*{Doctor Who's Tardis Attack}

\section*{DWTA}
\[
\begin{aligned}
& \text { Attacker }::=C \mid D \quad \text { Status }::=S \mid F \\
& \text { alphabet dwtastate }=a:: \text { Attacker } s:: \text { Status } \\
& \text { dwta } \widehat{=}\left(\left(a:={ }_{p} C\right) ;\left(s:={ }_{p} S \oplus_{1 / 2} s:={ }_{p} F\right)\right) \oplus_{3 / 5} \\
& \left(\left(a:={ }_{p} D\right) ;\left(s:={ }_{p} S \oplus_{3 / 10} s:={ }_{p} F\right)\right)
\end{aligned}
\]

\section*{Doctor Who's Tardis Attack}

\section*{DWTA}
\[
\begin{aligned}
& d w t a=\left(\begin{array}{l}
3 / 10 * \llbracket a^{\prime}=C \wedge s^{\prime}=S \rrbracket+ \\
3 / 10 * \llbracket a^{\prime}=C \wedge s^{\prime}=F \rrbracket+ \\
6 / 50 * \llbracket a^{\prime}=D \wedge s^{\prime}=S \rrbracket+ \\
14 / 50 * \llbracket a^{\prime}=D \wedge s^{\prime}=F \rrbracket
\end{array}\right)_{e} \\
& \overline{d w t a} ; \llbracket s=S \rrbracket=(21 / 50)_{e}
\end{aligned}
\]

\section*{Monty hall problem}

From wikipedia:


A game, three doors, one car and two goats, the host knows which door has the car, the contestant is offered to choose a door (let's say door 1), then the host opens door 3, the contestant has an opportunity to change the door. Should the contestant switch to door 2?

\section*{Monty hall problem}

\section*{Modelling}
\[
\begin{aligned}
& \text { alphabet mhstate }=p:: \mathbb{N} \quad c:: \mathbb{N} \quad m:: \mathbb{N} \\
& \text { init } \widehat{=} \mathcal{U}(p,\{0 \ldots 2\}) ; \mathcal{U}(c,\{0 \ldots 2\}) \\
& m c \widehat{=}\left(\left(m:=p_{p}(c+1) \bmod 3\right) \oplus_{1 / 2}\left(m:==_{p}(c+2) \bmod 3\right)\right) \\
& m h a \widehat{=}\left(\mathbf{i f}_{c} c=p \text { then } m c \text { else } m:=3-c-p\right) \\
& m h a \_n c \widehat{=} \text { init } ; m h a ; \Pi_{p} \\
& m h a \_c \widehat{=} \text { init } ; m h a ; c:=3-c-m
\end{aligned}
\]

\section*{Monty hall problem}

\section*{Win probability}
\[
\begin{aligned}
& \overline{m h a \_n c} ; \llbracket c=p \rrbracket=(1 / 3)_{e} \\
& \overline{m h a \_c} ; \llbracket c=p \rrbracket=(2 / 3)_{e}
\end{aligned}
\]

So the contestant should switch because of the higher probability \((2 / 3 \mathrm{vs} .1 / 3)\) to win.

\section*{Forgetful Monty problem}

Suppose now that Monty forgets which door has the prize behind it. He just opens either of the doors not chosen by the contestant.
If the prize is revealed \(\left(m^{\prime}=p^{\prime}\right)\), then obviously the contestant switches their choice to that door. So the contestant will surely win.
However, if the prize is not revealed \(\left(m^{\prime} \neq p^{\prime}\right)\), should the contestant switch?
New fact learned

\section*{Forgetful Monty problem}

\section*{Modelling}
\[
\begin{aligned}
\text { alphabet } m h s t a t e & =p:: \mathbb{N} \quad c:: \mathbb{N} \quad m:: \mathbb{N} \\
\text { init } & \widehat{=} \mathcal{U}(p,\{0 \ldots 2\}) ; \mathcal{U}(c,\{0 \ldots 2\}) \\
m c & \widehat{=}\left(\left(m:={ }_{p}(c+1) \bmod 3\right) \oplus_{1 / 2}\left(m:={ }_{p}(c+2) \bmod 3\right)\right) \\
\text { forgetful_monty } & \widehat{=} \text { init } ; m c \\
\text { learn_fact } & \widehat{=} \text { forgetful_monty } \| \underline{\llbracket m^{\prime} \neq p^{\prime} \rrbracket}
\end{aligned}
\]

\section*{Forgetful Monty problem}

\section*{Win probability}
\[
\begin{aligned}
& \text { learn_fact }=\binom{\llbracket p^{\prime} \in\{0 . .2\} \rrbracket * \llbracket c^{\prime} \in\{0 \ldots 2\} \rrbracket \llbracket \llbracket m^{\prime} \neq p^{\prime} \rrbracket *}{\left(\llbracket m^{\prime}=\left(c^{\prime}+1\right) \% 3 \rrbracket+\llbracket m^{\prime}=\left(c^{\prime}+2\right) \% 3 \rrbracket\right) / 12}_{e} \\
& \overline{\text { learn_fact } ; \llbracket c=p \rrbracket=(1 / 2)_{e}} .
\end{aligned}
\]

So it doesn't matter whether the contestant switches or not.

