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S.1 Simulation design

We simulate forecast errors as in DM and Clark (1999). In particular, we first simulate

a vector of forecast innovations from a bivariate standard normal, (v1t, v2t)
′ ∼ N(02, I2).

We then introduce contemporaneous correlation by taking

 u1t

u2t

 =

 √k 0

ρ
√

1− ρ2


 v1t

v2t

 ,

and serial correlation by taking

e1t =

∑q
j=0 θ

ju1t−j√∑q
j=0 θ

2j

e2t =

∑q
j=0 θ

ju2t−j√∑q
j=0 θ

2j
.

In all cases, we use 10,000 replications and a quadratic loss function, i.e. dt = e21t − e22t.

The expected loss differential is zero for k = 1, so we use k = 1 to evaluate size and

k = 1 + c/
√
T for c = 1, . . . , 30 to evaluate power.
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We use T = 40 and T = 120 as these samples correspond to 10 years and 30 years of

quarterly data, and therefore match the dimension of our samples in the first empirical

analysis. The objective of this Monte Carlo exercise is to experiment with a variety of

bandwidths with a design and sample size that is reasonable in the context of forecast

evaluation.

Our choice of candidates is informed by recommendations and practice in the theo-

retical and empirical literature. One popular criterion for bandwidth choice is based on

minimising the MSE for the estimates σ̂. For the WCE-B, Newey and West (1994) show

that the optimal bandwidth, in minimal MSE sense, is proportional to M =
⌊
T 1/3

⌋
;

for the WPE-D, Delgado and Robinson (1996), Phillips (2005) and Sun (2013) show

that the optimal bandwidth, in MSE sense, is proportional to
⌊
T 4/5

⌋
. More recently,

alternative criteria have been proposed to define optimal bandwidths. These are based

on the fact that in the context of testing, our interest in estimates σ̂ depends on the fact

that these affect the properties, in terms of type 1 or type 2 error, of the test. Thus,

an estimate may well be a poor choice if it causes poor type 1 or type 2 error perfor-

mances, and this regardless of the MSE of such estimate. This approach was pioneered

by Sun, Phillips and Jin (2008), also see Sun (2013), Sun (2014), Lazarus, Lewis, Stock

and Watson (2018) and Sun (2018) for further discussion. For example, Sun (2014)

shows that taking as criterion the minimum type 2 error subject to control of the type

1 error, the resulting optimal WCE-B bandwidth has larger order of magnitude than

the minimum MSE optimal bandwidth. Conversely, for the WPE-D Sun (2013) shows

that the bandwidth that minimises the Coverage Probability Error is proportional to⌊
T 2/3

⌋
. In all these cases, the optimal bandwidth requires the knowledge of a scaling

factor that typically depends on the lower order bias generated by the steepness of the

spectrum in the neighborhood of the origin. This may be estimated in a preliminary

step, thus making automatic bandwidths feasible, however, this adds some complexity

and makes the results dependent on this intermediate step. To avoid this inconvenience,
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this scaling factor is sometimes approximated as a constant, and the performance of this

naive choice is analysed in Monte Carlo simulations. For example, with standard crit-

ical values, Abadir, Distaso and Giraitis (2009) recommend m =
⌊
T 2/3

⌋
, whereas with

critical values from fixed-smoothing asymptotics Lazarus et al. (2018) recommend the

bandwidth rules M =
⌊
1.3T 1/2

⌋
for the WCE-B and 2m =

⌊
0.4T 2/3

⌋
, or m =

⌊
0.2T 2/3

⌋
,

for the WPE-D. We notice, however, that the Monte Carlo exercises used in these ex-

periments are very different from ours both in the design and the sample sizes, and may

not necessarily provide a good indication for the problem of forecast evaluation.

S.2 Size analysis

To evaluate size, we set k = 1. Results in Clark (1999) suggest only limited sensitivity

of size to ρ and θ, so we fix ρ = 0.5 and θ = 0.75, and investigate the effect of increasing

the serial correlation with q. DM, Clark (1999) and Harvey, Leybourne and Whitehouse

(2017) fix q to 1, in our case instead q is set to range between 1 and 5. With this design,

as q increases the processes e1t and e2t become similar to an AR(1) with parameter θ.1

In Tables S2–S2 we report results of the Monte Carlo, with theoretical size set to 5%.

In the first part of the experiment, we study the size properties treating the estimates of

σT as consistent and using standard asymptotics, i.e. the limit normal distribution, to

compute the empirical size. In Table S2 we report the empirical size of the tests when the

WCE-DM, WCE-B and WPE-D are used to estimate σT using standard asymptotics.

When using the WCE-DM estimate, negative estimates are possible. We treat these

instances as rejections of the null hypothesis.23

For the WCE-B we use M =
⌊
T 1/3

⌋
and M =

⌊
T 1/2

⌋
, and for the WPE-D we use

m =
⌊
T 1/3

⌋
, m =

⌊
T 1/2

⌋
and m =

⌊
T 2/3

⌋
. The choice of the first bandwidth for the

1In S.5.1, we report a size study for θ = {−0.5, 0, 0.5}.
2We discuss these occurrences in S.5.2.
3In S.5.3, we report a size study for the case in which the innovations are drawn from an asymmetric

distribution.

