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Background
   � Algal biofuels

As the Earth’s population rises, and mean energy demands 
per populace advance at a pace year on year, despite mod-
ern efficiencies, and the expensive extraction of Earth’s 
finite greenhouse-warming fossil fuels engenders politi-
cal and economic conflict, it would be very foolish not 
to explore every avenue for alternative means of energy 
production. 

The sustainable production of biofuels from micro-
organisms has been an attractive alternative to fossil fuels 
for several decades. Recently, it has undergone a renais-
sance as a candidate to retard the increase of atmospheric 
carbon in the face of rising energy costs. Under optimal 
nutrient conditions microorganism populations can grow 
exponentially, yielding large quantities of biomass to make 
biodiesel [1–3] and commercially valuable byproducts [4]. 
Microorganisms, such as green algae, can also be induced 
to produce hydrogen gas (as discussed below) [5,6].

Photosynthetic microorganisms, such as microalgae, 
are particularly favored because of their ability to fix 
atmospheric carbon at a faster rate than plants without 

physically displacing food crops. Favored methods for 
intensive cultivation of algae for biofuel production are 
open raceway ponds, consisting of open-air recirculation 
channels, and closed bioreactors, with arrays of tubes 
or panels [1,7–10]. Current intensive schemes prefer fast-
growing species, such as Chlorella spp., that produce 
oily compounds when stressed (e.g., by nutrient depriva-
tion [11]). A lifecycle assessment of biodiesel production 
has shown raceway ponds to be the most economical 
in terms of energy and CO

2
 [3]. However, it may be 

better to culture fast-growing, salt-loving algae such as 
Dunaliella salina that are less susceptible to invasion by 
other species. These algae can be grown extensively in 
large unstirred ponds, and yet, under the right condi-
tions, can accumulate both lipids and b-carotene, albeit 
in smaller amounts than the most productive but vul-
nerable species [12]. For precise control, algae can be 
cultured intensively in tubular bioreactors.

Production of algal biodiesel involves three main 
phases: algal growth in open or closed photobioreactors; 
the application of stress (such as nitrogen deficiency) to 
increase the amount of lipid (fats and oils) per cell; and 
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harvesting and downstream pro-
cessing. In processing, lipids are first 
extracted from the cells and reacted 
with alcohols (typically methanol 
or ethanol) to form biodiesel and 
glycerol (a process referred to as 
transesterification) [2]. Biohydro-
gen production from algae typically 
involves a two-stage process [13]: cells 
are first grown in a bioreactor, and 
then transferred to sulfur-deficient 
media under anaerobic conditions 
where they undergo stress, resulting 

in the evolution of hydrogen gas. Hydrogen production 
can be sustained by cycling between sulfur-replete and 
sulfur-deficient media [14].

The production of high-value byproducts of algal 
growth (such as the nutrient supplement b-carotene) 
has been profitable for some time, but unsolved bioen-
gineering problems have held back microalgal biofuels 
from economic viability [1–3]. For commercial success, 
photobioreactors should be optimized within the prac-
tical constraints of engineering, and the fundamental 
limits of biology, chemistry and physics. 

In recent years, much progress has been made in 
understanding the physics of microalgal suspensions, 
employing mathematical descriptions of biased swim-
ming behavior and subjecting the models to detailed 
mathematical ana lysis [6,15–19], but these principles have 
not yet been harnessed to optimize the engineering of 
biofuel production. This is particularly true with regard 
to cell accumulation and hydrodynamic instabilities due 
to swimming behavior.

   � Swimming algae
It is estimated that 90% of all harmful algal bloom 
species in our oceans and lakes swim [20]. This star-
tling statistic illustrates that there is a distinct biologi-
cal advantage associated with swimming. Moreover, 
many microorganisms swim in preferred directions to 
improve their environmental conditions. For example, 
algae swim typically towards regions of weak light 
intensity and away from potentially damaging bright-
light conditions (termed phototaxis). Even in the dark, 
the typically negatively buoyant cells tend to swim 
upwards due to bottom-heaviness or sedimentary 
torques (gravitaxis), a strategy that may be advanta-
geous in murky ponds or deep water. This behavior 
is modified significantly in shear flow, leading cells to 
swim towards regions of downwelling fluid, a response 
called gyrotaxis [21]. This can lead to cell transport 
phenomena at rates that are much faster than swim-
ming alone. Important swimming genera, amongst 
others, include Dunaliella, Hematococcus, Heterosigma 

(a genus associated with harmful algal blooms) and 
Chlamydomonas.

However, the biased swimming behavior of algae is 
mostly overlooked or thrown out as an insignificant 
complication in bioreactor design; bioreactors typi-
cally are stirred or bubbled in an attempt to remove 
heterogeneity. This may be a mistake. In this article we 
shall describe several ways in which the mathematical 
ana lysis of swimming could provide a step-change in 
the way that photobioreactors are designed and cells 
harvested. 

   � The need for more detailed mathematical 
modeling in algal biofuel technology
Mathematics is the unifying core language of the sci-
ences. It is what allows us to quantify observations and 
place them within a mechanistic logical framework 
that symbolizes, summarizes and allows us to test our 
understanding. It could be argued that all rational state-
ments and descriptions of the mechanisms of a process 
are in essence mathematically or logically based, and 
that many scientific breakthroughs hinge on the suc-
cess of mathematical descriptions. From a collection of 
assumptions we can formulate models and by asking 
specific questions we can obtain exact answers. How-
ever, the answers are only as valid as the assumptions, 
and in many cases the uncertainty of the parameters 
and possible sensitive dependence of the nonlinear 
models occasionally renders the predictions difficult to 
interpret. 

