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Preface 
 
Background  
The aim of this handbook is to help applicants to appreciate some of the statistical pitfalls 
that await them when constructing a grant proposal. It was written by the following six 
statisticians based at St George's Hospital Medical School: 
 

Martin Bland PhD - Professor of Medical Statistics 
Barbara Butland MSc - Lecturer in Medical Statistics 

Janet Peacock PhD - Senior Lecturer in Medical Statistics 
Jan Poloniecki DPhil - Senior Lecturer in Medical Statistics 

Fiona Reid MSc - Lecturer in Medical Statistics 
Philip Sedgwick PhD - Lecturer in Medical Statistics 

(Martin Bland is now Prof. of Health Statistics, University of York, and Janet Peacock is 
Prof. of Medical Statistics, University of Southampton.)  

All six authors routinely reviewed grant proposals for The South East Research and 
Development Project Grant Scheme.  This was a responsive funding scheme for the 
South East Regional Office which ran for a number of years until it ended in October 2001. 
The scheme was responsible for spending of approximately £1.2 million each year on new 
and ongoing projects, all based on researchers’ own ideas.  Its primary objective was the 
production of new, high quality knowledge.  It was open to anyone whose work was 
relevant to the UK National Health Service (NHS).  Up to 150,000 pounds was available 
for each project, although the majority were smaller.  The criteria stipulated that 
applications were to be relevant to the NHS, to follow a clear, well defined protocol, would 
withstand external peer review and that the findings would be generalisable to others in 
the NHS. Although academic advice was available to applicants through Research and 
Development Support Units (RDSU) in the Region and detailed guidance notes 
accompanied the application form, a number of common statistical problems consistently 
emerged. It is hoped that in summarising these statistical weak points the handbook will 
be of use to those applying for research funding from any source and in the long term 
reduce the number of proposals that are rejected by grant giving bodies purely on 
statistical grounds. The handbook was commissioned and initially funded by the South 
East Regional Office (SERO) Research and Knowledge Management Office Directorate 
who provided comments and encouragement throughout the writing process. In this 
respect the authors would particularly like to extend their thanks to John Newton and 
Lesley Elliott.  
 
Content 
The process of constructing the handbook began with a pilot exercise. All six authors 
retrieved their reviews for the last year to two years noting down recurring comments. 
Based on the results of the pilot work a list of topics was drawn up to form the main 
skeleton of the handbook. A few additional topics have since been added at the 
suggestion of Colin Cryer (South East Institute of Public Health) a fellow statistical 
reviewer for The Project Grant Scheme and Lyn Fletcher (Statistician, Oxford Research 
and Development Support Unit). 
 
Using the handbook 
The handbook is not designed to teach statistics but to provide extra information to those 
who already have a basic statistical knowledge. For example it assumes some 
understanding of confidence intervals and significance testing but not statistical power or 
sample size calculation. To help the beginner there are references to standard Medical 
Statistics Textbooks. However, the handbook should not be viewed as an alternative to 
discussing your proposal with a statistician prior to submission. Such a discussion is 
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strongly recommended. Rather, it is hoped that the handbook will make grant applicants 
more aware of the right questions to ask and the right information to take along to a 
statistical consultation and in addition, help them to understand any advice given. [Please 
note that although the authors would welcome any comments on the content of the 
guide, particularly correction of errors, they cannot give advice on projects] 
 
It is not envisaged that the handbook should be read from cover to cover but rather that 
the contents list or the checklist (Appendix 2) should be used to help the applicant 
navigate through the book ignoring sections that have no bearing on their own research. 
To facilitate this type of use the text is organised into many short reasonably self-
contained paragraphs, each with its own index code e.g. A-1.1. It is hoped that these 
codes will be useful to reviewers, consulting statisticians and researchers alike. Each 
paragraph may contain links to other related paragraphs as well as to useful references in 
the literature and on the Web. The handbook is best suited to interactive use on the Web 
although it may also be used effectively in printed form. 
 
Statistical review 
Another aim of the handbook is to try and clarify the sort of checklist that a statistician 
might use in the process of reviewing a grant proposal. Most statisticians will not rigidly 
follow any such list but the sort of things that they will be trying to extract from the text of 
any grant proposal are as follows (this list is not exhaustive): 
 
a) the basic study design(s) to see whether the applicant needs to have included 
information on randomisation, confounding, hierarchical data etc and whether the design 
is appropriate to the study aims. 
 
b) the type of data the study will generate as without this information the statistician 
cannot assess whether the applicant’s sample size calculation and proposed methods of 
statistical analysis are appropriate. 
 
c)the number of subjects that will be asked to take part in the study and the number it is 
anticipated will be recruited as the figure from the sample size calculation should match 
the latter and not the former. 
 
d)the total number of outcome variables that the applicant plans to measure as this will 
highlight potential problems in terms of multiple testing. 
 
d)whether the sample size calculation and the proposed statistical analysis are based on 
the same statistical tests. The applicant should therefore mention when reporting the 
sample size calculation(s) the test(s) on which it is based. 
 
e)whether the proposed statistical analysis includes the calculation of confidence intervals 
as well as significance testing. 
 
f)whether the applicants have the required statistical expertise for their proposed statistical 
analysis. 
 
g)sufficient information to replicate and so check the applicant’s sample size calculation. 
 
Development 
The handbook should be considered as a work in progress and the authors would 
welcome any comments on the content of the guide, particularly correction of errors.  
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A. Describing the study design. 
 

Introduction 
A-1       Type of study 
A-1.1    Type of study: Observational or experimental  
A-1.2    Combinations and sequences of studies 
A-1.3    Cohort studies 
A-1.4    Case-control studies 
A-1.5    Cross-sectional studies 
A-1.5a  Prevalence studies 
A-1.5b  The estimation of sensitivity and specificity 
A-1.5c  When to calculate sensitivity and specificity 
A-1.5d  Cross-sectional ecological studies 
A-1.5e  Studies of measurement validity, reliability and agreement 
A-1.6    Confounding 
A-1.6a  Confounding or interaction 
A-1.7    Experiments and trials 
A-1.8    Randomised controlled clinical trials 
A-1.9    Pilot and exploratory studies 
 
A-2       Follow-up 
A-3       Study subjects 
 
A-4       Types of variables 
A-4.1    Scales of measurement 
A-4.2    Types of data 
A-4.3    Methods of data collection 
A-4.4    Validity and reliability 
A-4.4a  Validity 
A-4.4b  Repeatability (test-re-test reliability)  
A-4.4c  Inter-rater reliability (inter-rater agreement) 

 
Introduction 
The section of an application, which is called Plan of Investigation (sometimes called 
Subjects & Methods), is where applicants describe what they propose to do. The purpose 
of the investigation and the background are described elsewhere, and presumably 
establish that the research or development is a worthwhile idea in a deserving cause. 
Here, however, the application needs to provide details of their proposed methods and 
establish that the practical issues have been thought through. The reviewers want to know 
that the study is both methodologically sound and feasible, and that the applicants are 
capable of doing it (see F-1). Failure to discuss relevant practicalities will reduce the 
plausibility of the proposal. 
 
The precise topics that should be covered depend on the type of study. So it makes sense 
to provide fairly early on an overall description of the study or experiment, preferably using 
some standard terms for study design. This is one area where there is no need to be wary 
of jargon, since all reviewers will be familiar with, and looking for an indication that the 
study is a cross-sectional study, cohort study, double-blind randomised controlled trial, or 
whatever. 
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A-1 Type of study 
 
A-1.1 Type of Study: Observational or experimental 
The most obvious distinction that can be made between studies is whether they are 
experimental or observational. Experimental studies are what their name suggests, 
experiments. They are studies in which the applicant has some control over the 
experimental conditions and the way in which groups of subjects for comparison are 
constructed. They also involve some sort of treatment or other intervention. Observational 
studies on the other hand are studies in which subjects are observed in their natural state. 
The groups of subjects that are compared are self-selected e.g. manual workers versus 
non-manual workers or subjects with and without disease. Subjects may be measured and 
tested (e.g. total cholesterol measured, disease status ascertained) but there is no 
intervention or treatment (e.g. patients allocated to different exercise programs, patients 
allocated to new drug or placebo). Observational studies include cohort studies, case-
control studies, ecological studies, cross-sectional studies, prevalence studies and studies 
of sensitivity and specificity.  
 
To illustrate the difference we will consider the following scenario: 
  
Scenario A-1.1: One grant proposal containing in effect three different studies, two 
observational and one experimental. The applicants are interested in the aetiology and 
treatment of a disease affecting the knee. Briefly they plan to: 
a) Compare leg measurements between subjects with and without disease 
(Observational)  
b) Compare leg measurements between the symptomatic and asymptomatic leg of 
diseased individuals (Observational)  
c) Randomly allocate subjects with disease to treatment or no treatment and compare 
change in leg measurements over a period of 6 months between the two groups 
(Experimental)   
 
For further information on types of study see Bland (2000), Altman (1991) p74-106, and 
also sections B and C of this handbook. 
 
A-1.2 Combinations and sequences of studies  
Sometimes the proposed research and development is a programme consisting of a 
sequence or combination of overlapping studies with different study designs. Efficiencies 
in time and cost can be achieved in this way. To keep the plan of investigation clear, it will 
help if the design of the various studies can be separately described using in each case 
the appropriate jargon for study design. This can be quite hard to do in some cases. The 
promised savings have to be weighed against the decreased likelihood of success from 
added complexity. The applicant should give careful thought to whether his powers of 
description can make a complex programme seem simple. If not, there may be a better 
chance of a simpler study with intermediate objective being funded - on the grounds that 
the study is clearly feasible - rather than a programme of studies that is in principal more 
resource efficient, but less clearly feasible. 
 
A-1.3 Cohort studies  
In a cohort study a population of subjects is identified by a common link (e.g. living in the 
same geographical area, working in the same factory, attending the same clinic) and 
information collected on the study subjects concerning exposure to possible causative 
factors. The population is then followed forward in time to see whether they develop the 
outcomes of interest. Cohort studies often occur where the exposures are potential risk 
factors for disease (e.g. smoking, high blood pressure) and the outcomes are the 
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development of those diseases (e.g. lung cancer, IHD). For further information on cohort 
studies see Breslow & Day (1987).  
 
A-1.4 Case-control studies  
A case-control study is one in which all the subjects with a given disease (or condition) in 
a given population (or a representative sample) are identified and are compared to a 
control group of subjects without the disease (or condition). They are compared in terms 
of information on potential risk factors, which is collected retrospectively. One of the 
problems inherent in case-control studies is how to select a comparable control group 
(see C-1.1). For example you might choose to take a random sample of those without 
disease from the population which gave rise to the cases. However, this assumes that a 
list of subjects in the population (i.e. a sampling frame) exists. Sometimes one or more 
controls are matched to each case so that cases and controls are comparable in terms of 
variables such as age and sex. The variables used for matching are those that might 
influence the disease, provided they are not part of the pathway by which the risk factors 
under study are thought to influence the disease. However the use of matching tends to 
complicate the subsequent statistical analysis (see C-1.2, E-5). Another problem inherent 
in case-control studies is bias due to the retrospective nature of the risk factor information 
(see C-2 and C-3). These issues and more are discussed in Breslow & Day (1980).  
 
A-1.5 Cross-sectional studies  
A cross-sectional study occurs where a population or sample of subjects is studied at a 
single point in time e.g. the 2001 census. A sample survey is an example of a cross-
sectional study. One problem with a cross-sectional study is that it tells you little about the 
order of events e.g. which came first, disease or exposure? Special types of cross-
sectional study include prevalence studies (see A-1.5a), cross-sectional ecological studies 
(see A-1.5d) and studies of sensitivity and specificity (see A-1.5b, A-1.5c). For further 
information see Altman (1991) p99-101. 
 
A-1.5a Prevalence studies 
A prevalence study is designed to estimate the prevalence of a particular disease / 
condition / characteristic in a population of interest. Prevalence studies are sample 
surveys where the primary aim is estimation. Clearly of major importance in this type of 
study is obtaining a sample which is representative of the population of interest (see C-4 
and C-5) and in making sure that results are not biased by a poor response rate (see C-6).  
 
A-1.5b The estimation of sensitivity and specificity 
These studies often arise when the aim is to evaluate the usefulness of a new screening 
technique. It is often the case that a new ELISA assay has been produced to detect 
disease and the applicants wish to compare the accuracy of this often quicker method of 
ascertainment with that of cell culture (i.e. the 'gold standard'). Two groups are selected; 
those with and without disease according to cell culture. The subjects are then tested 
using the ELISA assay to determine which are test positive and test negative. Sensitivity 
and specificity are then calculated as the proportion of those with disease that test positive 
and the proportion of those without disease that test negative respectively. These studies 
often require more subjects with disease than the applicant envisages  (see section on 
sample size calculation) and the need to do the ELISA test 'blind' to the results of cell 
culture is often overlooked. 
 
A-1.5c When to calculate sensitivity and specificity 
If the diagnostic or screening test being assessed is intended to become the first available 
prospective screening tool then determining the sensitivity and specificity against a gold 
standard will be a constructive contribution. On the other hand, if the test is a candidate to 
replace an established test, then both of these tests should be compared against the gold 
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standard. The new test will be preferable if both sensitivity and specificity turn out to be 
superior to those of the established test. If one could be larger and the other smaller 
(either as estimated or within confidence interval), it is then necessary to weigh the costs 
(financial and other) of false positives and false negatives, before there is the basis for a 
practical recommendation to adopt the new test. 
 
