Compositional Assume-Guarantee Reasoning of Control Law Diagrams using UTP

Kangfeng Ye, Simon Foster, Jim Woodcock

Department of Computer Science, University of York

July 24, 2018

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

July 24, 2018 1 / 31

Outline

2 Simulink Blocks

3 Block Compositions

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

July 24, 2018 2 / 31

- 2

イロト イヨト イヨト イヨト

Outline

2 Simulink Blocks

3 Block Compositions

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

July 24, 2018 3 / 31

æ

<ロト <回ト < 回ト < 回ト

Objective

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

July 24, 2018 4 / 31

Understanding of Simulation in Simulink

- ▶ Based on an idealized timing model [MM07, CMW13]
 - ► All executions and updates of blocks are performed instantaneously (and infinitely fast) at exact simulation steps.
 - Between the simulation steps, the system is quiescent and all values held on lines and blocks are constant.
 - ▶ The inputs, states and outputs of a block can only be updated when there is a time hit for this block.

・ロト ・ 同ト ・ ヨト ・ ヨト

Assume-Guarantee Reasoning

▶ Based on the theory of designs in UTP

$$P \vdash Q \triangleq (P \land ok \Rightarrow Q \land ok')$$

- ► Compositional Assume-Guarantee reasoning
- ▶ Able to reason and resolve diagrams with algebraic loops
- Verified one subsystem (post landing finalize) in an aircraft cabin pressure control application

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

2 Simulink Blocks

3 Block Compositions

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

July 24, 2018 7 / 31

æ

<ロ> (四) (四) (三) (三) (三)

State Space

inouts from simulation time $(\mathbb{R}_{\geq 0})$ to a list of inputs (*inouts*) or outputs (*inouts*').

inouts :
$$\mathbb{R}_{\geq 0} \to \operatorname{seq} \mathbb{R}$$
 [Dense time]

According to the idealized timing model, abstracted to exact simulation steps $(t = n * T_b, T_b \text{ base rate})$

$$inouts: \mathbb{N} \to \operatorname{seq} \mathbb{R}$$
 [Step number]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Healthiness Condition

Definition (SimBlock)

$$\begin{aligned} \textbf{SimBlock}(m, n, P) &\triangleq \\ & \left(\begin{array}{c} (pre_D(P) \land post_D(P) \neq \textbf{false}) \land \\ ((\forall l \bullet \# (inouts \ l) = m) \sqsubseteq Dom \ (pre_D(P) \land post_D(P))) \\ ((\forall l \bullet \# (inouts \ l) = n) \sqsubseteq Ran \ (pre_D(P) \land post_D(P))) \end{array} \right) \\ & Dom(P) \triangleq \left(\exists inouts' \bullet P \right) \qquad Ran(P) \triangleq \left(\exists inouts \bullet P \right) \end{aligned}$$

Definition (*inps* and *outps* - axiomatization)

$$SimBlock(m, n, P) \Rightarrow (inps(P) = m \land outps(P) = n)$$

Kangfeng Ye, Simon Foster, Jim Woo

Pattern to Define Blocks

Definition (FBlock)

$$FBlock (f_1, m, n, f_2) \\ \triangleq \begin{pmatrix} \forall nn \bullet f_1 (inouts, nn) \\ \vdash \\ \forall nn \bullet \begin{pmatrix} \# (inouts(nn)) = m \land \\ \# (inouts'(nn)) = n \land \\ (inouts'(nn) = f_2 (inouts, nn)) \end{pmatrix}$$

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

July 24, 2018

Ξ.

10 / 31

<ロト <回ト < 回ト < 回ト

Common Blocks

Definition (Unit Delay)

$$UnitDelay(x_0) \triangleq$$

FBlock (true_f, 1, 1, (\lambda x, n \cdot \lambda x_0 < n = 0 \box hd (x (n - 1))\rangle))

where $true_f = (\lambda x, n \bullet true)$

Definition (Product (Divide))

 $\begin{array}{l} Div2 \triangleq \\ FBlock\left(\left(\lambda\,x,n\,\bullet\,hd(tl(x\,n))\neq 0\right),2,1,\left(\lambda\,x,n\,\bullet\,\langle hd(x\,n)/hd(tl(x\,n))\rangle\right)\right)\end{array}$