Whilst mathematics is exact, mathematical modeling 
is more of an art; individuals from closely linked sub-
ject areas approach modeling differently, emphasizing 
dynamic, numerical, spatial and stochastic elements, 
and simplifying or complexifying to various degrees. 
It is essential to be able to compare and contrast the 
approaches, and so there is a need for the kind of style 
and rigor often observed in studies in the more abstract 
areas of mathematical biology and theoretical biophys-
ics. Furthermore, with the application of mathematical 
techniques to real-world problems comes the necessity 
for model simplification and the approximation of solu-
tions. For complex problems, mathematicians generally 
employ a two-pronged attack: asymptotic and numeri-
cal methods provide two distinct approximations that 
can together provide confidence in results. Some mod-
els can supply quantitative predictions, whereas others 
allow candidate mechanisms or hypotheses to be tested 
and are more qualitative in nature.

Modeling studies for algal biofuels are just starting 
to account for physical aspects of bioreactor design in 
growth dynamics [8,9,22]. Whilst the study of intracellu-
lar dynamics alone can yield new insights in managing a 
well-mixed suspension of algae to maximize the product 

Key terms

Phototaxis: Directed swimming motion 
in response to light. 

Gravitaxis: Directed swimming motion 
in response to gravity.

Gyrotaxis: Biased swimming motion 
due to a combination of gravitational 
and viscous torques, typically leading to 
cell focusing in downwelling regions of 
the fluid.

Bioconvection: Flow and patterns in 
suspensions of microorganisms due to 
biased swimming behavior.
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of interest [6], it is important to recognize the limitations 
of this approach. Spatial aspects may be incorporated 
in such descriptions implicitly, such as light absorption, 
but natural suspensions are inherently heterogeneous 
over a range of scales. In essence, algae have their own 
agenda of survival and proliferation; many species see fit 
to expend energy on swimming in preferred directions. 
For the economic viability of low-value products such 
as biofuels, bioreactor design must seek to minimize 
energy input. Industrial suspension mixing and cell har-
vesting requires large amounts of energy input, and thus 
cost. Yet many swimming algae have their own mecha-
nisms to induce suspension mixing (bioconvection; as 
discussed later) and natural cell accumulations can be 
exploited for cell harvesting [23]. In order to employ such 
potentially cost-reducing phenomena, it is desirable to 
understand mechanistically how the algae behave in a 
given flow, subject to nutrient and light conditions. For 
example, nutrient stress can lead cells to store protein 
and starch asymmetrically within the cell, which in 
turn affects their gyrotactic swimming behavior, mix-
ing and self-concentration [13,24]. An understanding of 
the behavior of one cell does not automatically lend itself 
to an understanding of many hydrodynamically and 
photosynthetically coupled cells. However, mathemati-
cal descriptions have been developed that can scale up 
the behavior of one cell to a continuum description of 
a living suspension of algae. The mathematical analyses 
of such descriptions have been particularly successful 
in describing pattern formation, such as bioconvec-
tion [16,25], and the transport of living suspensions of 
algae in laminar and turbulent flows in bioreactors [19]. 
However, there are significant mathematical challenges 
remaining. For instance, it is not clear how best to com-
bine the huge range of time and length scales necessary 
for applications in biofuels. Furthermore, the precise 
nature of the coupling between intracellular dynamics, 
through behavior to the macroscale and back again via 
shading and photosynthesis (amongst other coupling), 
has yet to be determined, modeled and utilized.

The aims of this article are twofold: we shall draw 
attention to the beneficial role that mathematicians and 
physicists can have in the development of biotechnologi-
cal methods; and we shall highlight what we believe 
to be the undervalued, critical impact of swimming 
behavior on the production of biofuel from algae. 

   � The limitations of this article
This article does not attempt to provide a full review of 
the literature, which is done elsewhere [16,25–27]. Instead, 
it describes some of the recent research interests of the 
authors and thus possibly puts undue weight on aspects 
of the work in which they have been involved. Previous 
reviews do not discuss the use of detailed mathematical 

descriptions involving fluid dynamics and biological 
behavior to explore the impact of cell swimming and 
intracellular dynamics on biofuel production.

To illustrate the importance and impact of math-
ematical modeling on all aspects of biofuel production 
from algae we shall focus on four key results that would 
not exist without it:

 � We shall begin by considering the mechanisms 
responsible for generating bioconvection patterns. In 
so doing we shall briefly describe the motion of an 
individual biflagellate, including stochastic aspects, 
before moving on up the scales to describe continuum 
approaches. We shall discuss applications of the mod-
els to predict the wavelength of bioconvection pat-
terns and the implications for growth in single and 
mixed cultures. We shall discuss using swimming 
cells to stir highly productive nonswimmers;

 � We shall present recent results on modeling and opti-
mizing hydrogen production from sulfur-stressed 
suspensions of algae;

 � We shall show how the parameters in our models, 
such as the mean and standard deviation of swim-
ming speeds, and the flagellar beat frequency, may be 
measured with ease using the technique of Differen-
tial Dynamic Microscopy (DDM), predicated on 
mathematical models of swimming behavior;

 � We shall describe theory to predict the dispersion of 
biased swimming microorganisms in laminar and 
turbulent flows in tubes, and present the startling 
conclusion that cells and nutrients separate as they 
travel down tubes. Finally, we shall suggest how cell 
focusing may be employed in bioreactor design.