3



WCE-B is motivated by the fact that the optimal bandwidth, in minimum MSE sense,

is obtained setting M proportional to
⌊
T 1/3

⌋
, see for example Newey and West (1994).4

The second bandwidth, M =
⌊
T 1/2

⌋
, is chosen because existing Monte Carlo evidence for

fixed-b asymptotics suggests that longer bandwidths are associated with better empirical

size, it is therefore interesting to compare the performance of the same test statistic

when standard and fixed-smoothing asymptotics are used. As for the bandwidths for

the WPE-D, in samples as small as the ones of this exercise, even m =
⌊
T 2/3

⌋
spans a

substantial part of the interval (0, π), and the estimate of σT with this bandwidth may

therefore be subject to too much bias. The other two bandwidths are therefore chosen

to limit this bias, and to allow comparison with the fixed-m asymptotics.5

In general, Table S2 shows that, as the serial correlation increases with q, the size

of the test deteriorates, although the size distortion is less serious in the larger sample.

Comparing the results when WCE-B is used, on balance we find that M =
⌊
T 1/3

⌋
yields

better size properties, at least for small values of q. The comparison between using the

WCE-B with M =
⌊
T 1/3

⌋
and the WCE-DM estimate is less clear cut in this instance.

The DM estimate delivers better size properties in the large sample, but using the WCE

with Bartlett kernel helps avoiding the very severe size distortion occurring in the small

sample with q = 4 or q = 5 when the DM estimate is used.

For the WPE-D, we find that the bandwidth m =
⌊
T 2/3

⌋
is too long for the small

samples used in this investigation: the bandwidth m =
⌊
T 1/2

⌋
yields better size in most

cases, although a certain size distortion still occurs, especially in the smallest sample.

Comparing the results for the three cases in which WPE-D is used, corresponding to

the three different bandwidths, the choice m =
⌊
T 1/2

⌋
limits two alternative sources of

size distortion: the lower order bias in the estimation of σT at higher frequencies, which

affects m =
⌊
T 2/3

⌋
most, and the high variance of the estimate, which is more a problem

4In S.5.4 we also consider the automatic procedures from Newey and West (1994).
5Monte Carlo results for bandwidths proportional to

⌊
T 4/5

⌋
, reported in S.5.5, indicate large size

distortions and, therefore, we do not recommend using these bandwidths.
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Table S2: Size of tests with standard asymptotics

T=40

WCE WPE
q DM

⌊
T 1/3

⌋ ⌊
T 1/2

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋ ⌊
T 2/3

⌋
1 0.075 0.089 0.109 0.093 0.075 0.081
2 0.095 0.106 0.116 0.095 0.082 0.106
3 0.115 0.120 0.121 0.090 0.089 0.137
4 0.141 0.135 0.128 0.096 0.102 0.163
5 0.173 0.153 0.133 0.098 0.112 0.179

T=120

WCE WPE
q DM

⌊
T 1/3

⌋ ⌊
T 1/2

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋ ⌊
T 2/3

⌋
1 0.058 0.068 0.076 0.084 0.062 0.064
2 0.057 0.074 0.079 0.079 0.058 0.070
3 0.064 0.086 0.084 0.082 0.063 0.089
4 0.073 0.097 0.090 0.082 0.069 0.108
5 0.085 0.111 0.097 0.085 0.077 0.128
Note: empirical rejection frequencies for tests of equal predic-

tive ability at 5% nominal size using standard normal asymp-

totics for various MA(q) processes with θ = 0.75 and alterna-

tive estimates of the long run variance. For the WCE, DM is

the WCE with the truncated kernel as in DM and h − 1 = q,⌊
T 1/3

⌋
and

⌊
T 1/2

⌋
are the WCE with the Bartlett kernel and

M =
⌊
T 1/3

⌋
and M =

⌊
T 1/2

⌋
. For the WPE, we use the

Daniell kernel with m =
⌊
T 1/3

⌋
, m =

⌊
T 1/2

⌋
and m =

⌊
T 2/3

⌋
.

when the shortest bandwidth, m =
⌊
T 1/3

⌋
, is used. Bearing in mind that our focus is on

small samples, the WPE estimate with bandwidth m =
⌊
T 1/2

⌋
is overall the best choice.