Kangfeng Ye, Simon Foster, Jim Woo

July 24, 2018 11 / 31

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Virtual Blocks

Definition (Id)

$$Id \triangleq FBlock\left(true_{f}, 1, 1, \left(\lambda x, n \bullet \langle hd\left(x n\right) \rangle\right)\right)$$

Definition (Split2)

$$Split2 \triangleq FBlock\left(true_{f}, 1, 2, \left(\lambda \, x, n \bullet \left\langle hd\left(x \, n\right), hd\left(x \, n\right) \right\rangle \right)\right)$$

Definition (Router)

 $Router(m, table) \triangleq FBlock(true_{f}, m, m, (\lambda x, n \bullet reorder((x n), table)))$

Outline

2 Simulink Blocks

4 Case Study

Kangfeng Ye, Simon Foster, Jim Woo

æ

イロト イヨト イヨト イヨト

Block Compositions

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

ъ July 24, 2018 14 / 31

æ

4 (T) b

Sequential Composition

$$P = (FBlock (true_f, m_1, n_1, f_1))$$
$$Q = (FBlock (true_f, n_1, n_2, f_2))$$

SimBlock (m_1, n_1, P) SimBlock (n_1, n_2, Q)

Theorem (Expansion)

$$(P; Q) = FBlock (true_f, m_1, n_2, (f_2 \circ f_1))$$
 [Expansion]

Theorem (Closure)

SimBlock $(m_1, n_2, (P; Q))$ [SimBlock Closure]

Kangfeng Ye, Simon Foster, Jim Woo

Sequential Composition

Theorem (Expansion)

$$(FBlock (p_1, m_1, n_1, f_1)); (FBlock (p_2, n_1, n_2, f_2)) = FBlock \begin{pmatrix} (\lambda x n \bullet (p_1 x n) \land ((p_2 \circ f_1) x n) \land \#(x n) = m_1) \\ , m_1, n_2, (f_2 \circ f_1) \end{pmatrix}$$
[Expansion]

Theorem (Closure)

SimBlock $(m_1, n_2, ((FBlock (p_1, m_1, n_1, f_1)); (FBlock (p_2, n_1, n_2, f_2))))$ [SimBlock Closure]

Kangfeng Ye, Simon Foster, Jim Woo

Parallel Composition I

Definition (Parallel Composition)

$$P \parallel_B Q \triangleq \left(\begin{array}{c} (takem(inps(P) + inps(Q)) inps(P); P) \\ \parallel_{B_M} \\ (dropm(inps(P) + inps(Q)) inps(P); Q) \end{array} \right)$$

Definition (B_M)

 $B_M \triangleq (ok' = 0.ok \land 1.ok) \land (inouts' = 0.inouts \land 1.inouts)$

Kangfeng Ye, Simon Foster, Jim Woo

3

イロト イヨト イヨト イヨト

Parallel Composition II

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

July 24, 2018

æ

18 / 31

イロト イヨト イヨト イヨト

Parallel Composition III

Theorem (Associativity, Monotonicity, and **SimBlock** Closure)

 $P_{1} \parallel_{B} (P_{2} \parallel_{B} P_{3}) = (P_{1} \parallel_{B} P_{2}) \parallel_{B} P_{3}$ [Associativity] $(P_{1} \parallel_{B} Q_{1}) \sqsubseteq (P_{2} \parallel_{B} Q_{2})$ [Monotonicity] **SimBlock** $(m1 + m2, n1 + n2, (P_{1} \parallel_{B} P_{2}))$ [**SimBlock** Closure] $inps (P_{1} \parallel_{B} P_{2}) = m_{1} + m_{2}$ $outps (P_{1} \parallel_{B} P_{2}) = n_{1} + n_{2}$