Bioconvection & bioreactors
   � Single species: taxes & bioconvection

There are, of course, other taxes for stimuli beyond 
the three taxes described above (phototaxis, gravitaxis 
and gyrotaxis); for instance, many cells respond to 
chemical gradients and others can respond to mag-
netic fields. The biased swimming behavior invariably 
results in cells accumulating in certain regions of the 
fluid. Furthermore, the cells typically have a different 
density to the fluid in which they swim, which can 
cause instabilities and drive fluid flow over timescales 
of tens of seconds and length scales of centimeters. 
For instance, gravitactic (or phototactic) cells tend 
to accumulate at the upper surface of a shallow layer, 
leading to overturning instabilities and bioconvec-
tion patterns, as can be observed in Figure 1B [12,28–30]. 
Gyrotactic instabilities arise when small perturba-
tions in the fluid flow lead cells to swim towards 
relatively downwelling regions, forcing the fluid to 
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move downwards even quicker owing to the added 
mass of the cells [21,23,31]. This feedback loop leads to 
finely focused plumes of cells in nonmixed cultures 
(Figure 1A), vertical Hele-Shaw vessels (Figure 1C) and 
vertical tubes (Figure 1D). If the flow is driven down-
wards by a pressure gradient, the algae form plumes 
down the centre of the tube, but for upwelling flow 
the cells are driven to the cell wall. In a horizontal 
tube the bioconvection patterns are more complicated, 
even in the presence of a pressure gradient driving the 
flow (Figure 1E) [17]. 

Much theoretical work has been done to under-
stand these bioconvection structures [32–40]. Modeling 
involves the consideration of the swimming motion of 
individual swimmers [41], scaling up from individuals 

to a description of many cells in a 
small region [42,43], and thence to 
equations for a continuum descrip-
tion of a suspension [25]. See Box 1 
for more details of how suspensions 
of algae are modeled. See also the 
general reviews on bioconvec-
tion [16,25], recent progress on mod-
eling photo-gyro-gravitactic bio-
convection [44], modeling helical 
swimming trajectories [45], implica-
tions for the distribution of phyto-
plankton [46,47] and bioconvection 
in a stratified environment [48].

   � Bioreactors: biofouling  
& harvesting
Consider a tubular bioreactor with 
upwelling and downwelling compo-
nents. In the downwelling regions, 
gyrotactic swimming cells will 
accumulate centrally, away from 
the walls. There are three conse-
quences. First, there will be very 
little biofouling of the tube walls. 
Second, the light transmittance will 
be significantly affected: nonmixed 
culture f lasks of gyrotactic cells 
display plume structures, as in Fig-
ure 1A, and allow light to penetrate 
deep into the suspension or collec-
tions of tubes, termed ‘the cheese 
plant effect’ [18]. Third, the cells 
self-concentrate at precisely the cen-
tre of the tube, so this is the ideal 
location to harvest the cells, saving 
some of the considerable costs asso-
ciated with harvesting algae (note 
that phototaxis and gravitaxis may 
also offer efficient methods for cell 

harvesting). In regions with horizontal flow and upper 
boundaries, bioconvection will ensue, which may affect 
the form of the flow and mixing. In the upwelling lami-
nar regions of the flow, the cells tend to focus at the 
walls. Therefore, it would be wise to aerate this com-
ponent to facilitate gas exchange and prevent biofoul-
ing (typically, in bioreactors with airlifts it is indeed 
the ‘upcomer’ that is bubbled). Even in turbulent flow, 
cells spend more time in locally downwelling regions, 
leading to significant transport effects (as discussed 
later).

Light will also play an important role due to pho-
totaxis, generating preferential swimming motion and 
bioconvection [30].

A B

C

D

E

Figure 1. Depictions of bioconvection in suspensions of gyrotactic swimming green algae, 
Chlamydomonas augustae ([A], [C], [D] and [E]; can produce H2) and Dunaliella salina ([B]; 
biofuel candidate; used for production of β-carotene). (A) Bioconvection plumes in a culture 
flask (<105 cells cm-3). (B) Bioconvection pattern from above in a shallow layer (106 cells cm-3; 
depth 5 mm; diameter 5 cm; brightfield). (c) Bioconvection plumes in a vertical Hele-Shaw 
cell between two glass slides (106 cells cm-3; channel width 1 mm; height 2.5 cm; brightfield 
red light, no phototaxis; photo with J. O. Kessler). (D) A gyrotactic plume in an almost vertical 
cylinder of diameter 2 cm displaying a secondary ‘blip’ instability (105 cells cm-3). (E) More 
complex bioconvection structures are found from the side in a horizontal tube of diameter 2 cm 
(2.2 × 106 cells cm-3), even in the presence of a flow (mean flow speed is 8.3 × 10-3 cm s-1). Data 
taken from [17]. 



Mathematics for streamlined biofuel production from unicellular algae  Perspective

future science group www.future-science.com 57

   � Mixed species: stirring with swimmers
In a fully mixed suspension, the principle of com-
petitive exclusion for two species competing for the 
same resource dictates that the least fit species will be 
driven to extinction [49]. However, the fittest species 
are unlikely to synthesize large amounts of nonessential 
useful product, such as lipids.