In Table S2 we report results when the properties of the estimates of σT and of the

test statistic are derived assuming fixed-smoothing asymptotics. In columns WCE, we

use (6)–(7), with M =
⌊
T 1/3

⌋
, M =

⌊
T 1/2

⌋
, and M = T , and fixed-b asymptotics, with

limit (8); in columns WPE, we use the estimate (11) with m =
⌊
T 1/4

⌋
, m =

⌊
T 1/3

⌋
and

m =
⌊
T 1/2

⌋
and asymptotics from (12). Bandwidths M =

⌊
T 1/3

⌋
and M =

⌊
T 1/2

⌋
for

the WCE-B means that the same test statistic is used both in Table S2 and Table S2,

and the difference in the empirical size in the two tables is due only to the different
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Table S2: Size of tests with fixed-smoothing asymptotics

T=40

WCE WPE
q
⌊
T 1/3

⌋ ⌊
T 1/2

⌋
T

⌊
T 1/4

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋
1 0.059 0.051 0.054 0.044 0.044 0.051
2 0.068 0.055 0.054 0.043 0.043 0.052
3 0.082 0.056 0.054 0.037 0.041 0.057
4 0.095 0.061 0.057 0.039 0.039 0.065
5 0.105 0.064 0.056 0.039 0.043 0.074

T=120

WCE WPE
q
⌊
T 1/3

⌋ ⌊
T 1/2

⌋
T

⌊
T 1/4

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋
1 0.057 0.050 0.049 0.050 0.047 0.047
2 0.059 0.047 0.048 0.044 0.046 0.044
3 0.071 0.051 0.048 0.045 0.045 0.049
4 0.081 0.055 0.048 0.043 0.043 0.052
5 0.093 0.061 0.055 0.043 0.044 0.057
Note: empirical rejection frequencies for tests of equal predic-

tive ability at 5% nominal size using fixed-smoothing asymp-

totics for various MA(q) processes with θ = 0.75 and alterna-

tive estimates of the long run variance. For the WCE, we use

the Bartlett kernel withM =
⌊
T 1/3

⌋
, M =

⌊
T 1/2

⌋
andM = T .

For the WPE, we use the Daniell kernel with m =
⌊
T 1/4

⌋
,

m =
⌊
T 1/3

⌋
and m =

⌊
T 1/2

⌋
.

critical values. Bandwidth M = T , on the other hand, has been proposed when fixed-b

asymptotics is used, by Kiefer and Vogelsang (2002). Likewise, for the WPE-D estimate,

bandwidths m =
⌊
T 1/3

⌋
and m =

⌊
T 1/2

⌋
allow for a comparison with results from

Table S2. The size distortion for m =
⌊
T 2/3

⌋
documented in Table S2 is due to the bias

in the estimation of the long run variance and therefore it cannot be improved upon with

fixed-m asymptotics. Instead, we consider m =
⌊
T 1/4

⌋
: this is too short to be considered

for standard asymptotics, as m = 2 when T = 40, but fixed-m asymptotics provides a

useful justification for this choice. As the Monte Carlo exercise in Hualde and Iacone

(2015) shows that the best size is achieved for the lowest bandwidths, m =
⌊
T 1/4

⌋
is a

very interesting choice.
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Comparing Tables S2 and S2, we find that fixed-smoothing asymptotics always im-

proves the empirical size, yielding results closer to the prescribed 5%. Moreover, with

WCE-B the empirical size is better the larger is the bandwidth, whereas with the WPE-

D the empirical size is more precise the smaller is m. Indeed, we find that the bandwidth

M =
⌊
T 1/3

⌋
in the WCE-B still yields some size distortion, even when fixed-b asymp-

totics is used; results for m =
⌊
T 1/2

⌋
for the WPE-D are also not entirely satisfactory,

especially in the T=40 sample. Overall, with fixed-b asymptotics it seems desirable to

choose bandwidths M longer than what we would consider when standard asymptotics

is used; this result is mirrored for fixed-m asymptotics, in this case, the bandwidths

could be shorter than what is usually recommended under standard asymptotics.

In summary, in our Monte Carlo exercise we find that the DM test with the WCE-

DM may be subject to relevant size distortion in small samples, and that alternative

estimates of the long run variance may help to limit this size distortion, but not to

completely restore the theoretical 5% size. Fixed-smoothing asymptotics alleviates the

size distortion, and may eliminate it completely, when a long bandwidth is used for the

WCE-B or when a short bandwidth is used for the WPE-D.

S.3 Power analysis

The previous exercise shows that some tests of equal predictive accuracy give rise to

relevant size distortion, and we, therefore, do not recommend using those tests. To

choose between the remaining tests, that are broadly correctly sized, we now study the

power of the tests.

In this experiment, we only consider test statistics in which σT is estimated as the

WCE-B or as WPE-D, and only use critical values from fixed-smoothing asymptotics.6

Notice that we also include two cases in which even the non-standard asymptotics does

not completely eliminate the size distortion: when σT is estimated with M =
⌊
T 1/3

⌋
6A power comparison between standard and fixed-smoothing asymptotics is reported in S.5.6.
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for the WCE-B and m =
⌊
T 1/2

⌋
for the WPE-D. In this way, we are able to observe

the power loss associated to using M =
⌊
T 1/2

⌋
for the WCE-B, instead of M =

⌊
T 1/3

⌋
.

We keep m =
⌊
T 1/2

⌋
for the WPE-D for a similar power comparison against the case in

which the WPE-D with m =
⌊
T 1/3

⌋
is used.