It is sometimes important to calculate the positive predictive value (PPV) as well as 
sensitivity and specificity. If the objective of a test is to identify a high risk group for whom 
special and rather "expensive" treatment will be offered, i.e. high cost to supplier or 
substantial downside to recipient, while the test negative group would continue to be 
offered the standard treatment, then the positive predictive value (PPV) is more relevant. 
This is the proportion of people testing positive, who are actually positive. If the PPV is 
low, then a substantial number of false positives may be unnecessarily worried by a 
potential diagnosis, or given expensive, unpleasant or time-consuming treatment they do 
not need. There is a tendency for the PPV to be low when the prevalence of the condition 
is low in the population being screened.  
 
A-1.5d Cross-sectional ecological studies 
A cross-sectional ecological study is one in which we are looking at correlations between 
variables measured at a level higher than the one on which we want to make conclusions. 
For example investigating the relationship between leukaemia and radon by correlating 
the rate of leukaemia registration per million per year for several countries with their 
estimated average level of radon exposure over the same period (Henshaw et al. 1990) 
i.e. the unit of analysis is the country and not the individual. This type of study is 
particularly prone to the effects of confounding (see A-1.6 and Lilienfeld & Lilienfeld 1980 
p13-15).  
 
A-1.5e  Studies of measurement validity, reliability and agreement 
Some studies investigate the properties of measurement methods.  This can include 
numerical measurements such as blood pressure, categorical observations such as health 
status, and questionnaire based measurement scales such as those for anxiety.  A study 
of validity investigates the extent to which the measurement measures what we want it to 
measure (Bland & Altman 2002).  Here the issues are whether there is a genuine gold 
standard or criterion by which the measurement method can be judged and if not how 
validity can be investigated.  Reliability concerns the extent to which repeated 
measurements by the same method on the same subject produce the same result (Bland 
& Altman 1996, 1996a, 1996b).  These may be by the same observer or different 
observers (observer variation) and may investigate reliability over time or the effect on 
measurements of different parts of the measurement process.  Particularly important here 
are the selection of measurement subjects and the number and selection of observers.  A 
third type of study is of agreement between two methods of measuring the same quantity.  
Here we are concerned with whether we can replace measurements by one method with 
measurements using another method (Bland & Altman 1986).  Several topics related to 
the design and analysis of such studies are discussed by Bland 
(http://martinbland.co.uk/meas/meas.htm). 
 
A-1.6 Confounding 
There are many drawbacks associated with the different types of observational study but 
one that they all share is the potential for spurious associations to be detected or real 
associations masked due to the effects of confounding factors. Confounders are generally 
variables that are causally associated with the outcome variable under investigation and 
non-causally associated with the explanatory variable of interest. Thus an observed 
association between disease and a potential risk factor may simply be due to that factor 
acting as a marker for one or more real causes of disease. That is why you cannot 
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conclude causality from an observational study.  Confounding arises because in 
observational studies we are not always comparing 'comparable' groups. For more 
information see Breslow & Day (1980) p93-108. 
 
A-1.6a Confounding or interaction 
The term confounding (see A-1.6) should not be confused with interaction. An interaction 
occurs if the nature (i.e. magnitude and direction) of the association between two variables 
differs dependent on the value of some third variable. For example, the association 
observed between gender and current asthma may differ with age since asthma tends to 
be more common among males than females in childhood but not in later life (Burr 1993). 
We say that there is an interaction with age. In general we are interested in describing 
such interactions. A confounding variable by contrast, is a nuisance variable. In adjusting 
for or designing out a confounding variable we assume that it does not influence the 
association that it confounds. In other words, for any given value of the confounding 
variable we assume that the magnitude and direction of the association of interest is the 
same. 
 
A-1.7 Experiments and trials 
Experimental studies where the aim is to evaluate the effectiveness of a new treatment or 
intervention are referred to as trials. If the study subjects are human with the same 
medical condition the term clinical trial can be used (Pocock 1983). However, whether the 
study 'subjects' are humans, mice or even administrative groups (e.g. general practices, 
clinics) the same design considerations apply (see A-1.8 and Section B). 
 
In trials (e.g. clinical trials) we have the ability to manipulate the situation to ensure that 
groups are comparable. Uncontrolled trials i.e. those with a single treatment group and no 
other group to act as a control are to be avoided. Without a comparison group there is no 
way of knowing whether an overall improvement in outcome is due to the new treatment 
or would have happened anyway in the absence of the new treatment. A further 
discussion of why trials should be controlled and why subjects should be randomly 
allocated to groups is given in A-1.8, B-3, B-5 and in Pocock (1983). For information on 
cross over trials and other similar designs see B-5.10. 
 
A-1.8 Randomised controlled trials 
Randomised controlled trials are designed to compare different treatments or 
interventions. Subjects are randomly allocated to groups so that groups are comparable at 
the beginning of the study in terms of their distribution of potential confounding factors e.g. 
age and sex (see B-5). The treatments/interventions are then administered and the 
outcomes compared at the end of the follow-up period. There may be two groups or 
several groups. There may be one treatment group and one control group, or two 
treatment groups, or two treatment groups and 1 control group etc. The control group may 
receive a placebo treatment to aid blinding of treatment allocation from both the study 
subjects and those assessing outcome; although it may be considered unethical to have a 
control group receiving placebo, or an untreated control group, if a proven treatment is 
already in standard use (Rothman 2000 et al., F-3.3). If both the assessor and study 
subject are blind to allocation then this is known as double-blind. Single-blind means that 
one of the parties (i.e. study subject or assessor) is privilege to information on allocation 
(see B-4). In Scenario A-1.1 (c) there is one intervention group and one control group. 
Since the intervention group consists of some sort of training for which a placebo is not 
easily constructed, the patient will be aware of the treatment allocation. However, the 
person making the leg measurements can be kept in the dark provided they are not told 
accidentally by the patient; a possibility which could be reduced by telling the patient to 
keep that information quiet. 
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A-1.9 Pilot and exploratory studies 
The term "pilot study" is often misused.  A pilot is someone or something which leads the 
way.  A pilot study tests on a small scale something which will be used on a larger scale in 
a larger study.  Hence a pilot study cannot exist on its own, but only in relation to a larger 
study.  The aim of the pilot study is to facilitate the larger study; it is not a study in its own 
right.  Pilot studies may be used to test data collection methods, collect information for 
sample size calculations, etc.    
 
A pilot study should always have a main study to which it leads.  This does not mean that 
funding cannot be sought for a genuine pilot study apart from the main study for which it 
leads.  It may be that full funding cannot be sought until some pilot information is obtained, 
perhaps relating to sample size or feasibility of data collection. 
 
A pilot study does not mean a study which is too small to produce a clear answer to the 
question.  Funding organisations are unlikely to fund such studies, and rightly so.  They 
are poor research, conducted for the benefit of the researcher rather than society at large 
(which pays for the grant). 
 
Not all small studies are unjustified.  It may sometimes be that an idea is at too preliminary 
a stage for a full-scale definitive study.  Perhaps a definitive study would require a multi-
centre investigation with many collaborators and it would be impossible to recruit them 
without some preliminary findings.  It may be that where no study has ever been done, 
there may be insufficient information to design a definitive study.  A smaller study must be 
done to show that the idea is worth developing.  What should we call such a study?  A 
pilot leads the way for others, someone who boldly goes where no-one has gone before is 
an explorer.  We need to explore the territory.  Such a study is an exploratory study, rather 
than a pilot, because we do not at this stage know what the definitive study would look 
like. 
 
A-2 Follow-up 
Many studies including most cohort studies and randomised controlled trials are 
prospective i.e. they have a period of follow-up. Surprisingly the length of proposed follow-
up is often a piece of information that grant applicants leave out of their proposal. It may 
be stated that measurements will be repeated every 3 months but without information on 
the total length of follow-up, this tells us nothing about the number of measurements made 
per patient. Information on length of follow-up is often crucial in assessing the viability of a 
project. For example, let us suppose that when describing a proposed randomised 
controlled trial of a treatment for a particular cancer, an 80% recurrence rate is assumed 
for the untreated group and this figure is used in the sample size calculation (see D-8.2). If 
the figure of 80% relates to recurrence over 5 years the calculation will yield the 
appropriate sample size for a 5-year study. However, if the proposed length of follow-up is 
only 2 years the resulting study will be hopelessly under-powered. Length of follow-up is 
also important in trials where the effects of the intervention such as an educational 
intervention, are likely to wear off over time. In this situation, assessing outcome only in 
the immediate post-intervention period will not be very informative. 
 
A-3 Study subjects 
It is important to know where the study subjects come from and whether they are an 
appropriate group to study to address the research question of interest. For example if a 
disease is most prevalent in the young why is the study based on the middle aged? It is of 
interest to know how the study subjects will be selected. For example are they a random 
sample from some larger population or are they all patients attending a clinic between 
certain dates? It is also important to specify any exclusion/inclusion criteria. The 
applicants should also state how many subjects will be asked to participate and how many 
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are expected to agree. Remember, the sample size is the number that agree to participate 
and not the number that are approached. 
 
A-4 Types of variables 
It is important to describe both the outcome and explanatory variables that will be 
investigated in the proposed study by specifying the type of data and the scale of 
measurement (see A-4.1, A-4.2 and Bland 2000). It is this sort of information that will help 
determine the nature of any statistical analysis as well as the appropriate method of 
sample size calculation. 
 
A-4.1 Scales of measurement 

i) Interval scale: data have a natural order and the interval between values has 
meaning e.g. weight, height, number of children  
ii) Ordinal scale: data have natural order but the interval between values does not 
necessarily have meaning e.g. many psychological scores. 
iii) Nominal scale: categorical data where the categories do not have any natural 
order e.g. gender (male / female) 

 
A-4.2 Types of data 
Quantitative data: data measured on an interval scale 

i) Continuous data: variable can take all possible values in a given range e.g. 
weight, height 
ii) Discrete data: variable can take only a finite number of values in a given range 
e.g. number of children 

Qualitative data: Categories, which may or may not have a natural, order (i.e. 
measurements on nominal and ordinal scales) 
 
A-4.3 Methods of data collection. 
The quality of a study depends to a large extent on the quality of its data. The reviewer is 
therefore interested in how the applicants plan to collect their information. If they propose to 
use a questionnaire, how will the questionnaire be administered, by post (or otherwise 
delivered for self-completion) or by interview? The use of an interviewer may aid the 
completeness of data collection but bias may be introduced in some studies if the interviewer 
is not appropriately blinded e.g. to case / control status in a case-control study (see C-2) or 
treatment group in a clinical trial (see B-4). If the applicants propose to extract information 
from records e.g. GP notes or hospital notes, how will this be done, by hand or by searching 
databases or both? Again bias may arise if the extractor is not appropriately blinded (see C-
2). The applicants also need to ask themselves whether the mode of collection chosen will 
yield sufficiently complete and accurate information. For example, by searching GP 
databases you are unlikely to pick up complete information on casualty attendance. A single 
blow into a spirometer does not produce a very reliable (see A-4.4b) assessment of lung 
function and most studies use the maximum from 3 consecutive blows. 
 
A-4.4 Validity and reliability. 
Where possible information should be provided on the validity and reliability of proposed 
methods of measurement. This is particularly important if a method is relatively new or is not 
in common usage outside the applicant's particular discipline. For further information see A-
4.4a, A-4.4b, A-4.4c, Altman (1991) and Bland (2000). 
 
A-4.4a Validity 
By validity we mean does the method actually measure what the applicant assumes? For 
example does a questionnaire designed to measure self-efficacy (i.e. belief in ones ability to 
cope) on some ordinal scale actually measure self-efficacy? Even if validity has been 
demonstrated previously, has it been demonstrated in an appropriate setting? For example a 
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method which has been validated for use among adults may not be valid if used among 
children and validity does not always cross countries. Sometimes applicants reference a 
questionnaire score that has been previously validated but they plan to use a modified 
version. Of interest to the reviewer is whether these modifications have affected validity. This 
may well be the case if the number of questions used to produce the score have been 
reduced for ease of administration. For further information see Bland & Altman (2002). 
 
A-4.4b Repeatability (test-retest reliability) 
By repeatability we mean how accurately does a single measurement on a subject estimate 
the average (or underlying) value for that subject? The repeatability of a measurement 
therefore depends on the within-subject standard deviation, which can be calculated using a 
sample of closely repeated (in time) measurements on the same subjects. The repeatability 
coefficient is simply the within-subject standard deviation multiplied by 2.83 and is an 
estimate of the maximum difference likely to occur between two successive measurements 
on the same subject (see Bland & Altman 1986, 1996, 1996a and 1996b). 
 
A-4.4c Inter-rater reliability (inter-rater agreement) 
For methods of measurement in which the role of an observer is key, inter-rater reliability 
should also be considered (Altman 1991 p403-409). In other words what sort of differences 
in measurement are likely where you have the same subject measured by different 
observers/raters? How closely do they agree? Substantial and unacceptable biases can 
arise in a study if the same observer is not used throughout. Sometimes, however, the use of 
more than one observer is the only practical option as for example in multi-centre clinical 
trials. In such cases it is important to: 
• try and improve agreement between observers (e.g. by training) 
• use the same observer when making 'before' and 'after' measurements on the same 

subject. 
• in a clinical trial, to balance groups with respect to assessor and to make all assessments 

blind (see Pocock, 1983 p45-48). 
• in an observational study, to note down the observer used for each subject so that 

observer can be adjusted for as a potential confounder in the analysis. 
 