Much is known about modeling single species algal 
growth in stirred culture (e.g., Fogg and Thake [50]), 
although there are surprising subtleties (e.g., micro-
algal synchronization [51]). Additionally, many algae 
(half of 300 species in Croft et al. [52]) acquire vitamins 
such as B12 from symbiotic bacteria; under bioreactor 
conditions algae will always be mixed with bacteria. 
Recent interest in biofuels has stimulated a surge in 
growth studies. Nitrogen limitation leads some species 
(such as Chlorella and Scenedesmus spp.) to amass 

triacylglycerides (esters used for biodiesel [7]). Further-
more, shading-induced light limitation is extremely 
important in bioreactors, as is invasion by alien species. 

Published experiments on growth in suspensions of 
algae have not considered the impact of bioconvection, 
which is in part due to the difficulty of describing both 
the short timescales of bioconvection and the longer 
timescales associated with growth. But mostly it is 
because bioconvection is obscured by standard culture 
protocols that incorporate mixing.

There are only a small number of studies on the 
growth of mixed species, but always in stirred cultures. 
Of these, several have focused on the effect of secreted 
chemicals (allelopathy [53]), predator–prey interac-
tions [54] or competition for nutrients [55]. Combina-
tions of freshwater species have been studied [56]: no two 
species grew as well when mixed. Particular emphasis 

Box 1. Modeling suspensions of swimming cells.

A key nondimensional parameter in fluid dynamics is the Reynolds number, Re, defined as a characteristic length scale, 
L, multiplied by a characteristic velocity, U, divided by the kinematic viscosity, n: Re = UL/n. It describes the relative 
strength of inertial to viscous effects. For microorganisms such as single-celled algae, diatoms and bacteria, Re is very 
small, indicating that inertia can, for the most part, be neglected; simple calculations reveal that if a bacterium stopped 
swimming it would come to rest over a distance less than 10-9 m in a time of 10-11 s. The consequence is that one need 
only consider a balance of forces and torques acting on a swimming cell. Disregarding here the typically complex 
swimming stroke of many microorganisms (but see [41] for simulations of swimming biflagellates in shear flows) we 
require a torque balance on each cell, accounting for rotation.

For gyrotactic cells, the key torques are viscous torques acting on the cell surface due to gradients in the flow, 
and gravitational torques such as the offset of the centre-of-mass from the centre-of-buoyancy of the cell (or even 
sedimentary torques due to body asymmetry) [25,32,41]. However, cells tend to swim stochastically, so one must also 
include these effects, which may be modeled using a ‘Fokker-Planck description’ [25], or a more complete description 
involving ‘generalized Taylor dispersion theory’ [43].

To cut a long and detailed story short, one can scale up from models of individuals to describe the mean cell swimming 
direction, Q, and diffusivity, D, of a blob of cells in a given flow. This then feeds into a continuum model for a dilute 
suspension of local concentration n that is subject to a macroscale fluid flow of velocity u. The cells drive the fluid flow, 
but gradients in the flow determine the direction in which cells swim and, ultimately, how they are distributed in the 
fluid. The fluid is assumed to be incompressible, such that

Newton’s second law, with mass per unit volume multiplied by acceleration on the left balancing the forces per unit 
volume on the right, provides the classical Navier-Stokes equations with a negative buoyancy term (second on the right) 
for cells:

where pe is the excess pressure, r is fluid density, r + Dr is the cell density, v is cell volume, g is the acceleration due to 
gravity and m is the fluid viscosity. The first term on the right is the force per unit volume due to pressure gradients, and 
the third is the force per unit volume due to viscous effects. Finally, we require a cell conservation equation

which balances the rate-of-change of cell concentration with cell fluxes on the right-hand-side due to advection by 
the flow, mean cell swimming at speed Vs and swimming diffusion. Boundary conditions are required at the walls of 
particular vessels; typically stress-free or no-slip conditions are applied at free surfaces or solid boundaries, respectively, 
as well as zero cell-flux conditions at each boundary. This fully coupled continuum description can be used to explore 
pattern formation [34,35] and the transport properties of the suspension. Other taxes, such as phototaxis, are readily 
incorporated into such a description [44].
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was on Hematococcus pluvialis and Chlamydomonas 
reinhardtii, where the latter was found to suppress the 
former by release of a fat-like extracellular substance. 
Furthermore, results for the combination of C. rein-
hardtii and Chlorella vulgaris show suppressed growth 
(by 25%). Another significant study analyzed the effect 
of pH on the growth of Chlamydomonas globosa and 
Chlorococcum ellipsoideum [57]. From total chlorophyll it 
was inferred that the combined growth for unbuffered 
media provided a yield smaller than that of C. globosa 
grown in isolation, and bigger than that of C. ellip-
soideum, as the latter species alters the pH. However, 
for buffered media, the growth of both species was 
enhanced. Nutrient competition and allelopathy have 
been modeled for C. vulgaris and Pseudokirchneriella 
subcapitata and compared with batch and chemostat 
experiments [53]. The effect of light has been recognized 
as important for mixed species, particularly with refer-
ence to shading, but has not been incorporated in the 
published studies and models [57]. 