To evaluate power we set k = 1 + c/
√
T for c = 1, . . . , 30. As in the size exercise, we

fix ρ = 0.5, however since in this part of the exercise we are interested in power, rather

than in size distortion, we fix θ = 0.7 We also compare the tests with fixed-smoothing

asymptotics against a benchmark case in which σT is known. With samples as small as

the ones used in our experiment, this benchmark is unfeasible. If a very large sample

is available, this situation can be interpreted as a limit case of the test when a WCE-B

with b → 0 or a WPE-D with m → ∞ are used, so that the replacement of σ2
T with

its estimate is negligible and asymptotic normality is justified. Thus, in our experiment

this benchmark should be the upper bound for the empirical power functions.

The simulated empirical power is in Figure S1. Previous simulations in Kiefer and

Vogelsang (2005), in Hualde and Iacone (2015) and in Lazarus et al. (2018) found that

the power is higher the smaller is M or the larger is m, and our results are consistent

with them. The test with statistic with known σ2
T has the highest power, as expected.

It is worth noticing, however, that the power loss due to estimating σT is minimal,

especially when the WCE-B with M =
⌊
T 1/3

⌋
or M =

⌊
T 1/2

⌋
is used. Overall, the

only case in which we observe a remarkable power loss is for M = T when the WCE-B

is used. For this bandwidth choice, the condition b → 0 as T → ∞ is certainly not

justifiable so the power loss with respect to the unfeasible benchmark is not going to

disappear as the sample size increases. We also verify that the power difference between

using M =
⌊
T 1/2

⌋
instead of M =

⌊
T 1/3

⌋
for the WCE-B is very limited; to a sightly

less extent, this is also true of using m =
⌊
T 1/2

⌋
instead of m =

⌊
T 1/3

⌋
for the WPE-D.

Recommended bandwidth. Considering size control and power loss in our Monte

7Results when autocorrelation is preserved under the alternative are reported in S.5.7
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Figure S1: Finite sample local power
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The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null by

c/
√
T . U refers to the unfeasible case in which the unknown variance is used and the test statistic has

standard normal limit distribution. For the feasible tests, fixed-smoothing asymptotics is used. WCE-B

is for the WCE with Bartlett kernel with M =
⌊
T 1/3

⌋
, M =

⌊
T 1/2

⌋
or M = T ; WPE-D for the WPE

with Daniell kernel and m =
⌊
T 1/2

⌋
, m =

⌊
T 1/3

⌋
or m =

⌊
T 1/4

⌋
.
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Carlo experiment, we recommend M =
⌊
T 1/2

⌋
for the WCE-B and m =

⌊
T 1/3

⌋
for the

WPE-D.

Our bandwidths recommendations are consistent with Lazarus et al. (2018), as their

rule m =
⌊
0.2T 2/3

⌋
with T = 40 and T = 120 generates bandwidths m = 2 and m = 4

respectively, which are very close to m = 3 and m = 4 that we use with the rule

m =
⌊
T 1/3

⌋
(indeed, for T = 120 both rules give the same bandwidth).

S.4 Comparison with the bootstrap

The bootstrap is a widely used alternative to using asymptotic approximations in tests

for equal predictive ability. For this reason, in this section, we perform a Monte Carlo

analysis of the size and power of the tests for equal predictive ability using bootstrap

critical values, and make a comparison with the results obtained using fixed-smoothing

asymptotics.

Bootstrap critical values are computed using the overlapping stationary block-bootstrap

of Politis and Romano (1994) with a circular scheme, as described in Appendix C. In

Table S4, we report the size of tests of equal predictive ability using bootstrap critical

values for various MA processes with ρ = 0.5, θ = 0.75 and alternative estimates of

the long run variance. For the WCE, we use the Bartlett kernel with M =
⌊
T 1/3

⌋
,

M =
⌊
T 1/2

⌋
and M = T . For the WPE, we use the Daniell kernel with m =

⌊
T 1/4

⌋
,

m =
⌊
T 1/3

⌋
and m =

⌊
T 1/2

⌋
. Results in Table S4 indicate that the bootstrap test

dominates standard asymptotics and is correctly sized regardless of the choice of M (for

the test using WCE) or m (for the test using WPE).