 
 
 
 
 

 



 16 

B. Clinical Trials 
 

B-1      Describing the patient group / eligibility criteria 
B-2      Describing the intervention (s) / treatment (s) 
B-3      Choice of control treatment / need for control group                                                        
 
B-4      Blindness 
B-4.1      Double blind and single blind designs 
B-4.2      Placebos 
 
B-5      Randomisation 
B-5.1      What is randomisation? 
B-5.2      When might we use randomisation? 
B-5.3      Why randomise? 
B-5.4      What is not randomisation? 
B-5.5      How do we randomise? 
B-5.6      Randomisation in blocks 
B-5.7      Randomisation in strata 
B-5.8      Minimisation 
B-5.9      Clusters 
B-5.10    Trial designs 
B-5.10a  Parallel groups 
B-5.10b  Crossover design 
B-5.10c  Within group comparisons 
B-5.10d  Sequential design 
B-5.10e  Factorial design  
 
B-6         Outcome variables 
 
B-7         Data monitoring  
B-7.1      Data monitoring committee 
B-7.2      When should a trial be stopped early? 
 
B-8         Informed consent 
B-8.1      Consent 
B-8.2      Emergencies 
B-8.3      Children 
B-8.4      Mentally incompetent subjects 
B-8.5      Cluster randomised designs 
B-8.6      Randomised consent designs 
 
B-9         Protocol violation and non-compliance 
B-10       Achieving the sample size 
B-11       After the trial is over 

 
 
Worth reading several times: 
The CONSORT statement: a set of recommendations for improving the quality of reports 
of parallel group randomized trials (http://www.consort-statement.org). 
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B-1 Describing the patient group and eligibility criteria 
The proposal should contain a clear statement as to what patient group is to be treated in the 
trial. For example, in a hypertension trial we should specify the range within which patients' 
blood pressures should lie.  This can take the form of a list of inclusion and exclusion criteria.  
For example, in a trial of a low sodium, high potassium, high magnesium salt in older 
subjects with mild to moderate hypertension subjects were recruited from a population based 
cohort of non-hospitalised older inhabitants of a suburb of Rotterdam (Geleijnse et al. 1994). 
All subjects had their blood pressure measured between 1990 and 1992. Men and women 
aged 55-75 with a blood pressure above 140 mm Hg systolic or 85 mm Hg diastolic without 
antihypertensive treatment (n=419) were invited by letter and telephone for re-measurement 
of blood pressure. To be eligible for the trial subjects' systolic blood pressure had to be 
between 140 and 200 mm Hg or diastolic pressure between 85 and 110 mm Hg at two 
measurements one week apart. In addition, systolic blood pressure had to be not below 130 
mm Hg and diastolic pressure not below 70 mm Hg.  
 
Thus the inclusion criteria were: 
 

• Member of the Rotterdam cohort 
• Aged 55-75 
• Untreated BP above 140 mm Hg systolic or 85 mm Hg diastolic 
• Current BP between 140 and 200 mm Hg systolic or between 85 and 110 mm Hg 

diastolic at two measurements one week apart. 
• Systolic pressure not below 130 mm Hg and diastolic pressure not below 70 mm Hg. 

 
The exclusion criteria were: 
 

• History of myocardial infarction 
• Angina pectoris 
• Diabetes mellitus 
• Impaired renal function (serum creatinine concentration >200 mumol/l) 
• Eating a salt restricted diet on medical advice  

 
Ethics committees often want to know about what provision will be made for non-English-
speakers.  Simply excluding them, while it makes things easy for the researcher, may not be 
considered acceptable.  If we can treat people, we can recruit them to clinical trials of those 
treatments. 
 
B-2 Describing the intervention(s) and treatments 
It may appear self-evident, but it is important to describe the treatment to be tested clearly.  
Remember that not all those reading your proposal will be clinically qualified, including 
statisticians.  The treatment description must be comprehensible by all.  The nature of the 
treatment may have implications for the trial design, for example for blinding (see B-4), which 
may not be obvious to those outside your field.  You are very close to the subject.  You 
should get someone completely outside the area to read your proposal for you. 
 
B-3 Choice of control treatment and need for a control group 
The essence of a trial or experiment is that we carry out a treatment and observe the result.  
If we are not applying some form of intervention, it is not a trial but an observational study. 
(see A-1.1)  In a clinical trial we are concerned with a treatment to modify a disease process 
in some way.  This can be a medical or surgical treatment, or it might be a less direct 
intervention, such as supplying treatment guidelines to GPs or carrying out a health 
education programme. 
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To see whether a treatment has an effect, we usually need a control group.  (This is not 
always the case.  No control group was used for the first administration of penicillin.  The 
effect was unlike anything ever seen before.  Control was provided by general experience of 
past cases.  Controlled trials were carried out later when penicillin was applied to more minor 
conditions, where the consequences of the infection were not so severe (Pocock 1983).  
However, such revolutions are very rare and most advances are small.  We cannot tell 
whether a new treatment is effective from a single patient and the difference the treatment 
makes may not be large.)  We need to compare patients given the new treatment with a 
group of patients who do not receive the new treatment.  The latter are known as a control 
group. 
 
We need to have a control group which is comparable in all respects to the group of subjects 
receiving the new treatment: in the same place at the same time with the same distribution of 
disease severity and prognosis, and receiving the same care apart from the treatment of 
interest.  The most reliable way to do this is by random allocation (see B-5.1, B-5.5) or 
minimisation (see B-5.8).  Other methods, such as alternate allocation, should be avoided 
(see B-5.4) and would need a strong justification in the proposal, as would methods which do 
not meet all these criteria, such as patients seen at a different time or in a different place (see 
B-5.4). 
 
If we want to do a trial, we usually have a clear idea of what the treatment is which we wish 
to test.  The proposal must explain what this is and why we think it might work, but there is 
rarely much problem in deciding what the treatment is to be.  What treatment the control 
group will receive may be more debatable.  Should the control group receive a treatment at 
all?  If there is no current treatment available, then this question is easily answered: the 
control group will be untreated, although we may need to apply a dummy treatment to 
maintain the blindness (see B-4.2).  Sometimes a new treatment is given in addition to an 
existing treatment, the control group may then receive the existing treatment, with a suitable 
dummy for the new treatment where appropriate.  If there is an available treatment, the 
current Declaration of Helsinki (http://www.wma.net/e/policy/b3.htm) says that: 
 
“The benefits, risks, burdens and effectiveness of a new intervention must be tested 
against those of the best current proven intervention, except in the following 
circumstances:  

• The use of placebo, or no treatment, is acceptable in studies where no current 
proven intervention exists; or  

• Where for compelling and scientifically sound methodological reasons the use of 
placebo is necessary to determine the efficacy or safety of an intervention and the 
patients who receive placebo or no treatment will not be subject to any risk of 
serious or irreversible harm. Extreme care must be taken to avoid abuse of this 
option.” 

 
The exceptions were added following protests from researchers who want to do trials 
where the best existing therapy is too expensive, specifically in HIV research in Africa 
(Ferriman 2001) and from pharmaceutical researchers and drug regulators. (Tollman et al 
2001).  This did not appear satisfactory to some critics (Bland 2002a, Bland 2002b).  Any 
such trial will need a strong justification in the proposal. 
 
Sometimes there is more than one possible control treatment.  If we want to test a new 
hypertension treatment, for example, should we compare this to an ACE-inhibitor, a beta-
blocker, a diuretic, a salt restriction diet, exercise, or a combination of two or more of these?  
And which ACE-inhibitor, beta-blocker, etc., should we use and at what dose?  We must 
beware of running a trial which is open to the criticism that the control treatment is not 
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appropriate or is not the best of its type.  When there is a choice of control treatment the 
protocol should contain a justification for the control treatment which has been chosen. 
 
B-4 Blindness 
 
B-4.1 Double blind and single blind designs 
Bias in response can occur through subconscious effects. A patient's response may be 
affected by knowing which treatment he is receiving, either through a belief that a 
particular treatment is or is not beneficial or through a desire to please the clinician.  
Further, an observer's evaluation may be affected by knowing which treatment a patient is 
receiving, particularly in a trial comparing an active and an inert drug. For these reasons it 
is preferable that neither the patient nor the assessor knows which treatment the patient is 
receiving. This is known as double blind assessment. Sometimes it is only possible for 
one party to be unaware of the treatment, in which case the trial is single blind. This most 
often occurs when only the patient is blind because it is often impossible for the clinician to 
be unaware of the treatment. For example if the intervention is a form of surgery. 
Sometimes, the assessment can be done blind even when the patient and clinician cannot 
be blinded. For example if the assessment is an x-ray which can be scored by an 
independent observer who does not know which treatment the subject has received. It is 
always best if the maximum degree of blindness is achieved and applicants should 
describe exactly how this will be done.  
 
It is also desirable that the person entering patients into the trial does not know which 
treatment the next patient will receive. Ways of achieving this are described in section B-5. 
Double blind trials clearly require that the treatments are indistinguishable to the patient 
and to the assessor.  
 
B-4.2 Placebos 
If we wish to conduct a double blind trial to compare a new treatment with no treatment we 
need to give the control group a dummy pill or placebo. This makes the two treatments 
indistinguishable and prevents psychological effects whereby a patient's condition may 
improve simply due to the knowledge that he is receiving a particular treatment. This 
psychological response to treatment is known as the placebo effect. Placebo tablets 
should be identical in appearance and taste to the active treatment, but be 
pharmacologically inactive. The use of placebos enables us to assess any benefit or side 
effects of the new treatment. The placebo effect can be very strong. For example in a trial 
of analgesics three active drugs were compared with a placebo, but in addition each drug 
was manufactured in four colours. It turned out that overall, the active treatments did 
better than the placebos but strangely, red placebos were as effective as the active drugs 
(Huskisson 1974).  
 
Placebos can be used in non-drug trials but their use may not be ethical. For example in a 
vaccination trial a saline injection could be used but may not be ethically acceptable. 
Sometimes we may wish to compare two drugs which cannot be made to look alike. In this 
case to maintain blindness we can use a double dummy - i.e. we give each patient two 
drugs, the allocated active one and a placebo resembling the alternative one.  An example 
would be if we were to compare a tablet with a cream. Then each patient would get either 
an active tablet plus a placebo cream or a placebo tablet plus active cream.  
 
B-5.  Randomisation 
 
B-5.1  What is randomisation? 
Randomisation or random allocation is a method of dividing subjects into groups in such a 
way that the characteristics of the subject do not affect the group to which they are 
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allocated. To achieve this, we allow chance to decide which group each subject is 
allocated to. Thus each subject is equally likely to be allocated to any of the available 
groups and any differences between these groups happen by chance. In a clinical trial, 
randomisation can be used to decide which treatment each subject should receive. For 
example in a trial of a new treatment versus an existing treatment, randomisation can be 
used to ensure that each subject has the same chance of receiving either the new or the 
existing treatment.  
 
B-5.2  When might we use randomisation? 
We can use randomisation in any experimental study where we wish to compare groups 
receiving different interventions. These can be studies of humans, animals, or some other 
biological or organisational unit. A typical example where randomisation is used is for a 
clinical trial comparing individuals receiving one of two treatments. We can also use 
randomisation when we wish to assign individuals to more than two groups or when we 
are assigning whole groups of individuals to different intervention groups. An example of 
this would be assigning whole general practices to receive one of two different 
interventions.  This is known as cluster randomisation (see B-5.9) 
 
B-5.3  Why randomise? 
There are three reasons why randomisation is preferred in clinical trials. Firstly, we want to 
be able to assess the difference between the treatments in an unbiased way. We want to 
be able to conclude that any differences that we observe between the treatment groups 
are due to differences in the treatments alone. We do not want differences between the 
subjects themselves to confound the treatment differences. Without randomisation, 
treatment comparisons may be prejudiced, whether consciously or not, by selection of 
participants of a particular kind to receive a particular treatment (CONSORT statement 
http://www.consort-statement.org). Random allocation does not guarantee that the groups 
will be identical apart from the treatment given but it does ensure that any differences 
between them are due to chance alone.  
 
Secondly, randomisation facilitates the concealment of the type of treatment from the 
researchers and subjects to further reduce bias in treatment comparison. (see B-4). 
Thirdly, randomisation leads to treatment groups which are random samples of the 
population sampled and thus makes valid the use of standard statistical tests based on 
probability theory. 
 
B-5.4  What is not randomisation?  
Some trials have compared current patients receiving a new treatment with former 
patients treated with an existing treatment. These patients are not randomly allocated. 
Historical controls may differ from current patients in many ways and do not provide an 
unbiased comparison to current patients given a new treatment (see B-3).  
 
Another common approach is to use a method of systematic allocation. Examples include 
alternate allocation (A B A B etc) and using date of birth or date of enrolment to study (e.g. 
even date = A and odd date = B). We have seen grant applications and even papers in 
journals which clearly state that the allocation was performed at random but where the 
authors have then later indicated that subjects were allocated alternately to treatments. 
While such schemes are in principle unbiased, problems arise from their openness since it 
is well known that people with access to the procedure sometimes change the allocation, 
albeit for altruistic purposes. For these reasons systematic allocation is not recommended 
unless there is really no alternative.  
 