Many of the species in the above experiments swim 
and generate structure (e.g., Hematococcus spp., Chlam-
ydomonas spp. and Ceratium spp.), but there are no 
data on the effect of swimming and bioconvection on 
growth. We hypothesize that in a nonstirred mixed 
culture a biased swimming species (such as Chlamydo-
monas augustae) can effectively mix a nonswimming 
species that is much valued in its ability to produce 
biofuels (such as C. vulgaris). We base this hypothesis 
on preliminary experiments where we compare stirred 
and nonstirred cultures of single and mixed species: the 
useful biofuel species appears to do better in unstirred 
mixed cultures than in stirred monoculture (see ‘Future 
Perspective’ section at the end of this article). As well as 
further experiments, mathematical modeling and ana-
lysis will play an essential role in testing this and other 
related hypotheses under experimentally realizable con-
ditions. A convincing mathematical description needs 
to include information about the biased swimming 
behavior of individual cells as well as entrainment in 
bioconvective flows, which may promote gas exchange 
and light penetration, of benefit to both species, coupled 
to dynamical models of growth. Such studies are under-
way by the authors. In this manner, it may be possible 
to model and thus assemble productive communities 
‘alga by alga’, which should also incorporate models of 
interactions with bacteria [52].

Optimizing hydrogen production from algae
Mathematical models can also explore the mechanisms 
involved in the production of biofuels per se, and can 
aid the optimization of key intracellular processes. 
There is much recent interest in modeling molecular 
interaction dynamics, including photosynthetic electron 

transport and carbon fixation. Here, we restrict our-
selves to describing one example of modeling intracel-
lular dynamics applied to biofuel production from algae 
that models the subtle interplay between photosynthe-
sis, sulfur uptake, respiration, catabolism and hydrogen 
production via iron hydrogenase [6]. 

Suspensions of unicellular, anaerobic, sulfur-stressed 
green algae, such as C. reinhardtii, have long been 
known to photosynthetically produce hydrogen gas 
(biohydrogen, a biofuel of considerable potential) via 
the action of an iron hydrogenase enzyme on the thyla-
koid membrane internal to the cell [58]. Unfortunately, 
the iron hydrogenase is inhibited by oxygen that is also 
produced during photosynthesis, rendering the two 
processes incompatible. However, recently, a two-stage 
process has been unveiled to temporally separate the two 
processes [13]: in the first stage, cells are grown under 
normal nutrient conditions; then, in a second stage, the 
cells are transferred to media deficient in sulfur, which 
has the effect of partially deactivating the oxygen-
evolving photosystem (PSII). (In PSII, sulfur depriva-
tion leads to deactivation of essential reaction-centre 
D1 protein biosynthesis.) Activity of PSI and aerobic 
respiration are not directly affected by the absence of 
sulfur [13,59,60]. After 24 h under illumination the rate 
of oxygen production from photosynthesis is less than 
that required by aerobic respiration [13,24,60, 61]. In the 
light, the oxygen-sensitive iron hydrogenase is activated 
to act as a life-saving sink, to remove potentially damag-
ing electrons produced from the partially deactivated 
PSII pathway (water splitting; 80%) and fermentation 
(20%), which yields hydrogen gas for approximately 
100 h [13,24,62–64]. After which activity ceases due to 
depletion of options for catabolism. Re-suspension of 
the cells in sulfur-sufficient media allows them to reset 
to the first stage and the process may be repeated [61].

The process has been demonstrated under solar 
light [65], although the optimal conditions are far from 
certain. The light conditions and suspension mixing 
had a large effect. Furthermore, the switching necessary 
between sulfur-deprived and sulfur-sufficient media is 
burdensome. 

In order to optimize hydrogen gas production using 
the two-stage process, and to go beyond this framework 
to one of continuous sulfur and hydrogen control, a 
simple mechanistic model description was designed that 
contains the essential feedback loops and encompasses 
both sulfur-deprived and sufficient conditions [6]. The 
description builds upon previous partial descriptions 
(particularly [22,66]). 

The formulation of the model consists of a set of ordi-
nary differential equations driven by time-dependent 
culture conditions. Naturally, the system is complex 
and incorporates active sulfur transport across the cell 
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wall [67], cellular growth (a modified Droop model 
[68]), sulfur dependent photosynthesis (subject to shad-
ing by other cells [69]), protein and starch storage and 
breakdown, oxygen production and use, and hydrogen 
production. Naturally, there are quite a few parameters; 
however, the values of many of the parameters are either 
known or can be inferred from independent experiments 
(e.g., such as for active sulfur transport across cell walls). 
Importantly, the mechanistic approach avoided having 
to fit numerical solutions of the model to the data that it 
is required to reproduce. See Box 2 for a brief description 
of the model.

The upshot of this modeling approach is a robust 
description that can be probed to reveal optimal condi-
tions. The optimization can be shackled to the two-stage 

process or less strongly constrained. The authors found 
good qualitative agreement with published experiments 
for trends in hydrogen yield and initiation time. The 
optimal external sulfur and illumination conditions for 
hydrogen production were determined and found to 
differ for either the overall hydrogen production or its 
rate [6]. The question of designing a continuous control 
approach to intelligently stress the cells is postponed for 
a subsequent publication (Box 2). 

Practical high-throughput parameter 
measurement
If swimming behavior were to be employed, or at least 
taken into account, in bioreactor design, it would be 
necessary to characterize each candidate species of 

Box 2. Modeling H2 production by algae.