In Figures S2-S3, we report the finite sample local power comparison of fixed-b and

fixed-m asymptotics with the bootstrap. As for the power exercise in S.3, we fix ρ = 0.5

and θ = 0. For additional comparison, we also plot the size-adjusted power for the

statistics of interest: this is the local power that we would obtain using the test statistic
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Figure S2: Finite sample local power: fixed-b vs bootstrap
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The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null by

c/
√
T . U refers to the unfeasible case in which the unknown variance is used and the test statistic has

standard normal limit distribution. Size-Adjusted refers to the case in which simulated size-adjusted

critical values are used. For the feasible tests, fixed-b or bootstrap critical values are used. The long

run variance is estimated using the WCE with Bartlett kernel with M =
⌊
T 1/2

⌋
(left panel) or M = T

(right panel).
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Figure S3: Finite sample local power: fixed-m vs bootstrap
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The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null by

c/
√
T . U refers to the unfeasible case in which the unknown variance is used and the test statistic has

standard normal limit distribution. Size-Adjusted refers to the case in which simulated size-adjusted

critical values are used. For the feasible tests, fixed-m or bootstrap critical values are used. The long run

variance is estimated using the WPE with Daniell kernel with m =
⌊
T 1/3

⌋
(left panel) or m =

⌊
T 1/2

⌋
(right panel).
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Table S4: Size of tests with bootstrap

T=40

WCE WPE
q
⌊
T 1/3

⌋ ⌊
T 1/2

⌋
T

⌊
T 1/4

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋
1 0.047 0.043 0.042 0.037 0.040 0.042
2 0.047 0.042 0.044 0.036 0.036 0.040
3 0.048 0.041 0.044 0.036 0.036 0.040
4 0.050 0.040 0.043 0.031 0.032 0.042
5 0.053 0.039 0.043 0.030 0.031 0.043

T=120

WCE WPE
q
⌊
T 1/3

⌋ ⌊
T 1/2

⌋
T

⌊
T 1/4

⌋ ⌊
T 1/3

⌋ ⌊
T 1/2

⌋
1 0.055 0.052 0.052 0.047 0.045 0.051
2 0.051 0.045 0.045 0.041 0.045 0.045
3 0.051 0.045 0.047 0.042 0.042 0.045
4 0.053 0.045 0.046 0.040 0.042 0.044
5 0.053 0.043 0.043 0.039 0.037 0.043
Note: empirical rejection frequencies for tests of equal predic-

tive ability at 5% nominal size using bootstrap critical values

for various MA(q) processes with θ = 0.75 and alternative es-

timates of the long run variance. For the WCE, we use the

Bartlett kernel with M =
⌊
T 1/3

⌋
, M =

⌊
T 1/2

⌋
and M = T .

For the WPE, we use the Daniell kernel with m =
⌊
T 1/4

⌋
,

m =
⌊
T 1/3

⌋
and m =

⌊
T 1/2

⌋
.

of interest if we could eliminate any size distortion. Both figures indicate that the

bootstrap local power mimics size-adjusted local power quite well, especially when the

largest sample is used. However, we also find that using fixed-smoothing asymptotics

in testing we replicate the infeasible size-adjusted local power even better, especially in

the smallest sample.

Size results for the bootstrap test with the WCE-B estimate of the long run variance

are in line with Gonçalves and Vogelsang (2011). They prove that the naive block-

bootstrap has the same limiting distribution as the fixed-b asymptotic distribution.

However, Kiefer and Vogelsang (2005) show that the size properties of the naive block-

bootstrap test statistic depends on the choice of the block length. Gonçalves and Vo-
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gelsang (2011) also find that the power of the naive block-bootstrap closely follows the

power when using the fixed-b critical value. Our results, on the other hand, find some

divergence, at least in the smallest sample, thus suggesting that the consideration of

Kiefer and Vogelsang (2005) might apply here too. Overall, we conclude that in the set

up of our experiment both using fixed-smoothing asymptotics and bootstrapping deliver

good size and approximate well the correct (size-adjusted) local power function under

a local alternative. However, as the bootstrap is much more computationally intensive,

fixed-smoothing asymptotics may be preferred in forecast evaluations.

S.5 Additional results

In this section, we report additional Monte Carlo results that include the size of standard

asymptotics for θ = {−0.5, 0, 0.5} and the frequency of negative estimates for the long

run variance using the WCE-DM. We also include the size of tests with asymmetric data

generating process, the size for the WCE-B with automatic bandwidth selection and

size for the WPE-D with feasible minimum MSE bandwidth. Finally, we present power

comparisons with standard asymptotics, and power comparisons with autocorrelation.

S.5.1 Sensitivity to θ

In Table S5, we study the size properties of the DM test for various estimates of σT when

θ = {−0.5, 0, 0.5} assuming standard asymptotics. This exercise allows a comparison

with Table S2 in which θ = 0.75 s used, to appreciate the consequences of altering θ.

Consistently with results in Clark (1999), the size when the WCE-DM is used does

not seem to be sensitive to the change of the value of θ to θ = −0.5 or θ = 0.5; on the

other hand, the reduction in the dependence is associated with an improvement in the

size properties when the WCE-B or the WPE-D is used. In the cases of θ = −0.5 and

θ = 0.5, the evidence that the test with statistic standardized by the WPE-D estimate

14



Table S5: Size of tests with standard asymptotics for θ = {−0.5, 0, 0.5}

θ = −0.5

T=40 T=120
q WCE-DM WCE-B WPE-D WCE-DM WCE-B WPE-D
1 0.075 0.083 0.074 0.056 0.067 0.065
2 0.102 0.093 0.079 0.065 0.075 0.065
3 0.126 0.092 0.076 0.075 0.079 0.071
4 0.166 0.100 0.083 0.078 0.076 0.067
5 0.194 0.097 0.079 0.092 0.081 0.069