B-5.5  How do we randomise? 
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The obvious and most simple way to randomise is to use a physical method. Physical 
randomisation methods have been in use since the first Stone Age man cast a couple of 
knucklebones.  For example, we could toss a coin when a patient is recruited into the trial.  
Randomisation is usually described in this way on patient information sheets.    We do not 
usually do this in practice, however.  The main reason is the lack of an audit trail.  We 
cannot check back to ensure that the random allocation was done correctly.  An external 
observer could not be satisfied that the researchers had not tossed the coin again if they 
did not like the result, for example.  For these reasons` the random allocation should be 
determined in advance. We could toss the coin in advance and produce a list of 
allocations before any patients are recruited to the trial.  This would be done by someone 
who will not see any of the trial subjects and the allocation concealed from those recruiting 
patients into the trial.  In a large trial this would be extremely tedious. 
 
Instead we use pseudorandom numbers generated by a mathematical process.  There are 
tables of random numbers, usually generated by a computer program, which can be used 
to generate the random sequence.  For example, given such a table we could choose a 
random starting point in it by throwing dice or some other similar method.  We then 
produce a list of allocations by odd number = new treatment, even number = old 
treatment. (Bland 2000 gives examples.)  However, now that computers are so easily 
available, we usually cut this stage out and use the computer directly.  It is not difficult to 
write a computer program to carry out random allocation.  Our web directory of 
randomisation software and services (see Appendix) lists some, including our own 
completely free DOS program Clinstat.  Such a program can print out a randomisation list 
in advance.  We think it is very important that the method of randomisation be 
described in the application. 
 
After the randomisation list has been prepared by someone who will not be involved in 
recruitment to the trial, it must be made available to researchers.  This can either be at 
long range, by telephone from the clinic, or the randomisation can be physically present at 
the recruitment point.  One way to do this is to put the allocation into envelopes.  It is 
important that these envelopes be opaque, as there are well-attested cases of 
researchers holding envelopes to a lamp in order to read what is written inside.  For the 
same reason these envelopes should be numbered so that the recruiter has to take the 
next envelope.  Shuffling envelope placed in a box is not a good idea.  This is a physical 
method which leaves no audit trail. 
 
The researchers should not be given an open randomisation list, so that they know the 
treatment to which the next potential recruit to the trial will be allocated.  This is a really 
bad idea.  It has been shown that the differences in outcome between treatment groups 
are considerably larger in trials where allocation is open in this way.  It produces a clear 
bias. 
 
Long range allocation by telephone is suited to large trials and multi-centre trials in 
particular.  It requires that there be someone in the office to take the call.  This may be 
throughout normal office hours or twenty-four hours a day, depending on the disease 
being studied.  This is difficult for researchers to organise for their own trial, so we usually 
use a commercial trials office for this.  These provide a twenty-four hour phone line, often 
computer operated, which gives the randomisation. Our web directory of randomisation 
software and services (see Appendix) lists some service providers and their contact 
details. 
 
It is a good idea to keep track of randomisation.  From time to time check that the 
distribution of variables such as age, sex, important prognostic variables is similar in each 
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treatment group.  This is particularly important when a third party is providing 
randomisation by telephone. 
 
B-5.6  Randomisation in blocks 
If we wish to keep the numbers of subjects in each group very similar at all times, then we 
use block randomisation. For example, suppose we have two treatments A and B and we 
consider subjects in blocks of four at a time. There are six ways of allocating treatments to 
give two A's and two B's:  
 
1.AABB  2.BBAA  3.ABAB  4.BABA  5.ABBA  6.BAAB 
 
If we use combinations of these six ways of allocating treatments then the numbers in the 
groups can never differ by more than two at any point in the trial recruitment. We can 
choose blocks at random to create the allocation sequence using random numbers (1 
gives AABB, 2 gives BBAA, etc., and we ignore random numbers other than 1-6). Block 
allocation can also be done using a computer.  Our web directory of randomisation 
software and services (see Appendix) lists some suitable programs. 
 
In clinical trials it is best if those giving the treatments do not know how the randomisation 
sequence was constructed to avoid their deducing in advance which treatment some 
patients are to be allocated. For this reason larger block sizes of say 20 are sometimes 
used in large trials. Such block sequences are virtually impossible to guess. A computer is 
needed to generate such sequences.  
 
B-5.7  Randomisation in strata  
The aim of randomisation is that the groups of patients receiving different treatments are 
as similar as possible with respect to features which may affect their prognosis. For 
example we usually want our groups to have a similar age distribution since prognosis is 
often related to age. There is however no guarantee that randomisation will give balanced 
groups, particularly in a small trial. Although any differences will have arisen by chance, 
they may be inconvenient and lead to doubts being cast as to the reliability of the results. 
One solution to this problem is to use stratified randomisation at the outset for any 
variables which are strongly prognostic. Another possible approach is to use minimisation 
(see B-5.8)  
 
In stratified randomisation we produce a separate randomisation list for each subgroup 
(stratum) so that we get very similar numbers of patients receiving each treatment within 
each stratum. For example if we were doing a trial of two alternative treatments for breast 
cancer then we might want to take menopausal status into account. We would then take 
two separate lists of random numbers and prepare two separate piles of sealed envelopes 
for premenopausal and postmenopausal women. We may additionally use blocks (see B-
5.6) to ensure that there is a balance of treatments within each stratum. Stratified 
randomisation can be extended to two or more stratifying variables. However, we can only 
have a few strata, otherwise the subgroups produced will be too small.  
 
B-5.8  Minimisation 
In small studies with several important prognostic variables, random allocation may not 
provide adequate balance in the groups. In addition, stratified allocation (see B-5.7) may 
not be feasible due to there being too few subjects to stratify by all important variables. In 
such studies it is still possible to achieve balance by using a technique called 
minimisation. This is based on the idea that the next patient to enter the trial is given 
whichever treatment would minimise the overall imbalance between the groups at that 
stage of the trial.  In the protocol, it is important to specify exactly which prognostic 
variables are to be used and to say how they are to be grouped. For example just to say 
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that “age” will be used in not sufficient. The actual age groups need to be stated, for 
example <50 and 50+.  
 
Briefly minimisation works like this. The first patient is randomised to either A or B. When 
subsequent patients are recruited and their prognostic characteristics noted, their 
allocation is decided such that the overall balance in the groups at that point is optimised. 
It is easiest to illustrate this with an example, for which we thank Sally Kerry.  This was a 
study in which 16 general practices were allocated to intervention and control groups.   
There were three variables on which the groups should be balanced:  
  

1. number of doctors in the practice, 
2. number of patients in the practice, 
3. number of long-term mentally ill patients. 

 
These were grouped as follows: 

 
1. number of doctors in the practice: 3 or 4 vs. 5 or 6, 
2. number of patients in the practice: <8,600 vs. ≥8.600, 
3. number of long-term mentally ill patients: <25 vs. ≥25. 

 
The first practice had: 
 

1. number of doctors: 4, 
2. number of patients: 8,500, 
3. number of long-term mentally ill: 23. 
 

The two treatment groups were perfectly balanced at the outset, being empty, so there 
was no reason to choose either group for the first practice.  This practice was therefore 
allocated randomly.  It was allocated to Intervention.  This gives the following table for the 
minimisation variables: 
 
   Intervention Control 
3 or 4 doctors  1  0 
5 or 6 doctors  0  0 
 
<8,600 patients 1  0 
≥8.600 patients 0  0 
 
<25 mentally ill 1  0 
≥25 mentally ill 0  0 
 
 
The second practice had: 

 
1. number of doctors: 4, 
2. number of patients: 7,800, 
3. number of long-term mentally ill: 17. 
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From the table, we can see which allocation would reduce the imbalance.  The second 
practice would affect the highlighted rows: 
 

Intervention Control 
3 or 4 doctors 1  0 
5 or 6 doctors  0  0 
 
<8,600 patients 1  0 
≥8.600 patients 0  0 
 
<25 mentally ill 1  0 
≥25 mentally ill 0  0 
 
Imbalance  3  0 
 
The imbalance is the sum of the totals in the highlighted rows.  Clearly, putting practice 2 
in the Intervention group would make the imbalances 6 and 0, whereas assigning it to 
control would make them 3 and 3.  The second practice was allocated to Control. 
 
The groups were now perfectly balanced, so the third practice was allocated randomly.  
This had characteristics 

 
1. number of doctors: 5, 
2. number of patients: 10,000, 
3. number of long-term mentally ill: 24. 

 
This practice was allocated to Intervention and the allocation was then: 
 
   Intervention Control 
3 or 4 doctors  1  1 
5 or 6 doctors  1  0 
 
<8,600 patients 1  1 
≥8.600 patients 1  0 
 
<25 mentally ill 2  1 
≥25 mentally ill 0  0 
 
 
The fourth practice had: 
 

1. number of doctors: 3, 
2. number of patients: 3,400, 
3. number of long-term mentally ill: 12. 
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This would affect the imbalance in the highlighted rows: 
 
   Intervention Control 
3 or 4 doctors 1  1 
5 or 6 doctors  1  0 
 
<8,600 patients 1  1 
≥8.600 patients 1  0 
 
<25 mentally ill 2  1 
≥25 mentally ill 0  0 
 
Imbalance  4  3 
 
The fourth practice was assigned to Control to make the imbalance totals 4 and 6, rather 
than to Intervention, which would make them 7 and 3.  This procedure continued until all 
the 16 practices had been allocated.  If the imbalance would be the same whichever group 
the next practice went into, we would allocate randomly. 
 
   Intervention Control 
3 or 4 doctors  5  5 
5 or 6 doctors  3  3 
 
<8,600 patients 4  4 
≥8.600 patients 4  4 
 
<25 mentally ill 4  4 
≥25 mentally ill 4  4 
 
The two groups are balanced on all three variables.   
 
It may be objected that minimisation is not random.  Also, it may be possible for the 
patient's characteristics to influence the investigator's decision about recruiting that patient 
to the trial, the investigator might know what treatment the patient would receive.  We can 
introduce an element of randomisation into minimisation.  We use the minimisation 
method to decide in which direction the subject should be allocated, but use unequal 
randomisation to choose the actual treatment.  For example, we might allocate in favour of 
the allocation which would reduce imbalance with probability 2/3 or 3/4, and in the 
direction which would increase imbalance with probability 1/3 or 1/4.  Further details with 
another worked example can be found in Pocock (1983). 
 
Minimisation is most useful when a small and variable group must be randomised.  Large 
samples will be balanced after ordinary randomisation or can be stratified.  In any case, 
variables which are used in minimisation or stratification should be taken into account in 
the analysis if possible, for example by multiple regression, as this will reduce the 
variability within the groups (see E-6.2). 
 
It is not necessary to minimise individuals in a trial by hand as there is a computer 
program, Minim, which will do minimisation for you. Minim is available via our web 
directory of randomisation software and services (see Appendix). Some clinical trials 
services will provide telephone minimisation. Some of these are also listed on our web 
directory. 
 
B-5.9  Clusters 
Sometimes we cannot allocate individuals to treatments, but rather allocate a group of 
subjects together.  For example, in a health promotion study carried out in general 
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practices, we might need to apply the intervention to all the patients in the practice.  
Publicity may be displayed in the waiting room, for example.  For another example, we 
may need to keep groups of patients separate to avoid contamination.  If we were 
providing a special nurse to patients in a ward, it would be difficult for the nurse to visit 
some patients and not others.  If we are providing training to the patients or their carers, 
we do not want the subjects receiving training to pass on what they have learned to 
controls.  This might be desirable in general, but not in a trial.   For a third case, we may 
provide an intervention to service providers, clinical guidelines for example.  We evaluate 
the intervention by collecting data from their patients. 
 
A group of subjects allocated together to a treatment is called a cluster.  Clusters must be 
taken into account in the design (Kerry & Bland 1998b, Kerry & Bland 1998d, Kerry & 
Bland 1998e, Bland 2000) and analysis (Altman & Bland 1997, Bland & Kerry 1997, Kerry 
& Bland 1998, Kerry & Bland 1998c).  The proposal should say how this is to be done (see 
sections D and E-11).  For example, the use of clusters reduces the power of the trial and 
so requires an increase in sample size  
 
B-5.10 Trial designs 
 
B-5.10a Parallel groups  
The simplest design for a clinical trial is the parallel group design where the two groups of 
patients are studied concurrently. This is the most common design. 
 
B-5.10b Crossover design 
A crossover trial is one in which the patient is his own control. In other words, each patient 
receives both (or all) treatments in sequence. The order in which the treatments is given is 
randomised (see B-5.5). The main advantage of this design is that comparisons can be 
made within subjects rather than between subjects as we have done before. This is 
particularly useful for outcomes which are very variable between subjects. Crossover trials 
clearly cannot be used for conditions which can be cured and are most suitable when the 
effect of the treatment can be assessed quickly. There may be a carry-over of treatment 
effect from one period to the next and so it may be necessary to have a 'wash-out' period 
between the two treatments. If a cross-over design is proposed then the issue of a wash-
out period needs to be discussed and the length of time used specified and justified if 
appropriate.   
 