\section*{Robot localisation}

A circular room has two doors and a wall. A robot is equipped with a noisy door sensor which maps position to door or wall.
Doors are at position 0 and 2, and position 1 is a blank wall. ine a predicate \(\operatorname{door}(p) \widehat{=} p=0 \vee p=2\) and introduce a program variable bel \(\in\{0 \ldots 2\}\) to denote the position of the robot that we believe.
When the reading of the door sensor is door, it has four times more likely to be right than wrong.
We are interested in questions like how many measurements and moves are necessary to get a confident estimation of the robot's location?

\section*{Robot localisation}

\section*{Modelling}
alphabet state \(=\) bel \(:: \mathbb{N}\)
\(\operatorname{door}(p) \widehat{=} p=0 \vee p=2\)
scale_door \(\widehat{=}\left(3 * \llbracket \operatorname{door}\left(b e l^{\prime}\right) \rrbracket+1\right)_{e}\)
scale_wall \(\widehat{=}\left(3 * \llbracket \neg \operatorname{door}\left(b e l^{\prime}\right) \rrbracket+1\right)_{e}\)
init \(\widehat{=} \mathcal{U}(\) bel,\(\{0 \ldots 2\})\)
move \(\_\)right \(\widehat{=}(\) bel \(:=(b e l+1) \bmod 3)\)

\section*{Robot localisation}



ROBOSTAR

\section*{Robot localisation}



ROBOSTAR

\section*{Robot localisation}

\section*{Belief}
(init || scale_door) ; move_right
\(=\left(\begin{array}{l}4 / 9 * \llbracket b e l^{\prime}=0 \rrbracket+ \\ 4 / 9 * \llbracket b e l^{\prime}=1 \rrbracket+ \\ 1 / 9 * \llbracket b e l^{\prime}=2 \rrbracket\end{array}\right)\)

robostar

\section*{Robot localisation}
\[
\begin{aligned}
& \text { Belief } \\
& \text { init } \| \text { scale_door } \\
& \text { move_right } \\
& \| \text { scale_door } \\
& =\left(\begin{array}{l}
2 / 3 * \llbracket b e l^{\prime}=0 \rrbracket+ \\
1 / 6 * \llbracket b e l^{\prime}=1 \rrbracket+ \\
1 / 6 * \llbracket b e l^{\prime}=2 \rrbracket
\end{array}\right)
\end{aligned}
\]


ROBOSTAR

\section*{Robot localisation}



\section*{Robot localisation}



\section*{COVID diagnosis}

Consider people use a COVID test to diagnose if they may or may not have contracted COVID. The test result is binary and could be positive or negative. The test, however, is imperfect. It doesn't not always give a correct result. We are interested in several questions.
How likely a randomly selected person has covid if the first test result is positive? Is it necessary to have the second test to reassure the result?
How much can the second test contribute to the diagnosis?

\section*{COVID diagnosis}

\section*{Modelling}

CovidTest \(::=\) Pos \(\mid\) Neg alphabet cdstate \(=c::\) bool ct \(::\) CovidTest
Init \(\widehat{=} \mathbf{i f}_{p} p_{1}\) then \(c:=\) True else \(c:=\) False
TestAction \(\widehat{=} \mathbf{i f}_{c} c\) then \(\left(c t:={ }_{p} \operatorname{Pos} \oplus_{p_{2}} c t:={ }_{p}\right.\) Neg) else \(\left(c t:={ }_{p}\right.\) Pos \(\oplus_{p_{3}} c t:={ }_{p}\) Neg)
FirstTestPos \(\widehat{=}(\) Init \(;\) TestAction \() \| \llbracket c t^{\prime}=\) Pos】
SecondTestPos \(\widehat{=}(\) FirstTestPos \(;\) TestAction \() \| \llbracket c t^{\prime}=\) Pos \(\rrbracket\)
The prior probability of a randomly selected patient having COVID is \(p_{1}\).
The sensitivity (true positive) of the test is \(p_{2}\), and The specificity (true negative) is \(1-p_{3}\).