θ = 0

T=40 T=120
q WCE-DM WCE-B WPE-D WCE-DM WCE-B WPE-D
1 0.081 0.073 0.072 0.060 0.059 0.063
2 0.112 0.073 0.072 0.070 0.059 0.063
3 0.140 0.073 0.072 0.074 0.059 0.063
4 0.174 0.073 0.072 0.085 0.059 0.063
5 0.210 0.073 0.072 0.090 0.059 0.063

θ = 0.5

T=40 T=120
q WCE-DM WCE-B WPE-D WCE-DM WCE-B WPE-D
1 0.077 0.085 0.075 0.059 0.068 0.061
2 0.099 0.090 0.076 0.058 0.066 0.060
3 0.124 0.096 0.078 0.068 0.072 0.062
4 0.157 0.097 0.081 0.074 0.075 0.062
5 0.196 0.097 0.080 0.086 0.075 0.065
Note: empirical rejection frequencies for tests of equal predictive ability at 5%

nominal size using standard normal asymptotics for various MA(q) processes

and alternative estimates of the long run variance: WCE-DM is for the WCE

with the truncated kernel as in DM, WCE-B is for WCE with the Bartlett

kernel and M =
⌊
T 1/3

⌋
, and WPE-D for the WPE with Daniell kernel and

m =
⌊
T 1/2

⌋
. Results in the top panel are simulated using θ = −0.5, results in

the middle panel refer to θ = 0 and results in the bottom panel are simulated

using θ = 0.5.
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with m =
⌊
T 1/2

⌋
gives best size is even more compelling. In the case of θ = 0, the

simulations show that the test with WCE-DM is heavily oversized. This is due to the

fact that one does not know that θ is 0 and, therefore, adds more lagged autocovariances,

increasing the risk of a negative estimate and of a larger bias.

S.5.2 Negative estimates of the long run variance

In Table S5, we study the frequency of negative estimates for σ̂2
DM , the WCE estimate

with the rectangular kernel (WCE-DM) defined in (4).

Table S5: Frequency of negative estimates for the long run variance

T=40 T=120
HHH

HHHq
θ −0.50 0.00 0.50 0.75 −0.50 0.00 0.50 0.75

1 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
2 0.002 0.005 0.001 0.000 0.000 0.000 0.000 0.000
3 0.006 0.014 0.007 0.003 0.000 0.000 0.000 0.000
4 0.019 0.033 0.017 0.007 0.000 0.000 0.000 0.000
5 0.038 0.060 0.037 0.019 0.000 0.002 0.001 0.000

Note: frequency of negative estimates of the long run variance using the WCE

estimator with the truncated kernel as in DM for various MA(q) processes.

The table shows that the risk of negative long run variance estimates is higher in the

small sample, at large forecasting horizons and for low values of |θ|. For θ = 0, q = 5 and

T = 40, the size distortion due just to a negative estimate σ̂2
DM < 0 is actually larger

than the nominal size. This is due to the fact that one does not know that θ is 0 and

therefore adds more lagged autocovariances, increasing the risk of a negative estimate.

S.5.3 Asymmetric distribution

In Table S5, we study the size properties of the DM test for various estimates of σT

assuming standard and fixed-smoothing asymptotics for the case in which the innovations

(v1t, v2t)
′ are drawn from a standardized χ2

5.
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Table S5: Size of tests with asymmetric data generating process

Standard asymptotics

T=40 T=120
WCE WPE WCE WPE

q DM bT 1/3c bT 1/2c bT 1/3c bT 1/2c DM bT 1/3c bT 1/2c bT 1/3c bT 1/2c
1 0.063 0.082 0.096 0.083 0.066 0.052 0.068 0.075 0.078 0.060
2 0.084 0.101 0.109 0.084 0.074 0.052 0.068 0.085 0.081 0.060
3 0.105 0.111 0.110 0.083 0.081 0.065 0.090 0.084 0.079 0.066
4 0.126 0.125 0.115 0.081 0.090 0.071 0.100 0.090 0.081 0.067
5 0.168 0.146 0.129 0.093 0.108 0.085 0.119 0.097 0.084 0.080

Fixed-smoothing asymptotics

T=40 T=120
WCE WPE WCE WPE

q bT 1/3c bT 1/2c bT 1/3c bT 1/2c bT 1/3c bT 1/2c bT 1/3c bT 1/2c
1 0.048 0.042 0.038 0.041 0.055 0.046 0.040 0.045
2 0.063 0.044 0.034 0.045 0.055 0.050 0.045 0.045
3 0.072 0.049 0.037 0.053 0.074 0.053 0.045 0.049
4 0.084 0.050 0.034 0.057 0.083 0.054 0.043 0.053
5 0.100 0.060 0.038 0.069 0.099 0.060 0.046 0.059
Note: empirical rejection frequencies for tests of equal predictive ability at 5% nominal size for various

MA(q) processes with θ = 0.75 and innovations (v1t, v2t)
′

drawn from a standardized χ2
5. The top

panel uses standard normal asymptotics and the bottom panel uses fixed-smoothing asymptotics for

alternative estimates of the long run variance. For the WCE, we use the truncated rectangular kernel

as in DM and the Bartlett kernel with M =
⌊
T 1/3

⌋
and M =

⌊
T 1/2

⌋
. For the WPE, we use the

Daniell kernel with m =
⌊
T 1/3

⌋
and m =

⌊
T 1/2

⌋
.