B-5.10c Within group comparisons 
Cross-over trials are within-patient designs. Another type of within-patient design is when 
the two treatments are investigated concurrently in the same patients. It can be used for 
treatments that can be given independently to matching parts of the body, such as eyes, 
ears, limbs etc. This is a very powerful design but has obvious limited use.  
 
A similar design is the matched pairs design, where pairs of subjects are matched for say, 
age, sex etc. and the two treatments are allocated within pairs at random. Where there are 
known important prognostic variables this design removes much of the between subjects 
variation and ensures that the subjects receiving each treatment have similar 
characteristics.  
 
B-5.10d Sequential design 
In sequential trials, parallel groups are studied and the trial continues until either there is a 
clear benefit of one treatment or it is clear that no difference is likely to emerge. The data 
are analysed after each patient's results are available and so the method is only 
appropriate if the outcome is known fairly quickly. If there is a large difference between the 
treatments then a sequential trial will be shorter than its equivalent  parallel trial. The main 



 27 

ethical advantage is that as soon as one treatment is shown to be superior then the trial is 
stopped. Note that it is incorrect to analyse any parallel group design sequentially because 
this would involve unplanned multiple testing (see E-7) and might therefore lead to false 
significant results. The sequential nature of the analysis has to be built in at the design 
stage such that the sample size calculations allow for the fact that multiple testing will take 
place (see E-7.1, E-7.4f). Further details of sequential designs can be found in Whitehead 
(1997).    
 
B-5.10e Factorial designs 
A factorial experiment is one where several factors are compared at the same time. To 
make it possible to do this, each subject receives a combination of all the factors such that 
all combinations are received by some subjects. An example is the EMLA trial of pain 
relief prior to venepuncture (Nott MR, Peacock JL 1990), where 4 treatments were used 
(EMLA at 5 and 60 mins before venepuncture, placebo and nothing). The other factors of 
interest were size of needle (three) and sex. The study was designed to be balanced i.e. 
with equal numbers of patients in each treatment/needle/sex combination. The design 
enabled the researchers to investigate the effects of treatments, needle size and sex on 
pain and also to look for interactions (see A-1.6a). Balanced designs are easier to analyse 
statistically but with powerful computer programs unbalanced designs are not usually a 
problem nowadays. 
 
A factorial design is particularly suited to the investigation of factor interactions. However it 
is sometimes proposed in an attempt to optimise statistical power when the number of 
patients available for study is limited and it is assumed that the factor effects are additive 
either on an arithmetic or logarithmic scale (i.e. no factor interactions). The assumption of 
no interactions is a strong one and unless it can be fully justified in the proposal, the 
reviewer would expect to see sample size calculations based on detecting interactions 
rather than main factor effects. It should be remembered that in a factorial experiment 
main factor effects are averaged over all combinations of levels of the other factors. If 
factor effects are not additive and interactions are not of interest these estimates may not 
be very useful. 
 
B-6 Outcome variables 
It is essential to specify the main outcome variable which will be used to decide the result 
of the trial. This is usually called the primary outcome or primary endpoint. It is 
important that only one primary outcome is chosen, such that if that variable is statistically 
significant then it would be reasonable to conclude that the treatment under investigation 
had ‘worked’ or was superior to its comparator. 
 
Often trials will want to investigate a number of additional variables, perhaps related to 
potential side effects.  These too should be specified in advance and are called 
secondary outcomes or secondary endpoints. Although statistical analysis is usually 
performed on secondary outcomes, the interpretation is different from the result of 
analysing the primary outcome. First, since there may be several secondary outcomes, it 
is essential to allow for multiple testing (see E-7) so that a lone significant result is not 
over-interpreted. Further, the trial would not usually conclude efficacy from statistical 
significance in a secondary outcome alone. Significant results in secondary outcomes 
must be interpreted as indicative of effects rather than providing conclusive evidence. 
The main analysis of a trial should first answer the original questions relating to the 
primary and secondary outcomes. Sometimes researchers wish to investigate other 
hypotheses. Such results should be presented cautiously and with much less emphasis 
than the main findings. This particularly applies to subgroup analyses where we might 
seek out a group of patients in which the treatment is especially effective. If this analysis 
was part of the original protocol then the interpretation of these analyses presents no 
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problem. However it may appear that a treatment works well in a particular subgroup 
compared with other subgroups. In such a situation it is misleading to give undue 
emphasis to this finding and not to mention that other subgroups were also tested. If we 
really wish to identify a subgroup effect then we should do a multifactorial analysis (see E-
1.1) and look at interactions (see A-1.6a).  
 
B-7 Data monitoring 
 
B-7.1 Data monitoring committee 
Most trials have a data monitoring committee which comprises a group of independent 
specialists who meet at pre-specified intervals while the trial is in progress to check on the 
trial progress and conduct. The committee will usually compare the outcome in the 
different treatment groups to see if there is evidence for clear superiority of any one 
treatment over the other(s). Adverse events are also monitored to ensure that these are 
not excessive.  It is best if the data monitoring committee is presented with the interim 
data analyses blind to the treatment so that any decision to stop the trial early will not be 
affected by the committee knowing which treatment appears to be superior.  
 
B-7.2 When should a trial be stopped early? 
This should only happen if the evidence for superiority is overwhelming. Since data 
monitoring is conducted prior to the main trial analysis, and sometimes more than once, 
the possibility of statistical significance is increased beyond the usual significance level, 
0.05. Effectively the data are subject to multiple testing and so the critical value for 
significance has to be modified to ensure that spurious significant differences are not 
found and the trial stopped prematurely in error. It is common therefore for a strict critical 
value of say, P<0.001 to be applied for data monitoring to ensure that the overall level of 
significance is preserved. Further details of setting critical values for P to take account of 
multiple testing can be found in Pocock (1983) and Whitehead (1997). Another reason 
why a trial should not be stopped early unless a large, highly significant difference is 
observed is that with less than the anticipated number of subjects the estimates will be 
less precise. Thus they need to be very extreme to provide adequate and convincing 
evidence for the scientific community. In the past, trials which have been stopped early 
have been criticised subsequently and their results ignored.  
 
B-8 Informed consent 
 
B-8.1 Consent 
The ethical principles which should govern the conduct of medical research are set out in 
The Declaration of Helsinki (http://www.wma.net/e/policy/b3.htm), which has a lot to say 
about information and consent.  We recommend that all clinical researchers read it from time 
to time.  Any clinical trial which diverges from these principles must be justified very carefully 
(see F3.3). 
 
The proposal should say how subjects are to be recruited and how they are to give consent 
to the trial.  When we recruit subjects into a clinical trial, we usually need to ask for their 
permission and co-operation.  When we do this we must inform potential research subjects 
as to the purpose of the trial, what may happen to them, in particular what may happen 
which is different from treatment outside the trial, and potential risks and benefits to them.  If 
subjects will be forgoing treatment which they might otherwise have had, this must be 
explained. 
 
The information may be given orally, in the form of a video, or in writing.  In any case the 
information should be given additionally in writing, in clear, simple language, which is 
unambiguous and honest.  Subjects should be given an information sheet or leaflet which 
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can be kept.  Writing such information sheets is not as easy as it looks.  Research ethics 
committees spend a lot of their time reviewing them.  This written version is very important, 
because people are often recruited into clinical trials under circumstances of great personal 
stress.  They may have just been told that they have a life-threatening disease, for example.  
They may not recall any detail of what has been said to them, or even that they were asked 
to take part in a clinical trial at all.  The Association of the British Pharmaceutical Industry 
gives some guidance (http://www.abpi.org.uk/Details.asp?ProductID=193). 
 
If possible, subjects should have sufficient time between being informed about the trial and 
their decision as to whether to take part to discuss it with others, such as their family.  They 
should be able to show their family members the information sheet and get their opinions. 
 
Wherever possible, people entering clinical trials should sign a consent form to confirm that 
they have been informed about the trial, agree to enter it, and understand that they can 
withdraw at any time.  The consent form should be separate from the information sheet, so 
that the subject can retain the information when the form is returned.   The subject should 
retain a copy of the signed consent form too, to remind them that they have agreed to the 
trial.  It is not unknown for trial participants to deny having given consent, despite the 
existence of a signed consent form. 
 
B-8.2 Emergencies   
Sometimes there is no time to allow potential subjects to discuss the pros and cons of the 
trial with others.  For example, a trial of neuroprotection in stroke would require the treatment 
to be given as soon as possible after the stroke.  Sometimes patients may be unconscious or 
extremely confused.  In such cases, assent may and should be obtained from relatives 
accompanying the potential research subject, if any, but they cannot give consent on behalf 
of any person who is usually mentally competent.  Randomisation may be carried out and 
emergency treatment begun and consent obtained later, if and when the subject is able to 
give it.  If the subject then refuses, they should be deleted from the trial. 
 
B-8.3 Children 
When the potential trial recruit is a child under the age of 16 years, consent must be 
obtained from the child's parents or other legal guardians.  There should be an information 
sheet for parents and, where the child is old enough to read, one in language suitable for 
children of the likely age.  Assent should be obtained from the subjects themselves if they 
are old enough to understand what is happening.  Children may have to be treated against 
their will with parental consent, but they should not become research subjects against their 
will. 
 
B-8.4 Mentally incompetent subjects 
When potential research subjects are mentally or physically unable to consent, for example 
through learning difficulties, mental illness, or paralysis, consent should be obtained from 
their legal guardians.  As for children, assent should also be obtained from the subjects 
themselves wherever possible.  Note that Clause 27 of the Declaration of Helsinki states that  
 
"These individuals must not be included in a research study that has no likelihood of benefit 
for them unless it is intended to promote the health of the population represented by the 
potential subject, the research cannot instead be performed with competent persons, and the 
research entails only minimal risk and minimal burden." 
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B-8.5 Cluster randomised designs  
 
Consent is more difficult in cluster randomised designs.  Because people are randomised as 
a group, this is usually done without their consent.  For example, in a general practice based 
trial, all patients of the chosen type in a practice may be randomised to the same treatment.  
In some such trials, it is impossible for patients to consent to treatment.  For example, in a 
trial where GPs are randomised to receive guidelines for treatment of a disease, patients 
cannot agree to their GP being randomised or to receiving the guidelines.  It has already 
happened.  Patients can only consent to provide data for the trial.  If the cluster has been 
randomised to receive an individual treatment, patients may still consent to or refuse 
treatment as they would do outside a trial.  For example, if the treatment is to run special 
clinics, they can refuse to go to them when invited.  For some treatments, such as health 
promotion interventions in general practice, workplace or school, subjects cannot even do 
that.  All they can do is to refuse to listen.  Some critics argue that cluster randomisation is 
never ethical for this reason.  If the funding body to which you apply takes this view, then you 
will have to find another funder. 
 
B-8.6 Random consent design 
In this design we have a new treatment to be compared to a standard treatment and we do 
not wish subjects in the control group to be informed about the new treatment.  For example, 
in the Know Your Midwife trial the new treatment was to have the same midwife carry out all 
antenatal care, deliver the baby, and carry out all postnatal care.  The control treatment was 
standard care, where mothers would be seen by whoever was duty at the time, and may 
never see the same midwife twice.  The trial organiser thought that very few women would 
be happy with standard care if they knew that the Know Your Midwife clinic existed.  To save 
them from disappointment, they were randomised to receive standard care, the control 
group, or to be offered Know Your Midwife, the treatment group.  Those offered Know Your 
Midwife could then accept it or opt for standard care (which some did).  All women were 
asked to consent to a study of maternity services, so that data could be collected. 
 
This is an example of a randomised consent design (Zelen 1979, 1990), where research 
subjects are randomised and consent is then obtained to treatment and data provision, but 
not to randomisation itself.  Such a design would need a very strong argument if it were to be 
used in a trial.  Some critics argue that randomised consent is never ethical. 
 
Randomised consent designs are analysed according to the principle of intention to treat 
(see E-9).  This gives the best test of significance, but a rather biased treatment estimate.  In 
addition, Zelen (1979) shows how better treatment estimates can be obtained, at the 
expense of wider confidence intervals. 
 
B-9 Protocol violation and non-compliance 
Some patients may not have followed the protocol, either accidentally or deliberately (non-
compliance) or their condition may have led to the clinician giving them an alternative 
treatment to the one they were originally allocated to (protocol violation). The only safe 
way to deal with these people is to keep all randomised patients in the trial i.e. to analyse 
according to the randomisation. This will maintain the balance between the groups that the 
original randomisation will have achieved and so ensure that the treatment groups are 
comparable apart from the treatment received. This is known as analysing according to 
the intention to treat (see E-9). An intention to treat analysis should be performed 
wherever possible but may not be possible if some patients have dropped out of the trial. 
In this case sensitivity analyses should be performed to assess the likely impact of the 
missing data. 
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B-10 Achieving the sample size 
The sample size required for a clinical trial is decided using standard methods of power 
calculations or confidence interval width, as would be used for any other statistical study. 
(see section D)  However, a problem arises in clinical trials which is not so frequent in 
observational designs.  The agreed sample size may be very hard to recruit.  We have 
been involved with many clinical trials where recruitment has been much slower than 
anticipated.  Indeed, we would say that this is the norm.  One possible result of this is a 
request to the funders for an extension in time or for an extension in funding.  Requests 
for time are likely to be agreed, but requests for money may well be turned down on the 
grounds that there is no point in throwing good money after bad.  Another outcome may 
be the premature ending of the trial with only a small fraction of the planned recruitment, 
the analysis of a greatly under-powered trial and inconclusive findings. 
  