Kangfeng Ye, Simon Foster, Jim Woo

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへの

Parallel Composition IV

Theorem (Parallel Operator Expansion) Provided

$$P = (FBlock (true_f, m_1, n_1, f_1))$$

$$Q = (FBlock (true_f, m_2, n_2, f_2))$$

$$SimBlock (m_1, n_1, P)$$

$$SimBlock (m_2, n_2, Q)$$

then,

$$(P \parallel_B Q) = FBlock \begin{pmatrix} true_f, m_1 + m_2, n_1 + n_2, \\ \left(\lambda x, n \bullet \begin{pmatrix} (f_1 \circ (\lambda x, n \bullet take(m_1, x n))) \\ \cap (f_2 \circ (\lambda x, n \bullet drop(m_1, x n))) \end{pmatrix} \end{pmatrix}$$
[Expansion]

SimBlock $(m_1 + m_2, n_1 + n_2, (P \parallel_B Q))$ [SimBlock Closure]

э

< ∃⇒

< 🗗 >

Feedback I

Definition (f_D)

 $P f_D (i, o)$ $\triangleq (\exists sig \bullet (PreFD(sig, inps(P), i); P; PostFD(sig, outps(P), o)))$

★ ∃ ►

3

A D N A B N A B N

Feedback II

Definition (PreFD)

 $\begin{aligned} &PreFD(sig, m, idx) \\ &\triangleq FBlock (true_{f}, m-1, m, (f_PreFD(sig, idx))) \\ &f_PreFD(sig, idx) \\ &\triangleq \lambda x, n \bullet (take(idx, (x n)) ^ \langle (sig n) \rangle ^ drop(idx, (x n))) \end{aligned}$

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

▲□ → ▲ □ → ▲ ■ → ▲ ■ → ▲ ■ → Q @ July 24, 2018 _ 22 / 31

Feedback III

Definition (*PostFD*) PostFD(sig, n, idx) $\triangleq \left(\begin{array}{c} \vdash \\ \forall nn \bullet \left(\begin{array}{c} \# (inouts(nn)) = n \land \\ \# (inouts'(nn)) = n - 1 \land \\ (inouts'(nn) = (f_PostFD(idx, inouts, nn)) \land \\ sig(nn) = inouts(nn)!idx \end{array} \right) \right)$ $f_PostFD(idx)$ $\triangleq \lambda x, n \bullet (take(idx, (x n)) \cap drop(idx + 1, (x n)))$

Kangfeng Ye, Simon Foster, Jim Woo

July 24, 2018 23 / 31

・ロト ・回ト ・ヨト ・ヨト 三日

Feedback IV

Theorem (Monotonicity)

Provided

 $SimBlock(m_1, n_1, P_1)$ $P_1 \sqsubseteq P_2$

SimBlock (m_1, n_1, P_2) $i_1 < m_1 \land o_1 < n_1$

then,

 $(P_1 f_D (i_1, o_1)) \sqsubseteq (P_2 f_D (i_1, o_1))$

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

July 24, 2018 24 / 31

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

Feedback V

Theorem (Expansion)

Provided

 $\begin{aligned} P &= FBlock\left(true_{\textit{f}}, m, n, f\right)\\ Solvable_unique(i, o, m, n, f) \end{aligned}$

SimBlock(m, n, P) $is_Solution(i, o, m, n, f, sig)$

then,

$$(P f_D (i, o))$$

$$= FBlock \begin{pmatrix} true_f, m - 1, n - 1, \\ (\lambda x, n \bullet (f_PostFD(o) \circ f \circ f_PreFD(sig, x, i)) x n) \end{pmatrix}$$
[Expansion]
SimBlock $(m - 1, n - 1, (P f_D (i, o)))$
[SimBlock Closure]

Feedback I

Definition (Solvable_unique)

$$\begin{aligned} Solvable_unique \ (i, \, o, \, m, \, n, f) &\triangleq \\ \left(\begin{array}{c} (i < m \land o < n) \land \\ \left(\forall nn \bullet \# (sigs \ nn) = (m-1) \right) \Rightarrow \\ \exists_1 sig \bullet \\ \left(\begin{array}{c} \forall nn \bullet \\ f \land nn \bullet \\ (sig \ nn = \\ (f \ (\lambda \ n_1 \bullet f_PreFD \ (sig, i, sigs, n_1), nn))! o \end{array} \right) \end{array} \right) \end{aligned}$$