The biological details of the system to be modeled are described in the main text. The model consists of a set of mass 
balance equations modeling an asynchronous population of cells in a sealed container, with light from both sides. The 
following variables are modeled: cell volume fraction, 0≤L≤1; concentrations (in μM) of external and internal sulfur, S 
and s, respectively, oxygen, w, endogenous substrate, e, and protein, p, and hydrogen gas, h (in mL/L). The variables s, e 
and p are intracellular concentrations, called quota [67], and S is an extracellular concentration. The model consists of the 
following equations, which we write for brevity in words. For explicit details, consult William and Bees [6]. The functional 
forms for sulfur uptake by the cell are empirically derived from independent experiments, such that

where ‘PSII repair’ indicates internal sulfur continuously required to repair photosystem II under illuminated conditions. 
The equation for protein is

and for oxygen is

Growth is modeled via

and is dependent on light availability, L(L), within the fully stirred suspension via p. Finally, hydrogen is produced at a 
rate specified by and in response to appropriate ranges of values of the other variables, such that

The parameters are taken or ranges of estimates obtained from independent experimental measurements, where 
possible. 

Good qualitative and quantitative agreement with experiments is obtained, both in terms of hydrogen yield and 
production onset time, without resorting to fitting the model output to data. More importantly, the full system allows 
for systematic optimization of hydrogen production within the two-stage scheme [13] (sulfur-replete followed by 
anaerobic sulfur-deficient conditions) as a function of the initial sulfur concentration and the light intensity. For instance, 
the model indicates that optimization depends on whether the maximum H2 production rate or the maximum yield is 
required, and predicts optimal values of the light intensity and nonzero initial sulfur concentration, which are in line 
with experiments. There are conflicting experimental results in the literature concerning rates of production per cell; the 
model provides support for a relatively constant H2 production rate per cell. Furthermore, the real value of the model is 
that it can be used to design new schemes for controlling hydrogen production that move beyond the confines of the 
two-stage scheme [Williams CR, Bees MA. Hydrogen production in suspensions of green algae: modelling a practical optimal 

method (2013), Manuscript in Preparation].

dt
dS sulfur system input sulfur uptake by cell,= -

dt
ds sulfur uptake by cell PSII repair protein breakdown protein production growth/decay,= - + - -

dt
dp protein breakdown protein production growth/decay,= - + -

dt
d photosynthesis respiration supersaturation loss.= - -~

dt
d growth or decay factors ,= #K K ^ h

dt
dh O sensitivity PSII dependent PSII independent e pathway .2= +# # #K -^ ^ ^h h h
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microorganism. The values of the parameters feed in 
to the model descriptions.

Much information can be gained by the microscopic 
observation of individual swimmers. The location of 
the cells can be tracked from which data on swim-
ming velocities can be extracted. Typically, a sequence 
of images is acquired, bright features are located and 
the features are joined into the most likely trajectories, 
allowing for close approaches and missing data [70,71]. 
Furthermore, observations of changes in orientation 
can provide information on the mechanisms for direc-
tional bias, such as measurements of the centre-of-mass 
offset. However, there are some drawbacks. For stan-
dard microscopy, tracking is limited to cells transit-
ing the focal plane so, typically, long tracks are rare. 
This typically limits observations to the order of 100 
cells. 3D tracking is also possible but requires specialist 
equipment [72].

Differential Dynamic Microscopy (DDM) is a new 
method that has been developed for the high-through-
put ana lysis of motility, measuring mean attributes of 
104 cells from a simple low-magnification movie in just 
a few minutes [73–75]. In essence, the method is analo-
gous to and yields the same information as dynamic 
light scattering [76], the intermediate scattering function 
(ISF), f(q,t), but is performed in silico and can gain 

better access to the length scales relevant to microor-
ganism motility. See Box 3 for a brief description of the 
DDM method. It should be emphasized that DDM is 
complementary to tracking, in the sense that an accu-
rate model of each swimmer is required in order to 
generate an ISF for the suspension. However, there is 
potential to construct a DDM signature for each species 
and even to explore biased swimming behavior and the 
ISF of suspensions of two or more species. The main 
advantages of DDM are the speed with which one can 
obtain measurements from large numbers of individu-
als, the understanding obtained by the isolation of par-
ticular length and time scales, and the relative simplicity 
of the apparatus, allowing measurements to be obtained 
easily in the field.

Cells & nutrients move at different rates in flows 
in tubes
Many closed algal photobioreactors are tubular. Such 
controlled environments are particularly important for 
species that are easily displaced in competition with 
more robust, faster-growing but less-useful species. A 
natural question to ask is how do the cells in suspension 
travel through the bioreactor relative to a given flow that 
is driven by a pressure gradient? Of course, flow profiles 
in a tube with impermeable walls are well known, and 

Box 3. Measuring mean swimming parameters quickly and in bulk: Differential Dynamic Microscopy.

Differential Dynamic Microscopy (DDM) measures simultaneously the swimming characteristics of many microorganisms, such as bacteria 
driven by helical flagellar bundles inducing body wobble, or biflagellate algae with back-and-forth trajectories [74].
First, spatiotemporal fluctuations of the image intensity, I(r,t), at position r and time t, are analyzed via the differential image correlation 
function (DICF). The DICF, g, is the power spectrum of the fluctuation as a function of the time delay, such that

where q is the magnitude of q the wavenumber, t is the time delay between images, and the angled brackets indicate that we have averaged 
over time and orientation. Assuming that differences in image intensity are proportional to differences in cell concentration, one can show 
that the DICF is related to the intermediate scattering function (ISF), f(q,t), via

where A(q) encodes the optics, particle shape and mutual arrangement, and B(q) captures the camera noise [72].
Second, for independent swimming cells, the ISF can be constructed from