Why does this happen?  It is the common experience that as soon as a clinical trial 
begins, potential patients melt away like snow in August.  One reason for this might be 
that patients refuse to consent to the trial.  There is evidence to suggest that patient 
compliance with clinical trials may be reducing as a result of adverse publicity about 
medicine in general and trials in particular.  However, much more likely is the failure of 
recruiting staff to identify and approach potential research subjects.  This may be because 
of a lack of commitment to the project, which might be caused by honest doubts about the 
safety or efficacy of the new treatment or by the view that the new treatment should be 
used.  For example, in a sequential trial of sublingual nitrate in myocardial infarction, the 
statistician noticed that very few patients were dying, far fewer than the sample size 
calculations had assumed. It was explained by all the patients being entered into the trial 
having a good prognosis, based on the indicators used in the trial.  High risk patients were 
not being entered into the trial, but were being prescribed nitrates by admitting physicians.  
Poor recruitment may also be because staff are too busy.  If the clinical unit is under 
pressure from excessive patient numbers or understaffing, the research project will be the 
first thing to go.  This is how it should be, of course, as the wellbeing of patients should be 
our first concern, but it is pretty frustrating for the experimenter.  Another problem can be 
that other trials are already in progress in a unit.  Staff may be unable to cope with or keep 
in mind the needs to recruit to yet another trial, or there may be competition between trials 
for the same patients.  It is a good idea to check with potential collaborators what their 
other trial commitments are. 
 
Pilot studies (see A-1.9) are very helpful in sorting out some of these problems, as is 
having a research leader who can visit trial sites regularly and maintain good contact with 
staff actually concerned with recruitment.  Funders may well be impressed by a proposal 
which shows that this issue has been considered by applicants and some positive plans 
exist for dealing with it.  Also a good idea is to have recruitment targets (milestones) to 
enable the research team to monitor how well recruitment is going, so that problems can 
be detected as soon as possible. 
 
B-11 After the trial is over 
The current Declaration of Helsinki states that: 
 
"At the conclusion of the study, patients entered into the study are entitled to be informed 
about the outcome of the study and to share any benefits that result from it, for example, 
access to interventions identified as beneficial in the study or to other appropriate care or 
benefits." (Clause 33) 
 
Of course this may not be possible or appropriate in many trials, such as treatments of acute 
conditions.  However, the proposal should contain a statement about this if the trial is a direct 
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patient treatment of a chronic condition.  Is this going to take place and, if so, how will it be 
funded and administered? 
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C. Observational Studies 
 

 
 
 
 
 
 
 
 
 
 
 
C-1.1 Choice of control group in case-control studies 
Consider a case-control study (see A-1.4) that is concerned with identifying the risks for 
cardiovascular disease. Smoking history is an obvious variable worthy of investigation. In 
case-control studies, one must first decide upon the population from which subjects will be 
selected (e.g. a hospital ward, clinic, general population etc.). Where cases have been 
obtained from a hospital clinic, controls are often selected from another hospital 
population for ease of access. However, the latter scenario can introduce selection bias. 
For example, if cases are obtained from a cardiovascular ward and smoking history is one 
of the variables under investigation, it would be unsuitable to obtain controls from a ward 
containing patients with smoking related disease e.g. lung cancer. The choice of a suitable 
control group is fraught with problems both practical and statistical. These problems are 
discussed in detail in Breslow & Day 1980. In general the ideal is to select as controls a 
random sample from the general population that gave rise to the cases. However this 
assumes the existence of a list of subjects in the population (i.e. a sampling frame exists) 
which in many cases it does not. 
 
C-1.2 Matching in case-control studies 
Sometimes in a case-control study  (see A-1.4) cases and controls are matched. You can 
have 1-1 matching of one control for each case or 1-m matching of m controls per case. 
The latter is often used to increase statistical power for a given number of cases (see 
Breslow & Day 1980). For each case, 1 or more controls are found that have the same, or 
very similar, values in a set of matching variables. Matching variables typically include age 
and sex etc. Typically two or three matching variables are selected; anymore would make 
the selection of controls difficult. It is hoped that by matching, any differences between 
cases and controls are not a result of differences between groups in the matching 
variables. The extent to which this aim is achieved depends to some extent on the 
closeness of the matching. Here a balance has to be struck between matching as closely 
as possible and what can be achieved. Pilot work (see A-1.9) may be useful in making this 
judgement. When describing a matched case-control study in a grant application, it is not 
sufficient to say that a control will be matched to each case for age for example. The 
reviewer will want to know how closely - to within one year, to within 5 years etc? Also of 
interest to the reviewer is how the controls will be selected (e.g. at random from a list of all 
possible matches) and what happens when a control refuses. Will a second control be 
selected as a replacement and how many replacements will be permitted? 
 
The main purpose of matching is to control for confounding (see A-1.6). However it should 
be appreciated that confounding factors can be controlled for in other ways (see E-5) and 
these other ways become increasingly appealing when we consider some of the problems 
associated with matching: 
 

C-1      Case-control studies 
C-1.1  Choice of control group in case-control studies 
C-1.2   Matching in case-control studies 
 
C-2  Assessment bias 
C-3  Recall bias 
C-4  Sample Survey: selecting a representative sample 
C-5  Generalisability and extrapolation of results 
C-6  Maximising response rates to questionnaire surveys 
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1) It is not possible to examine the effects of the matching variables upon the status of the 
disease/disorder (either present or absent). Thus although the disease or condition of 
interest will be related to the matching variables, the matching variables should not be of 
interest in themselves.  
2) If we match we should take the matching into account in the statistical analysis. This 
makes the analysis quite complicated (see E-6.2, Breslow & Day 1980). 
3) In a 1-1 matched case-control study matched pairs are analysed together and so 
missing information on a control means that it's case is also treated as missing in the 
statistical analysis. Similarly missing information on a case leads to the loss of information 
on its matched control(s). 
4) Bias can arise if we match on a variable that turns out to form part of the causal 
pathway between the risk factor under study and disease. This bias is said to be due to 
overmatching. 
 
See Bland & Altman (1994c) and Breslow & Day (1980), for further discussion on 
matching. 
 
C-2 Assessment bias 
Consider a case-control study where for example the interest may be to investigate an 
association between diet and bowel cancer. Let us assume that diet is to be assessed by 
an interviewer administered food frequency questionnaire. If the interviewer is aware of 
the medical condition of the patients then this may lead to assessment bias, namely a 
difference between the information recorded by the interviewer (assessor) and the actual 
"truth". The interviewer may record poorer diets than actually consumed for those patients 
with cancer. Assessment bias can be overcome if the assessor is 'blind' to the medical 
condition, thus avoiding any manipulation of results either conscious or subconsciously 
(although 'blinding' is difficult to do in a case-control study of cancer where interviews are 
face to face). Assessment bias can even arise in a case-control study when data is being 
extracted from medical records as the process of extraction may be influenced by the 
knowledge of outcome (e.g. case or control). In this case 'blind' extraction is advocated. 
 
C-3 Recall bias 
This is a particular problem in both case-control studies (see A-1.4) and cross-sectional 
studies (see A-1.5) when information is collected retrospectively, as the patients outcome 
e.g. disease status, is known, and they are being asked to recall past events. Patient data 
collected retrospectively may be of poor quality as it is based on the patient's ability to 
recollect the past. In addition, their ability to recall may be influenced by their known 
outcome and it is this difference in ability that may bias observed associations. If recall 
bias is likely to be a problem then the grant applicants should at least consider alternative 
methodologies. Could the data be collected from another source e.g. 'blind' extraction 
from historical records? Would it be possible to undertake a prospective study where for 
example exposure information is collected prior to and in the lack of knowledge of future 
disease?  
 
C-4 Sample survey: selecting a representative sample 
We may be interested in demonstrating an association between unemployment and 
current poor health. We might decide to undertake a cross-sectional study and obtain a 
sample from a London Borough. The aim of the research would be to extrapolate our 
findings from this sample to the population of the borough and then possibly nationally.  
Therefore, our sample should be at least representative of the London borough population 
from where it was obtained. In practice, we could only obtain a truly representative sample 
through random sampling of the whole borough. Nonetheless, the sample would still only 
be representative to a particular time period. It may even be difficult to extrapolate the 
results to the same borough during another time period, and therefore possibly nationally. 
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Sometimes by chance a random sample is not as representative as we would like. For 
example in our cross-sectional survey to investigate associations between unemployment 
and current health it may be particularly important to ensure that we have an adequate 
representation of all postal areas in the borough, thereby reflecting the socioeconomic 
deprivation that exists. One way of doing this is to undertake stratified random sampling.  
Stratified random sampling is a means of using our knowledge of the population to ensure 
the representative nature of the sample and increase the precision of population 
estimates. Post-code area would be known as the stratification factor. Usually we 
undertake proportional stratified sampling. The total sample size is allocated between the 
strata proportionally, with the proportion determined by the strata total size as a proportion 
of the total population size. For example if 10% of the borough live in one postal code area 
then we randomly select 10% of the sample from this strata. 
 
Stratification does not depart from the principle of random sampling. All it means is that 
before any selection takes place, the population is divided into strata and we randomly 
sample in each strata. It is possible to have more than one stratification factor. For 
example in addition to stratifying by post-code area, we may stratify by age group within 
the post code area. Nonetheless, we have to be careful not to stratify by too many factors.  
Stratified random sampling requires that we have a large population, for which all of the 
members and their stratification factors are listed. Obviously as the number of stratification 
factors increase then so also does the time and expense involved. Nonetheless we can be 
more confident of the representative nature of the sample and thereby the generalisability 
of the results. 
 
C-5 Generalisability and extrapolation of results 
All medical research is undertaken on a group of selected individuals. However, the 
usefulness of any medical research is centred in the generalisation of the findings rather 
than in the information gained about a group of particular individuals. Nonetheless, most 
studies often use very restrictive inclusion criteria making it very difficult to generalise 
results. For example, if the study subjects in a cross-sectional study concerned with 
investigating associations between bowel cancer and diet were selected from an area that 
was predominately social class IV or V, can the results be extrapolated to individuals in a 
different social class? Such extrapolation of results is not obvious and the researchers of 
such a study should have considered incorporating other geographical areas with a wider 
range of social classes. Even if the study had such a sample, the reader of the journal 
article must pay careful attention to the ethnicity of the study subjects before extrapolating 
the results of a study conducted in the UK to say Asia. Observational studies are 
conducted to investigate associations between risk factors and a disease or disorder, 
rather than to find out anything about the individual patients in the study. See Altman & 
Bland (1998), for further discussion on generalisation and extrapolation. 
 
C-6 Maximising response rates to questionnaire surveys 
The response rate to a questionnaire survey is the proportion of subjects who respond to 
the questionnaire. Questionnaire surveys, particularly postal surveys, tend to have low 
response rates (anything from 30%-50% is not unusual). The subjects that respond to 
questionnaires differ from those that don't and so the results of a study with a low 
response rate will not be seen as representative of the population of interest. Thus, if a 
grant proposal includes a questionnaire survey the reviewers will be looking for ways in 
which the applicants plan to maximise response. Response rates can be enhanced by 
including self-addressed stamped envelopes, informing respondents of the importance of 
the study and ensuring anonymity. If anonymity is not given, then response rates can also 
be increased by following up the first posting with another copy of the questionnaire or 
telephone call. Alternatively if anonymity is given then a second posting of the 
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questionnaire may result in duplication from some respondents. See Edwards et al (2002), 
for a discussion on improving response rates to questionnaires. 
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D. Sample size calculations 
 
 
D-1   When should sample size calculations be provided? 
D-2   Why is it important to consider sample size? 
D-3   Information required to calculate a sample size 
 
D-4   Explanation of statistical terms 
D-4.1   Null and alternative hypothesis 
D-4.2   Probability value (p-value) 
D-4.3   Significance level 
D-4.4   Power 
D-4.5   Effect size of clinical importance 
D-4.6   One-sided and two-sided tests of significance 
 
D-5   Which variables should be included in the sample size calculation? 
D-6   Allowing for response rates and other losses to the sample 
D-7   Consistency with study aims and statistical analysis 
 
D-8   Three specific examples of sample size calculations & statements 
D-8.1   Estimating a single proportion 
D-8.2   Comparing two proportions 
D-8.3   Comparing two means 
 
D-9   Sample size statements likely to be rejected 
 
D-1  When should sample size calculations be provided? 
• Sample size calculations are required for the vast majority of quantitative studies 
 
• Sample size calculations are not required for qualitative research (note: this means 

formal qualitative methods, such as content analysis, not simple descriptive projects 
which are actually still quantitative.) 

 
• Sample size calculations may not be required for certain preliminary pilot studies (see 

A-1.9). (However, such studies will often be performed prior to applying for funding) 
 
If in any doubt, please check with the funding body – missing or inadequate sample size 
calculations are one of the most common reasons for rejecting proposals. 
 