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

July 24, 2018

æ

26 / 31

<ロト <回ト < 回ト < 回ト

Feedback II

Definition (*is_Solution*)

$$\begin{split} &is_Solution \ (i, o, m, n, f, sig) \triangleq \\ & \left(\left(\forall sigs \bullet \left(\begin{array}{c} (\forall nn \bullet \# (sigs nn) = (m-1)) \Rightarrow \\ (\forall nn \bullet \\ (sig nn = \\ (f \ (\lambda \ n1 \bullet f_PreFD \ (sig, i, sigs, n1), nn))!o \end{array} \right) \right) \right) \end{split}$$

Kangfeng Ye, Simon Foster, Jim Woo

July 24, 2018

æ

27 / 31

イロト イヨト イヨト イヨト

Outline

2 Simulink Blocks

3 Block Compositions

æ

<ロト <回ト < 回ト < 回ト

Case Study

Latch I


```
definition "latch ≡
  ((((UnitDelay 0 (*3*) ||<sub>B</sub> Id) ;; (LopOR 2 (*1*)))
  ||<sub>B</sub>
  (Id ;; LopNOT (*2*))
  ) ;; (LopAND 2) (*Latch_1*) ;; Split2
  ) f<sub>D</sub> (0,0)"
```

Kangfeng Ye, Simon Foster, Jim Woo

UTP/Simulink

July 24, 2018

э.

29 / 31

イロト イヨト イヨト イヨト

Latch II

```
fun latch_rec_calc_output:: "(nat ⇒ real) ⇒ (nat ⇒ real) ⇒ nat ⇒ real" where
"latch_rec_calc_output S R 0 =
   (if R 0 = 0 then (if S 0 = 0 then 0 else 1.0) else 0 )" |
"latch_rec_calc_output S R (Suc n) =
   (if R (Suc n) = 0 then (if S (Suc n) = 0 then (latch_rec_calc_output S R (n)) else 1.0) else 0)"
```

```
abbreviation "latch_simp_pat_f' ≡ (λx na. [
latch_rec_calc_output (λn1. hd (x n1)) (λn1. x n1!(Suc 0)) (na)])<sup>[*</sup>
```

abbreviation "latch_simp_pat' \equiv FBlock ($\lambda x n$. True) 2 1 latch_simp_pat_f'"

```
lemma SimBlock_latch_simp':
    "SimBlock 2 1 latch_simp_pat'"
    using SimBlock_latch_simp latch_simp_pat_f_eq
    by simp
lemma latch_simp:
    "latch = latch_simp_pat'"
    proof - [325 lines]
    qed
```

Kangfeng Ye, Simon Foster, Jim Woo

July 24, 2018

30 / 31

Latch III

```
(* A SR AND-OR latch:
S
     R Action
        No change
0
     0
1
     0
         1
x
     1
          0
*)
text {* @{text "latch_req_00"}: if R is true, then the output is always false. *}
lemma latch req 00:
  " ((∀ n::nat • (
       (\lambda x n. ((hd(x n) = 0 \lor hd(x n) = 1) \land (hd(tl(x n)) = 0 \lor hd(tl(x n)) = 1)))
           (&inouts) («n»))::sim state upred)
     1 Ln
     ((∀ n::nat •
        ((\#_u(\$inouts («n»)_a)) =_u «2») \land
        ((\#_{II}(\text{sinouts}' (\ll n \gg)_{a})) =_{II} \ll 1 \gg) \land
        (\text{head}_u(\text{tail}_u(\text{sinouts } (\langle n \rangle)_a)) \neq_u 0) \Rightarrow (\text{head}_u((\text{sinouts} (\langle n \rangle)_a)) =_u 0))
     )) □ latch"
```

Kangfeng Ye, Simon Foster, Jim Woo

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

Case Study

[CMW13] Ana Cavalcanti, Alexandre Mota, and Jim Woodcock.
Simulink timed models for program verification.
In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Theories of Programming and Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, volume 8051 of Lecture Notes in Computer Science, pages 82–99. Springer, 2013.

[MM07] Nicolae Marian and Yue Ma. Translation of Simulink Models to Component-based Software Models, pages 274–280. Forlag uden navn, 2007.

・ロト ・回ト ・ヨト