\section*{COVID diagnosis}

\section*{Results}
\[
\begin{aligned}
& \text { FirstTestPos }=\binom{\binom{\llbracket c^{\prime} \rrbracket * \llbracket c t^{\prime}=P o s \rrbracket * p_{1} * p_{2}+}{\llbracket \neg c^{\prime} \rrbracket * \llbracket c t^{\prime}=P o s \rrbracket *\left(1-p_{1}\right) * p_{3}}}{/\left(p_{1} * p_{2}+\left(1-p_{1}\right) * p_{3}\right)}_{e} \\
& \text { SecondTestPos }=\left(\begin{array}{l}
\llbracket c^{\prime} \rrbracket * \llbracket c t^{\prime}=P o s \rrbracket * p_{1} * p_{2}^{2}+ \\
\llbracket \neg c^{\prime} \rrbracket * \llbracket c t^{\prime}=P o s \rrbracket *\left(1-p_{1}\right) * p_{3}^{2} \\
/\left(p_{1} * p_{2}^{2}+\left(1-p_{1}\right) * p_{3}^{2}\right)
\end{array}\right)_{e}
\end{aligned}
\]

Provided \(p_{1}=0.002, p_{2}=0.89\), and \(p_{3}=0.05\), the probability of the patient having COVID is 3.4\% (given one positive test) and 38.84\% (given two positive tests).

\section*{Flip a coin till heads - Parametric model and verification}

\section*{Modelling - parametric}
\[
\begin{aligned}
& \text { Tcoin }::=h d \mid t l \\
& \text { alphabet cstate }=c:: \text { Tcoin } \\
& \text { cflip } \widehat{=} c:={ }_{p} h d \oplus_{1 / 2} c:={ }_{p} t l \\
& \text { flip } \widehat{=} \boldsymbol{w h i l e}_{p} c=t l \boldsymbol{d o} \text { cflip od } \\
& \text { pflip }(p) \widehat{=} \boldsymbol{w h i l e}_{p} c=t l \boldsymbol{d o} c:={ }_{p} h d \oplus_{p} c:={ }_{p} t l \text { od } \\
& \text { alphabet cstate } t=t:: \mathbb{N} \quad c:: \text { Tcoin } \\
& \text { pflip_ } t(p) \widehat{=} \boldsymbol{w h i l e}_{p} c=t l \boldsymbol{d o}\left(c:={ }_{p} h d \oplus_{p} c:={ }_{p} t l\right) ; t:={ }_{p} t+1 \text { od }
\end{aligned}
\]

\section*{Flip a coin till heads - Parametric model and verification}

\section*{Semantics}
\[
\begin{aligned}
& \text { flip }=\llbracket c^{\prime}=h d \rrbracket \quad p \neq 0 \Rightarrow p f l i p(p)=\llbracket c^{\prime}=h d \rrbracket \\
& p \neq 0 \Rightarrow \text { pflip } t(p)=\left(\begin{array}{l}
\llbracket c=h d \rrbracket * \llbracket c^{\prime}=h d \rrbracket * \llbracket t^{\prime}=t \rrbracket+ \\
\left.\llbracket c=t l \rrbracket * \llbracket c^{\prime}=h d \rrbracket * \llbracket t^{\prime} \geq t+1 \rrbracket *(1-\bar{p})^{t^{\prime}-t-1} * \bar{p}\right)_{e}
\end{array}\right.
\end{aligned}
\]

\section*{Termination and expected run time}
\[
\begin{aligned}
& p \neq 0 \Rightarrow \overline{p f l i p_{-} t(p)} ; \llbracket c=h d \rrbracket=(1)_{e} \\
& p \neq 0 \Rightarrow \overline{\text { flip_t_p(p)}} ; t=(\llbracket c=h d \rrbracket * t+\llbracket c=t l \rrbracket *(t+1 / \bar{p}))_{e}
\end{aligned}
\]

\section*{Throw a pair of dice}

\section*{Modelling}
\[
\begin{aligned}
& \text { Tdice }::=\{1 . .6\} \\
& \text { alphabet dstate_ } t=t:: \mathbb{N} \quad d_{1}:: \text { Tdice } \quad d_{2}:: \text { Tdice } \\
& \text { dice } \_t \widehat{=} \boldsymbol{w h i l e}_{p} d_{1} \neq d_{2} \text { do } \underline{\mathcal{U}\left(d_{1}, \text { Tdice }\right)} ; \underline{\mathcal{U}\left(d_{2}, \text { Tdice }\right)} ; t:={ }_{p} t+1 \text { od }
\end{aligned}
\]