D-2  Why is it important to consider sample size? 
• In studies concerned with estimating some characteristic of a population (e.g. the 

prevalence of asthmatic children), sample size calculations are important to ensure 
that estimates are obtained with required precision or confidence.  For example, a 
prevalence of 10% from a sample of size 20 would have a 95% confidence interval of 
1% to 31%, which is not very precise or informative.  On the other hand, a prevalence 
of 10% from a sample of size 400 would have a 95% confidence interval of 7% to 13%, 
which may be considered sufficiently accurate.  Sample size calculations help to avoid 
the former situation. 

 
• In studies concerned with detecting an effect (e.g. a difference between two 

treatments, or relative risk of a diagnosis if a certain risk factor is present versus 
absent), sample size calculations are important to ensure that if an effect deemed to be 
clinically or biologically important exists, then there is a high chance of it being 
detected, i.e. that the analysis will be statistically significant.  If the sample is too small, 
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then even if large differences are observed, it will be impossible to show that these are 
due to anything more than sampling variation. 

 
D-3  Information required to calculate a sample size 
It is highly recommended that you ask a professional statistician to conduct the sample 
size calculation. 
 
Methods for the determination of sample size are described in several general statistics 
texts, such as Altman (1991), Bland (2000), and Armitage, Berry & Matthews (2002). Two 
specialised books are available which discuss sample size determination in many 
situations. For continuous data, use Machin et al. (1998). For categorical data, use 
Lemeshow et al. (1996). These books both give tables so simplify the calculation. For 
sample size in sequential trials, see Whitehead (1997). 
 
The actual calculations for sample size can be done using several computer programs. 
Our free program Clinstat carries out calculations for the comparison of means and 
proportions and for testing correlation. It is available via our web directory of 
randomisation software and services (see Appendix). Many more options are provided by 
the commercial package nQuery advisor, Elashoff (2000).  A good free Windows program 
is PS Power and Sample Size Calculations by William D. Dupont and Walton D. Plummer 
(biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize). 
 
Your sample size calculation depends on the following factors, which the statistician will 
want to discuss with you: - 
 

• The variables of interest in your study, including the type of data (type of data is 
expanded in sections A-4, A-4.1, and A-4.2) 

• The desired power*  
• The desired significance level*  
• The effect size of clinical importance* 
• The standard deviation of continuous outcome variables 
• Whether analysis will involve one- or two-sided tests* 
• Aspects of the design of your study: e.g. is your study …. 

- a simple randomised controlled trial (RCT) 
- a cluster randomised trial 
- an equivalence trial (see D-7) 
- a non-randomised intervention study (see B-5.10c) 
- an observational study 
- a prevalence study 
- a study measuring sensitivity and specificity 
- does your study have paired data? 
- does your study include repeated measures? 
- are groups of equal sizes? 
- are the data hierarchical? 

 
* Explanations of these terms are given below 
 
Note 1: Non-randomised studies looking for differences or associations will generally 
require a much larger sample in order to allow adjustment for confounding factors 
within the analysis (see A-1.6, E-5). 
 
Note 2: It is the absolute sample size which is of most interest, not the sample size as a 
proportion of the whole population. 
 



 39 

 
 
D-4  Explanation of statistical terms 
 
D-4.1  Null and alternative hypothesis 
Many statistical analyses involve the comparison of two treatments, procedures or subject 
types.  The numerical value summarising the difference of interest is called the effect.  In 
other study designs the effect may be represented by a correlation coefficient, an odds 
ratio, or a relative risk.  We declare the null and alternative hypotheses.  Usually, the null 
hypothesis states that there is no effect (e.g. the difference is zero; the relative risk is 
one; or the correlation coefficient is zero), and the alternative hypothesis that there is an 
effect.  
 
D-4.2  Probability value (p-value) 
The p-value is the probability of obtaining the effect observed in the study (or one 
stronger) if the null hypothesis of no effect is actually true.  It is usually expressed as a 
proportion (e.g. p=0.03). 
 
D-4.3  Significance level 
The significance level is a cut-off point for the p-value, below which the null hypothesis will 
be rejected and it will be concluded that there is evidence of an effect.  The significance 
level is typically set at 5%. (The significance level, although a p-value, is usually 
expressed as a percentage: p=5% is equivalent to p=0.05).  If the observed p-value is 
smaller than 5% then there is only a small probability that the study could have observed 
the data it did if there was truly no effect, and so it would be concluded that there is 
evidence of a real effect.  
 
A significance level of 5% also means there is up to a 5% probability of concluding that 
there is evidence of an effect, when in fact none exists.  A significance level of 1% is 
sometimes more appropriate, if it is very important to avoid concluding that there is 
evidence of an effect when in reality none exists. 
 
D-4.4  Power 
Power is the probability that the null hypothesis will be correctly rejected i.e. rejected when 
there is indeed a real difference or association.  It can also be thought of as “100 minus 
the percentage chance of missing a real effect” – therefore the higher the power, the lower 
the chance of missing a real effect.  Power is typically set at 80%, 90% or 95%.  Power 
should not be less than 80%.  If it is very important that the study does not miss a real 
effect, then a power of 90% or more should be applied.  
  
D-4.5  Effect size of clinical importance 
This is the smallest difference between the group means or proportions (or odds 
ratio/relative risk closest to unity) which would be considered to be clinically or biologically 
important.  The sample size should be set so that if such a difference exists, then it is very 
likely that a statistically significant result would be obtained. 
 
D-4.6  One-sided and two-sided tests of significance 
In a two-sided test, the null hypothesis states there is no effect, and the alternative 
hypothesis (often implied) is that a difference exists in either direction.  In a one-sided test 
the alternative hypothesis does specify a direction, for example that an active treatment is 
better than a placebo, and the null hypothesis then includes both no effect and placebo 
better than active treatment.   
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Two-sided tests should be used unless there is a very good reason for doing otherwise.  
Expectation that the difference will be in a particular direction is not adequate justification 
for one-sided tests.  Medical researchers are sometimes surprised by their results. If the 
true effect is in the opposite direction to that expected, this generally has very different 
implications to that of no effect, and should be reported as such; a one-sided test would 
not allow this.  Please see Bland & Altman (1994), for some examples of when one-sided 
tests may be appropriate. 
 
D-5  Which variables should be included in the sample size calculation? 
The sample size calculation should relate to the study’s primary outcome variable. 
 
If the study has secondary outcome variables which are also considered important (as is 
often the case), the sample size should also be sufficient for the analyses of these 
variables.  Separate sample size calculations should ideally be provided for each 
important variable.  (See also B-6 and E-7) 
 
D-6  Allowing for response rates and other losses to the sample 
The sample size calculation should relate to the final, achieved sample.  Therefore, the 
initial numbers approached in the study may need to be increased in accordance with the 
expected response rate, loss to follow up, lack of compliance, and any other predicted 
reasons for loss of subjects (for clinical trials see also B-10).  The link between the initial 
numbers approached and the final achieved sample size should be made explicit. 
 
D-7  Consistency with study aims and statistical analysis 
The adequacy of a sample size should be assessed according to the purpose of the study.  
For example, if the aim is to demonstrate that a new drug is superior to an existing one 
then it is important that the sample size is sufficient to detect a clinically important 
difference between the two treatments. However, sometimes the aim is to demonstrate 
that two drugs are equally effective. This type of trial is called an equivalence trial or a 
'negative' trial. Pocock (1983) p129-130, discusses sample size considerations for these 
studies. The sample size required to demonstrate equivalence will be larger than that 
required to demonstrate a difference. Please check that your sample size calculations 
relate to the study’s stated objectives, and are based on the study’s primary outcome 
variable (see D-5).  
 
The sample size calculation should also be consistent with the study’s proposed method 
of analysis, since both the sample size and the analysis depend on the design of the study 
(see section E).  Please check the consistency between sample size calculation and 
choice of analysis. 
 
D-8 Three specific examples of samples size calculations  
If your study requires the estimation of a single proportion, comparison of two means, or 
comparison of two proportions, the sample size calculations for these situations are 
(generally) relatively straightforward, and are therefore presented here.  However, it is still 
strongly recommended that you ask a statistician to conduct the sample size calculation.   
 
D-8.1  Estimating a single proportion: 
Note:  The formula presented below is based on ‘normal approximation methods’, and, 
unless a very large sample is planned, should not be applied when estimating 
percentages which are close to 0% or 100%.  In these circumstances ‘exact methods’ 
should be used.  This will generally be the case in studies estimating the sensitivity or 
specificity of a new technique, where percentages close to 100% are anticipated.  Consult 
a statistician (or at least a computer package) in this case. (See also E-12.1) 
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Scenario:  The prevalence of dysfunctional breathing amongst asthma patients being 
treated in general practice is to be assessed using a postal questionnaire survey.  
(Thomas et al. 2001) 
 
Required information: - 
 
Primary outcome variable = presence/absence of dysfunctional breathing 
 
‘Best guess’ of expected percentage (proportion) = 30%  (0.30)  
 
Desired width of 95% confidence interval = 10%  (i.e. +/- 5%, or 25% to 35%) 
 
The formula for the sample size for estimation of a single proportion is as follows: - 
 
 n =  15.4 * p * (1-p)  where n = the required sample size  
  W2   p = the expected proportion – here 0.30 
   W = width of confidence interval – here 0.10 
Inserting the required information into the formula gives: -  
 
 n =  15.4 * 0.30 * (0.70)  =  324 
    0.102  
 
Suggested description of this sample size calculation: -  
 
“A sample of 324 patients with asthma will be required to obtain a 95% confidence interval 
of +/- 5% around a prevalence estimate of 30%.  To allow for an expected 70% response 
rate to the questionnaire, a total of 480 questionnaires will be delivered.” 
 
D-8.2  Comparing two proportions: - 
Note:  The following calculation only applies when you intend to compare two groups of 
the same size. 
 
Scenario: A placebo-controlled randomised trial proposes to assess the effectiveness of 
colony stimulating factors (CSFs) in reducing sepsis in premature babies.  A previous 
study has shown the underlying rate of sepsis to be about 50% in such infants around 2 
weeks after birth, and a reduction of this rate to 34% would be of clinical importance. 
 
Required information: - 
 
Primary outcome variable = presence/absence of sepsis at 14 days after treatment 
(treatment is for a maximum of 72 hours after birth).  Hence, a categorical variable 
summarised by proportions. 
 
Size of difference of clinical importance = 16%, or 0.16    (i.e. 50%-34%) 
 
Significance level = 5% 
 
Power = 80% 
 
Type of test = two-sided 
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The formula for the sample size for comparison of 2 proportions (two-sided) is as follows: - 
 
 n = [A + B]2 * [(p1*(1-p1)) + (p2* (1-p2))] 
                                    [p1-p2]2  
                              
 where n = the sample size required in each group (double this for total sample) 
  p1 = first proportion – here 0.50 
  p2 = second proportion – here 0.34 
  p1-p2 = size of difference of clinical importance – here 0.16 
  A depends on desired significance level (see table) – here 1.96 
  B depends on desired power (see table) – here 0.84 
 
       Table of values for A and B  
 Significance 

level 
A 

 5% 1.96 
 1% 2.58 
 Power B 
 80% 0.84 
 90% 1.28 
 95% 1.64 
 
Inserting the required information into the formula gives: -  
 
 n = [1.96 + 0.84]2 * [(0.50*0.50) + (0.34* 0.66)]  =  146 
                                    [0.16]2  
This gives the number required in each of the trial’s two groups.  Therefore the total 
sample size is double this, i.e. 292. 
 
 
Suggested description of this sample size calculation: - 
 
“A sample size of 292 babies (146 in each of the treatment and placebo groups) will be 
sufficient to detect a difference of 16% between groups in the sepsis rate at 14 days, with 
80% power and a 5% significance level.  This 16% difference represents the difference 
between a 50% sepsis rate in the placebo group and a 34% rate in the treatment group.” 
 
D-8.3  Comparing two means: 
Note:  The following calculation only applies when you intend to compare two groups of 
the same size. 
 
Scenario:  A randomised controlled trial has been planned to evaluate a brief 
psychological intervention in comparison to usual treatment in the reduction of suicidal 
ideation amongst patients presenting at hospital with deliberate self-poisoning.  Suicidal 
ideation will be measured on the Beck scale; the standard deviation of this scale in a 
previous study was 7.7, and a difference of 5 points is considered to be of clinical 
importance.  It is anticipated that around one third of patients may drop out of treatment.  
(Guthrie et al. 2001) 
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Required information: - 
 
Primary outcome variable = The Beck scale for suicidal ideation.  A continuous variable 
summarised by means. 
 
Standard deviation = 7.7 points 
 
Size of difference of clinical importance = 5 points 
 
Significance level = 5% 
 
Power = 80% 
 
Type of test = two-sided 
 
The formula for the sample size for comparison of 2 means (2-sided) is as follows: - 
 
 n = [A + B]2 * 2 * SD2 
                       DIFF2 
                              
 where n = the sample size required in each group (double this for total sample) 
           SD = standard deviation, of the primary outcome variable – here 7.7 
  DIFF = size of difference of clinical importance – here 5.0 
  A depends on desired significance level (see table) – here 1.96 
  B depends on desired power (see table) – here 1.28 
 
 Table of values for A and B  
 Significance 

level 
A 

 5% 1.96 
 1% 2.58 
 Power B 
 80% 0.84 
 90% 1.28 
 95% 1.64 
 
Inserting the required information into the formula gives: -  
 
 n = [1.96 + 0.84]2 * 2 * 7.72  =  38 
                            5.02  
 
This gives the number required in each of the trial’s two groups.  Therefore the total 
sample size is double this, i.e. 76. 
 