Results are in line with the main results in Tables S2–S2. In particular, we can

observe severe size distortions for the tests with standard asymptotics for both sample

sizes. Fixed-smoothing asymptotics always improves the empirical size, yielding results

close to the prescribed 5%. As in Table S2, we find that the bandwidth M =
⌊
T 1/3

⌋
in the WCE-B still yields some size distortion, even when fixed-b asymptotics is used;

results for m =
⌊
T 1/2

⌋
for the WPE-D are also not entirely satisfactory, especially in

the T=40 sample. As for the case with Gaussian innovations, with fixed-b asymptotics

it seems desirable to choose the bandwidth M =
⌊
T 1/2

⌋
, while with fixed-m asymptotics

it seems desirable to choose the bandwidth m =
⌊
T 1/3

⌋
.
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S.5.4 Automatic bandwidth selection

In Table S5, we study the application of the automatic bandwidth selection of Newey

and West (1994), when θ = 0.75. We compare the performance for the naive M =
⌊
T 1/3

⌋
bandwidth (already available in Table S2) against the Newey and West (1994) estimate

with prewhitening as in Newey and West (1994), and against a third estimate in which

the same procedure is applied, but without prewhitening.

Table S5: Automatic bandwidth selection for WCE-B with standard asymptotics

T=40 T=120

q
⌊
T 1/3

⌋
Prew No Pre

⌊
T 1/3

⌋
Prew No Pre

1 0.089 0.129 0.125 0.068 0.074 0.079
2 0.106 0.122 0.130 0.074 0.066 0.082
3 0.120 0.110 0.129 0.086 0.067 0.085
4 0.130 0.107 0.135 0.097 0.065 0.092
5 0.153 0.108 0.140 0.111 0.068 0.096
Note: empirical rejection frequencies for tests of equal predic-

tive ability at 5% nominal size using standard normal asymp-

totics for various MA(q) processes with θ = 0.75 and alter-

native bandwidths for the WCE using the Bartlett kernel:⌊
T 1/3

⌋
, the Newey and West (1994) estimate with prewhiten-

ing (Prew) and the Newey and West (1994) against the same

procedure without prewhitening (No Pre).

In general, using the Newey and West (1994) estimate without prewhitening does

not yield size as good as when the näıve M =
⌊
T 1/3

⌋
estimate is employed. The pre-

withening, on the other hand, does provide some size correction, but the better size for

larger q is mostly offset by worse size when q = 1. This suggests that the automatic

Newey and West (1994) procedure would not fare well when the dependence is relatively

weak. Table S5, therefore, shows that even the automatic bandwidth selection with

prewhitening from Newey and West (1994) does not offer a complete correction of the

size distortion, when standard asymptotics is used.

18



S.5.5 Minimum MSE bandwidth for the WPE

In this section, we report the empirical size of equal predictive ability tests when the

WPE estimate of the long run variance with feasible minimum MSE bandwidth is used.

To derive the minimum MSE bandwidth, we follow Phillips (2005) and Sun (2013).

For the average periodogram with bandwidth m, the bias is

Bias =
(m
T

)2
B, where B = −π

2

6

∞∑
j=−∞

j2γj.

Using the fact that
2πI(λj)

σ2 →d
1
2
χ2
2, V ar

(
2πI(λj)

σ2

)
→ 2×2

4
= 1 then for fixed m

V ar

(
1
m

∑m
j=1 2πI (λj)

σ2

)
→ 1

m

and the asymptotic MSE is m4

T 4B
2 + 1

m
σ4. Thus, ∂

∂m

(
m4

T 4B
2 + 1

m
σ4
)

=
(

4m
3

T 4B
2 − 1

m2σ
4
)

and from 4m
3

T 4B
2 − 1

m2σ
4 = 0 we get 4m

5

T 4B
2 = σ4 and mMSE = T 4/5

(
σ4

4B2

)1/5
.

The bias factor B is usually unknown, but when ut = φut−1 + εt with |φ| < 1 and

εt iid(0, ω), then σ2 = ω2

(1−φ)2 and B = −π2

6
2φ

(1−φ)4ω
2, so we approximate σ4/B2 with a

common plug-in method: we assume such AR(1) model, estimate φ and then replace the

estimated value in the formula for mMSE. Finally, the feasible MSE bandwidth m̂MSE

is given by the integer part of mMSE, when this is between 1 and T/2, and by 1 or T/2

otherwise.