where Drj is the displacement of the j-th particle and the angle bracket here indicates an average over all particles [75]. Hence, the ISF can be 
constructed by modelling the behaviour of each swimming microorganism. Consider, for instance, the swimming biflagellate Chamydomonas 
reinhardtii, which swim with a breast stroke in a back-and-forth manner at 50 Hz. (Additionally, cells swim such that their swimming-induced 
axis of rotation is misaligned with their swimming direction, leading to helical trajectories with a frequency of 2 Hz.) For example, a simple 
breast stroke model of swimming of the form

where v is the velocity from a Schulz distribution with standard deviation s, and A0, f0 and } are the amplitude, frequency and random phase 
of the back-and-forth motion, respectively, provides a mathematical expression for the ISF of a suspension that can be fitted to the ISF from 
the image data. The process applied to images of 104 cells is able to determine the parameters and can clearly demonstrate the length and 
timescales over which the model could be improved, such as by incorporating helical motion. The analysis establishes that C. reinhardtii 
swims with a mean velocity v0 = 89.6±2.8 μm/s, s0 = 24.9±4.6 μm/s, A0 = 0.98±0.06 μm and f 0 = 48.6±0.6 Hz, in excellent agreement with cell 
tracking experiments [74].

g q, A q 1 f q, B q ,= - +x x^ ^ ^ ^h h h h6 @
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must accommodate the fact that the fluid velocity is 
exactly zero at the wall (see Box 4). 

A starting point might be to assume that swimming is 
negligible, or even that the cells are equally likely to swim 
in all directions, changing direction in some stochastic 
manner. With this assumption, one might come to the 
conclusion that the cells in a still fluid will diffuse. In 
which case, in a flow in a tube a process called Taylor 
dispersion (or Taylor-Aris dispersion [77–79]) adequately 
describes how the centre of a blob of dye (or tracer par-
ticles) moves at the mean flow speed with the blob purely 
diffusing in the axial direction with a rate given by a sim-
ple formula that has been experimentally verified (Box 4). 
This effective axial diffusivity is a curious result in that 
there is a term proportional to the molecular diffusivity 
plus another proportional to the reciprocal of molecular 
diffusivity. This is due to dye or tracer particles diffusing 
across streamlines in the flow and being rapidly separated 
by different flow velocities on those streamlines.

However, a suspension of biased swimming cells 
behaves very differently: the cells actively swim in pre-
ferred directions across the streamlines. The result is 
that cells accumulate in particular regions of the flow 
(e.g., gyrotactic cells accumulate in downwelling zones), 
drift relative to the mean flow and diffuse rather differ-
ently. This behavior can be captured using mathematical 

ana lysis for both laminar [18,19,80] and turbulent flow 
regimes (Box 4) [19]. There are significant effects even 
with turbulent flow.

One of the main implications is that if cells and nutri-
ents are inserted into a tubular bioreactor at the same 
point they will separate rapidly. For instance, in a down-
welling flow in a vertical tube, nutrients will be trans-
ported on average with the mean flow whereas gyrotactic 
algae will drift at close to twice this velocity and will 
diffuse much less. Similarly, chemotactic or phototac-
tic microorganisms may be attracted towards particular 
boundaries, impeding drift. Furthermore, as indicated 
previously, many cells are negatively buoyant. Accumula-
tions of cells can either drive fluid flow or significantly 
affect the flow profiles (Figure 1). To a lesser extent, even 
nonswimming cells can be transported at a different rate 
than that of the mean flow due to buoyancy effects [81,82].

Conclusion
The fossil fuels industry has employed mathematics for 
many decades to advance complex methods of extrac-
tion and processing. That there is much to be gained 
from mathematical modeling and ana lysis in these areas is 
evidenced by the heavy investment from government and 
private sources, and the wealth of multidisciplinary lit-
erature. In contrast, few challenging mathematical results 

Box 4. Flow in a tube, Taylor dispersion and the dispersion of biased swimming cells.

For laminar flow in a tube with impermeable walls, the flow adopts a parabolic profile called Poiseuille flow: axisymmetric flow u=(u,v,w) in a 
vertical tube with no-slip boundary conditions is given by

where z
p
2
2

 is the pressure gradient in the z direction along the tube, R is the tube radius, r is the radial position and μ is the fluid viscosity. For 
turbulent flow the fluid velocity is more complicated, but the mean velocity profile is relatively simple: there is a relatively flat mean profile 
across the central region of the tube, which decreases rapidly to zero near the tube walls. The flow in a channel is similar [19]. Passive tracer 
placed in the flow (e.g., a blob of dye or nutrient) will be sheared by the flow and initially adopts a parabolic profile. For long times, diffusion 
across streamlines in the flow allows the tracer particles to experience different flow velocities on the streamlines, leading to a normal 
distribution in the axial direction. This is called Taylor dispersion (or Taylor-Aris dispersion) [77,79], which states that the tracer will drift along 
the tube but will spread out in the axial direction with an effective diffusivity, D e, of