\section*{Throw a pair of dice}

\section*{Semantics, termination, and expected run time}
\[
\begin{aligned}
& \text { dice } \_t=\binom{\llbracket d_{1}=d_{2} \rrbracket * \llbracket t^{\prime}=t \wedge d_{1}^{\prime}=d_{1} \wedge d_{2}^{\prime}=d_{2} \rrbracket+}{\llbracket d_{1} \neq d_{2} \rrbracket * \llbracket d_{1}^{\prime}=d_{2}^{\prime} \rrbracket * \llbracket t^{\prime} \geq t+1 \rrbracket *(5 / 6)^{t^{\prime}-t-1} *(1 / 36)}_{e} \\
& \overline{\text { dice } \_t} ; \llbracket d_{1}=d_{2} \rrbracket=(1)_{e} \\
& \overline{\text { dice } \_t} ; t=(\llbracket d 1=d 2 \rrbracket * t+\llbracket d 1 \neq d 2 \rrbracket *(t+6))_{e}
\end{aligned}
\]

\section*{Outline}

\section*{Background and motivations}

\section*{Complexity of probabilistic reasoning and our approach}

Basic definitions: ureal, Iverson brackets, and distributions

Probabilistic Relations: syntax and semantics

Examples

\section*{Conclusion}

\section*{Conclusion}
- Probabilistic relations (PR): A PPL and also a probabilistic semantics framework
- Syntax and semantics of PR
- A collection of algebraic laws for each construct of PR
- Particularly, semantics for probabilistic loops using iterations
- Probabilistic examples: two contain loops
- Mechanisation of the PPL, theorems, and examples in Isabelle/UTP

\section*{Future work}
- Discrete time
- Time primitives of RoboChart: clock, reset, since, deadline, wait etc.
- Semantics to (PRISM) DTMCs, equivalence to simplify models (tractable for model checking)
- Make time in DTMCs explicitly
- Combine more commands into fewer (i.e. simultaneous assignments)

\section*{Future work}
- Discrete time
- Nondeterminism
- Parametrised models
- \(P \sqcap Q \Longrightarrow\left(P Q(b) \widehat{=} \mathbf{i f}_{c} b\right.\) then \(P\) else \(\left.Q\right)\) : boolean parameter
- while \({ }_{p} b\) do \(P \sqcap Q\) od \(\Longrightarrow\left(P Q\right.\) While \((b f: \mathbb{N} \rightarrow \mathbb{B}) \widehat{=}\) while \(_{p} b\) do \(P Q(b f(t))\) od \()\)
- Functions (bf whose domain is the iteration index) as parameters
- Schedule or policy becomes the full or partial instantiation of models by their parameters
- The complexity of nondeterministic models is the same as the deterministic models
- Semantics to (PRISM) MDPs, equivalence and parametric (tractable for model checking)

\section*{Future work}
- Discrete time
- Nondeterminism
- Refinement and abstraction
1. From nondeterministic models to deterministic models,
2. Superdistributions to distributions,
3. Discrete distributions into uniform distributions such as random number generators
4. Data refinement: abstract types (such as int) into concrete types (int32, int64 etc.) Correctness-by-Construction
Abstraction to simplify PRISM DTMCs and MDPs

\section*{Future work}
- Discrete time
- Nondeterminism
- Refinement and abstraction
- Probabilistic programs that have infinite possible final states in the loop body
- Cousot's constructive version of the Knaster-Tarski fixed-point theorem \({ }^{1}\)
- Weaken continuity into monotonicity
- Treat the least fixed point as the stationary limit of transfinite iteration sequences

\footnotetext{
\({ }^{1}\) P. Cousot, R. Cousot, Constructive versions of Tarski's fixed point theorems, Pacific Journal of Mathematics 81 (1) (1979) 43-57.
}

\section*{Future work}
- Discrete time
- Nondeterminism
- Refinement and abstraction
- Probabilistic programs that have infinite possible final states in the loop body
- Continuous distributions: measure theory

\section*{An potential application}


\section*{Thank you!}
https://robostar.cs.york.ac.uk/

囯 Annabelle Mclver，Carroll Morgan，Benjamin Lucien Kaminski，and Joost－Pieter Katoen． A New Proof Rule for Almost－Sure Termination．
Proc．ACM Program．Lang．，2（POPL），dec 2017.
䍰 Jim Woodcock，Ana Cavalcanti，Simon Foster，Alexandre Mota，and Kangfeng Ye． Probabilistic Semantics for RoboChart．
In Pedro Ribeiro and Augusto Sampaio，editors，Unifying Theories of Programming，pages 80－105，Cham，2019．Springer International Publishing．

嗇 Kangfeng Ye，Ana Cavalcanti，Simon Foster，Alvaro Miyazawa，and Jim Woodcock．
Probabilistic modelling and verification using robochart and prism．
21：667－716， 2022.
围 Kangfeng Ye，Simon Foster，and Jim Woodcock．
Automated reasoning for probabilistic sequential programs with theorem proving．

In Uli Fahrenberg, Mai Gehrke, Luigi Santocanale, and Michael Winter, editors, Relational and Algebraic Methods in Computer Science, pages 465-482, Cham, 2021. Springer International Publishing.```