Notice that the minimum MSE bandwidth trades off bias and variance, but this

may not be the best criterion for application in tests, as in testing we are looking

at different properties, namely, minimum size distortion and maximum power. With

standard asymptotics, both the bias and variance of the estimate of the long run variance

cause size distortion in the test, whereas with fixed-smoothing asymptotics the effect of

the variance of the estimate of the long run variance is accounted for by the change in

the distribution of the test statistic, and we are only concerned about the effect due
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Table S5: Size of tests with minimum MSE bandwidth

T=40 T=120

q Standard Fixed-m Standard Fixed-m
1 0.083 0.071 0.072 0.066
2 0.095 0.075 0.068 0.061
3 0.104 0.081 0.074 0.066
4 0.115 0.087 0.082 0.073
5 0.121 0.092 0.092 0.078
Note: empirical rejection frequencies for tests of equal

predictive ability at 5% nominal size for various MA(q)

processes with θ = 0.75 using the WPE estimator of

the long run variance and the feasible minimum MSE

bandwidth. The test with standard asymptotics uses

standard normal critical values and the test with fixed-

m asymptotics uses critical values from a t2m, where m

is the feasible minimum MSE bandwidth.

to the (lower order) bias. This bias is stronger the larger is the bandwidth m, as with

larger bandwidths periodograms that are more distant from frequency zero are used to

estimate the spectral density at frequency zero. Bandwidths proportional to T 4/5 are

therefore more prone to causing size distortion in testing. Indeed, results in Table S5

indicate that, as for the Newey and West (1994) automatic bandwidth selection, the test

is oversized both when standard and fixed-m asymptotics are used. This is due to the

fact that the feasible minimum MSE bandwidth is larger than bT 1/4c, bT 1/3c or bT 1/2c

used in Table S2, resulting in a larger bias. For this reason, we do not recommend using

this bandwidth.

S.5.6 Power comparison with standard asymptotics

In this section, we analyze the power of the tests under standard asymptotics when

the long run variance is estimated. Results in Figure S4 refer to the case in which a

WCE estimate of the long run variance with Bartlett kernel is used, with M =
⌊
T 1/3

⌋
(left panels) and M =

⌊
T 1/2

⌋
(right panels). We take again as benchmark the limit
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Figure S4: Finite sample local power using WCE
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The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null by

c/
√
T . U refers to the unfeasible case in which the unknown variance is used and the test statistic

has standard normal limit distribution. For the feasible tests, the test statistic uses the WCE estimate

of the long run variance with Bartlett kernel with M =
⌊
T 1/3

⌋
(left panels) and M =

⌊
T 1/2

⌋
(right

panels). We use standard critical values (Standard) and fixed-b critical values (Fixed-b).
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Figure S5: Finite sample local power using WPE
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The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null by

c/
√
T . U refers to the unfeasible case in which the unknown variance is used and the test statistic has

standard normal limit distribution. For the feasible tests, the test statistic uses the WPE estimate of

the long run variance with Daniell kernel with m =
⌊
T 1/4

⌋
(left panels) and m =

⌊
T 1/3

⌋
(right panels).

We use standard critical values (Standard) and fixed-m critical values (Fixed-m).
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local power function obtained from the normal distribution, and we compare it to the

simulated local power functions both when standard asymptotics and when fixed-b are

used. Using standard asymptotics we would be misled into thinking that we attain

power comparable to the limit benchmark. However, this is spurious, as we can see

from the size distortion. Results are similar when using a WPE estimate of the long run

variance, as shown in Figure S5 where we use a WPE estimate of the long run variance

with Daniell kernel with m =
⌊
T 1/4

⌋
(left panels) and m =

⌊
T 1/3

⌋
(right panels).

S.5.7 Power with autocorrelation

In this section, we analyze the power of the test of equal forecast accuracy when auto-

correlation is preserved under the alternative. To this end we set k = 1 + c/
√
T for c =

1 . . . 30 as in the power study in S.3 but we set q = 5 and θ = 0.75 instead.

In Figure S6, we report the simulated power of the tests, computed using critical

values from fixed-smoothing asymptotics. The power ranking of the proposed methods

when the processes are autocorrelated is the same as in Figure S1, with smaller band-

widths M in WCE estimates (or, larger bandwidths m in WPE estimates) associated

with higher power, but notice again that some power may be spurious when M =
⌊
T 1/3

⌋
,

as we already discussed commenting on the size study.
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Figure S6: Finite sample local power with dependent innovations
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The figure displays empirical rejection frequencies at 5% nominal size for deviations from the null by

c/
√
T and MA(5) dependent innovations. The alternative estimates of the long run variance are: WCE-

B is for the WCE with Bartlett kernel with M =
⌊
T 1/3

⌋
, M =

⌊
T 1/2

⌋
or M = T ; WPE-D for the

WPE with Daniell kernel and m =
⌊
T 1/2

⌋
, m =

⌊
T 1/3

⌋
or m =

⌊
T 1/4

⌋
.
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