where Dm is the molecular diffusivity, U is the mean flow velocity and Pe is a nondimensional quantity called the Peclet number (note, 
surprisingly, that with the definition of Pe substituted the effective axial diffusivity is made up of the molecular diffusivity plus a term 
proportional to one over the molecular diffusivity). Similar results can be obtained for channel and turbulent flows [77,83].
In contrast, biased swimming cells actively swim across streamlines, so classical Taylor theory does not apply. A new theory, based on 
the method of moments, allows for the prediction of the dispersion of biased swimming cells in suspension in a flow in a tube. First, the 
flow in the tube needs to be calculated. This is not necessarily Poiseuille flow as the negative buoyancy of the cells can alter the profile, 
but this can be calculated from the continuum model introduced in Box 1. Second, the cell conservation equation can then be expanded 
using the method of moments to reveal how the cells disperse: how they drift relative to the mean flow and how they diffuse in the axial 
direction [18,79]. Closed form expressions for both drift and effective diffusivity have been found for general biased motion, but they are 
long and involved so are not repeated here [18]. To use these expressions, one only needs to insert the form of the biased motion to calculate 
the drift and diffusivity. The fact that biased swimming cells accumulate in different parts of the flow means that they drift down the tubes 
at a rate that is different to the mean flow (unlike nutrients), and they diffuse less than nutrients. The significant conclusion is that biased 
swimming cells (with any form of taxis) disperse very differently to dye, nutrients or tracer particles (see main text) in both laminar and 
turbulent regimes in a flow in a tube or channel [19].
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are available for the emerging biofuels industry. This is 
particularly true for biofuels from microorganisms. In 
this article, we present some academically inspired old 
results and some application-driven new results, which 
we believe to be of real interest to the biofuels community. 

For instance, we discuss how the self-focusing nature 
of biased swimming cells may be exploited to harvest 
the cells or prevent biofouling. We explore the implica-
tions of biased swimming in suspensions of single and 
mixed species, and discuss the potential to mix suspen-
sions of productive nonswimmers with swimming spe-
cies (see next section). We present a concrete example 
for the optimization of hydrogen gas from algae, which, 
whilst simple to analyze mathematically, is complex in its 
structure. We describe a new mathematical-experimental 
technique, DDM, which can be used to rapidly and accu-
rately measure the swimming characteristics of biofuel 
candidate algae using relatively simple apparatus. Finally, 
we show how an in-depth mathematical description of 
the swimming behavior of algae can reveal the extent to 
which small biased motion in prescribed flow can lead to 
anomalous transport phenomena. In particular, biased 
swimming cells can be rapidly segregated from nonswim-
mers and nutrients. These results should be of significant 
value to those involved with the design of efficacious algal 
photobioreactors. In particular, the directionally biased 
swimming behavior of algae should not be neglected; 
rather, it should influence bioreactor design and have a 
critical impact on the production of algal biofuels.

The bioengineering community has yet to take stock of 
the old and new theoretical results described above. This 
is in part due to poor communication between the applied 
mathematics, physics and bioengineering communities. 
There is a distinct lack of overlap in expertise, motivation, 
perspective and language. It is important to note that 
some of the mathematics described is far removed from 
the experience of those at the frontline of biofuel develop-
ment. Furthermore, many mathematicians and physicists 
have little idea as to where they should focus their effort 
to be of practical use. Here, we have attempted to bridge 
this gap by describing a few select results in accessible 
terms, but providing appropriate reference to the litera-
ture. Many of the results described herein can and should 
be developed further in a multidisciplinary setting.

For the greatest benefit to the biofuels industry, we call 
for greater and closer collaboration between the math-
ematical and bioengineering camps.

Future perspective
Current biofuel production methods from algae require 
a dramatic increase in performance to become competi-
tive with fossil fuels. We believe this step change will be 
realized only if mathematical ana lysis, not just modeling 
and computation, is employed to guide engineering, as has 

been the case in the oil industry for many decades. More-
over, mathematicians and physicists should be engaged 
to bring forward and develop new techniques and analy-
ses for application to the hard problems associated with 
the large range of spatial and temporal scales, and the 
complexity resulting from such living suspensions. 

A better use of mathematical modeling and ana lysis 
has the potential to revolutionize biofuel production 
engineering, from culture growth to downstream pro-
cessing. For example, our vision based on current model-
ing is of bioreactors for swimming cells with minimal 
fouling, which concentrate and harvest cells efficiently 
using tailored combinations of flows (gyrotaxis) and 
light (phototaxis). Swimming statistics (obtained auto-
matically via DDM) could be used to monitor the accu-
mulation of valued products (e.g., lipids) and the health 
of a growing population (e.g., to manage hydrogen 
production).

In order for such systems to be developed, interdis-
ciplinary collaboration is necessary; a tighter working 
relationship needs to be developed between physical and 
mathematical biologists, biofuel engineers and biolo-
gists. This needs to occur both within and between 
academia and industry, which will allow key bottlenecks 
to be identified and resolved. Future bioreactor research 
should address: 

 � Buoyancy effects of nonswimming species in 
bioreactor geometries; 

 � Lipid dynamics at the single cell level; 

 � Coupling biology and swimming mechanics in 
bioreactors, including: upscaling of growth and 
swimming dynamics; heterogeneous distributions of 
algae in f lows; new bioreactor geometries; and 
assembly of stable symbiotic communities tailored to 
enhance productivity;

 � And efficient self-concentrating systems for pond and 
tubular reactors using taxes.

In the context of the ‘assembly of stable symbiotic 
communities tailored to enhance productivity’, prelimi-
nary laboratory experiments show that the growth rate 
of C. vulgaris (a lipid-productive nonswimming species) 
in unstirred co-culture of C. augustae (a nonproduc-
tive swimming species) is greater than that in a stirred 
monoculture. It would seem that bioconvection due to 
C. augustae is quite able to match if not better the benefits 
of a mechanical stirrer. However, the experiments need 
to be repeated to provide statistically significant results, 
and we are engaged in modeling bioconvective and pho-
tosynthetic aspects of the system. The notion that the 
productivity of algal co-cultures might be greater than 
the productivity of monocultures because of swimming is 
a promising and unexplored avenue for biofuels research.
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