To allow for the predicted dropout rate of around one third, the sample size was increased 
to 60 in each group, a total sample of 120. 
 
Suggested description of this sample size calculation: -  
 
“A sample size of 38 in each group will be sufficient to detect a difference of 5 points on 
the Beck scale of suicidal ideation, assuming a standard deviation of 7.7 points, a power 
of 80%, and a significance level of 5%.  This number has been increased to 60 per group 
(total of 120), to allow for a predicted drop-out from treatment of around one third” 



 44 

 
D-9 Inadequate sample size statements  
 
Example 1: - 
 
“A previous study in this area recruited 150 subjects and found highly significant 
results (p=0.014), and therefore a similar sample size should be sufficient here.” 
 
Previous studies may have been ‘lucky’ to find significant results, due to random sampling 
variation.  Calculations of sample size specific to the present, proposed study should be 
provided - including details of power, significance level, primary outcome variable, effect 
size of clinical importance for this variable, standard deviation (if a continuous variable), 
and sample size in each group (if comparing groups). 
 
 
Example 2: - 
 
“Sample sizes are not provided because there is no prior information on which to 
base them.”   
 
Every effort should be made to find previously published information on which to base 
sample size calculations, or a small pre-study may be conducted to gather this 
information. 
 
Where prior information on standard deviations is unavailable, sample size calculations 
can be given in very general terms, i.e. by giving the size of difference that may be 
detected in terms of a number of standard deviations. 
 
However, if funding is being requested for very preliminary pilot studies (see A-1.9), aimed 
at assessing feasibility or gathering the information required to calculate sample sizes for 
a full-scale study, then sample size calculations are not necessary. 
 
 
Example 3: - 
 
"The throughput of the clinic is around 50 patients a year, of whom 10% may refuse 
to take part in the study. Therefore over the 2 years of the study, the sample size 
will be 90 patients. " 
 
Although most studies need to balance feasibility with study power, the sample size 
should not be decided on the number of available patients alone. 
 
Where the number of available patients is a known limiting factor, sample size calculations 
should still be provided, to indicate either a) the power which the study will have to detect 
the desired difference of clinical importance, or b) the difference which will be detected 
when the desired power is applied. 
 
Where the number of available patients is too small to provide sufficient power to detect 
differences of clinical importance, you may wish to consider extending the length of the 
study, or collaborating with a colleague to conduct a multi-centre study. 
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E. Describing the statistical methods 
 
 
E-1       Introduction 
E-1.1    Terminology 
E-1.2    Level of detail required 
 
E-2       Is the proposed method appropriate for the data? 
E-2.1    'Ordinal' scores 
 
E-3       Paired and unpaired comparison 
 
E-4       Assumptions 
E-4.1    Transformations 
 
E-5       Adjustment for confounding 
 
E-6       What are hierarchical or multilevel data? 
E-6.1    Analysing hierarchical data 
 
E-7        Multiple testing 
E-7.1     Multiple testing: when does it arise? 
E-7.2     Multiple testing: why is it a problem? 
E-7.3     The Bonferroni correction 
E-7.4     How to deal with multiple testing 
E-7.4a   More than one outcome measurement in a clinical trial 
E-7.4b   More than one predictor measurement in an observational study 
E-7.4c   Measurements repeated over time (serial measurements) 
E-7.4d   Comparisons of more than two groups 
E-7.4e   Testing the study hypothesis within subgroups 
E-7.4f    Repeatedly testing the difference in a study as more patients are recruited 
 
E-8        Change over time (regression towards the mean) 
E-9        Intention to treat in clinical trials 
E-10      Cluster randomised trials 
E-11      Collapsing variables 
 
E-12      Estimation and confidence intervals 
E-12.1   Proportions close to 1 or zero 
 
E-1 Introduction 
When reading through the statistical analysis section of a grant proposal, the reviewer is 
looking for several things. Have the statistical methods been described adequately and in 
terms that are unambiguous?  Will the data generated by the study be measured on an 
appropriate scale (see A-4.1) and be of an appropriate type (see A-4.2) for analysis by the 
methods proposed? Will the assumptions made by the proposed methods hold and what 
is planned if they do not? Will the proposed statistical methods take adequate account of 
the study design and the structure of the data (e.g. serial measurements, hierarchical 
data)? 
 
E-1.1Terminology 
When describing the proposed statistical methods it is appropriate and helpful to the 
reviewer to use statistical terminology. However it is important that the applicant actually 
understands the terminology and uses it appropriately if the description is to be 
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unambiguous. Very often applicants say that they plan a multivariate analysis when in fact 
they mean a multifactorial analysis. These two types of analysis are appropriate in 
different settings and are used to answer different questions. They also make different 
assumptions. To add to the confusion the terms multivariate and multifactorial are 
frequently used interchangeably and therefore incorrectly in the medical literature as well 
as in grant proposals. So when and how should they be used? In any statistical technique 
it is the outcome variable whose variation is being modelled and about whom assumptions 
(e.g. data come from a Normal distribution) are made. The explanatory variable on the 
other hand is assumed to take fixed values.  A statistical method involving only one 
outcome variable can be described as univariate and a method involving multiple outcome 
variables as multivariate. Univariate analyses can be further divided into unifactorial if only 
one explanatory variable is to be considered and multifactorial if multiple explanatory 
variables are to be considered.  
 
E-1.2 Level of detail required  
It is important for the reviewer to be reassured that the applicants have thought in some 
detail about how they will use their data to address their study aims. Often, however, 
applicants concentrate on describing their study design and on calculating their sample 
size but then dismiss their proposed statistical analysis using a single sentence. For 
example, data will be analysed using the computer package SPSS or data will be 
analysed using multivariate techniques or data will be analysed using multifactorial 
methods. Such descriptions are completely inadequate. There are a wealth of statistical 
techniques that can be run using SPSS or that can be described as multivariate or 
multifactorial. The actual name of the technique intended should therefore be given 
explicitly e.g. principal component analysis, multiple regression analysis etc. This 
information is essential to the reviewer as although certain techniques may come under 
the same umbrella term e.g. multifactorial, they are appropriate in very different settings. 
For example, multiple logistic regression and multiple regression may both be described 
as multifactorial but the latter can only be used when the outcome is a continuous variable 
and the former when the outcome is a binary variable (two possible categories e.g. yes 
and no) or the sum of binary variables (see Bland 2000, chapter 17). 
 
E-2 Is the proposed method appropriate for the data? 
When writing the statistical analysis section the applicants should be mindful of the type of 
data that will be generated by their study (see A-4.1 and A-4.2). For example, if they have 
one outcome variable measured across two independent groups of subjects is that 
outcome variable continuous, ordinal, categorical or more specifically binary (only two 
categories e.g. yes and no)? If the outcome is binary then in order to compare groups one 
of the following statistical tests might be used: The Chi-squared test or Fisher’s Exact 
Test. However if the outcome is continuous then the two-sample t test or the Mann-
Whitney U test might be used. For an ordinal outcome variable the Chi-square test for 
trend or the Mann-Whitney U test might be employed and finally for a non-ordered 
categorical outcome the Chi-squared test might be used. Although the appropriateness of 
each test will depend on other assumptions (see E-3 and E-4) in addition to data type, it is 
clear that the two-sample t test is not appropriate for binary, categorical outcomes or non-
interval data. (For further information on the significance tests mentioned see Armitage, 
Berry & Matthews 2002, Altman 1991, Bland 2000) 
 
E-2.1 'Ordinal' scores  
A particular type of data of interest are scores that are formed by adding up numerical 
responses to a series of questions in a questionnaire that has been designed to obtain 
information on different aspects of the same phenomenon e.g. quality of life. Often each 
question requires only a yes/no answer (coded Yes=1, No=0). The resulting scores are 
not interval data and it is debatable whether they are even ordinal (see A-4.1 and A-4.2). 
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A positive response to Question A may add 1 to the overall score as may a positive 
response to Question B, but since A and B are measuring two different aspects, what 
does a difference in score of 1 actually mean? 
 
When such scores are based on a large number of questions, they are often treated as if 
they were continuous variables for the purposes of multivariate or multifactorial analysis 
(see E-1.1). The main reason for this is the lack of any alternative methodology. However, 
care should always be taken when interpreting results of such analyses and the problem 
should not just be ignored. Where scores are based on only a few yes/no type questions 
(say < 10) treating the score as continuous cannot be justified. Indeed some statisticians 
would argue that 'ordinal' scores should never be treated as continuous data. Certainly for 
unifactorial analysis, non-parametric methods should be considered (see Conover 1980). 
  
E-3 Paired and unpaired comparison 
Very often whether in a clinical trial or in an observational study (see A-1) there are two 
sets of data on the same variable and it is of interest to compare these two sets. Of 
primary importance is whether or not they can be considered to be independent of each 
other. Dependence will arise if the two sets consist of measurements or counts made on 
the same subjects at two different points in time. For example middle-aged men with lung 
function measured at baseline clinic and 5-year follow-up. It can also arise in 
observational studies if we have subjects with disease (cases) and subjects without 
disease (controls) and each control is matched to each case for important confounding 
factors such as age and sex. That is a 1-1 matched case-control study. With this type of 
dependence the comparison of interest is the paired comparison (i.e. differences within 
pairs). When the two sets of data are independent as for example when subjects are 
randomly allocated to groups in a randomised trial or when two distinct groups (e.g. males 
and females) are compared in an observational study, the comparison of interest is the 
unpaired comparison (i.e. differences between groups). 
 
The distinction is important as paired and unpaired comparisons require different 
statistical techniques. Thus if the data are continuous (see  A-4) representing some 
measurement on two independent groups of subjects an unpaired t test (or Mann-Whitney 
U test) might be used but if measurements are 'before' and 'after' measurements on the 
same subjects a paired t test (or Wilcoxon Signed rank test) might be used. For binary 
data i.e. data taking the values 0 and 1 only, the tests for unpaired and paired comparison 
would be the Chi-squared test (or Fisher’s Exact Test) and McNemar's test respectively; 
although the appropriateness of each test would depend on other assumptions holding as 
discussed below (see E-4). (For further information on the significance tests mentioned 
see Armitage, Berry & Matthews 2002, Altman 1991, Bland 2000) 
 
E-4 Assumptions 
It is often not appreciated that in order to formulate statistical significance tests certain 
assumptions are made and that if those assumptions do not hold then the tests are 
invalid. For example the unpaired t test (sometimes referred to as the two-sample t test) 
assumes that data have been selected at random from two independent Normal 
distributions with the same variance. The assumption of independence is satisfied if as 
indicated above, data come from measuring two distinct/unmatched groups of subjects. 
One simple way of checking that data come from a Normal distribution is to produce a 
histogram of the data or to produce a Normal plot. A symmetrical bell shaped histogram or 
a straight line of points on the Normal plot indicates Normality. To check for equal 
variances it is worth just eyeballing the calculated standard deviations for each group to 
see if they differ markedly. This is as good a method as any. Testing for a significant 
difference between variances is of limited use as the size of difference that can be 
detected with any degree of certainty is dependent upon sample size. Thus a large 
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sample size may detect a real though trivial difference in variance whereas a small sample 
would miss a large important difference. 
 
Other tests: 
i) The paired t test (see E-3) assumes that differences between paired observations come 
from a Normal distribution. 
ii) The chi-squared test and McNemar's test (see E-2 and E-3) are large sample tests and 
their validity depends on sample size. For small samples Fisher's exact test or an exact 
version of McNemar's test may be required (several programs are available to do these 
including StatXact by Cytel).  
iii) Contrary to popular belief, tests based on ranks such as the Mann-Whitney U test or 
the Wilcoxon signed rank test (see E-2 and E-3) also make assumptions and cannot be 
used for very small samples (see Conover 1980). 
 
E-4.1 Transformations 
If a histogram of the data is not symmetrical and has a long tail to the right, the distribution 
is described as positively skew. If the longer tail is to the left the distribution is said to be 
negatively skew. If data appear to follow a positively skewed distribution but the proposed 
statistical analysis assumes that data come from a Normal distribution then a logarithmic 
transformation may be useful. We simply take logs of the basic data and use the logged 
data in the analysis, provided a histogram of the logged data looks sufficiently symmetrical 
and bell shaped i.e. provided the logged data come from a Normal distribution. If the 
logged data do not appear to follow a Normal distribution then there are some other 
transformations that can be tried e.g. the square root transformation. Very often a 
transformation which restores Normality will also lead to equal variances across groups 
(see Wetherill 1981) 
 
If the data come from a negatively skew distribution or if transformations are not very 
helpful then a non-parametric test based on ranks may be a more useful approach. The 
non-parametric equivalent to the two-sample t test is the Mann-Whitney U test (see 
Conover 1980 for more details of non-parametric tests). 
 
E-5 Adjustment for confounding 
When in an observational study we observe for example an association between good 
lung function and vitamin C, we cannot assume that vitamin C is directly benefiting lung 
function. There may be some other factor such as smoking which is inversely associated 
with vitamin C and which has a direct effect on lung function. In other words smoking may 
confound the association between vitamin C and lung function.  
 
The effects of confounding can be adjusted for at the design stage in terms of matching 
(see C-1.2) or stratified randomisation (see B-5.7) etc or at the analysis stage using 
multifactorial methods (see E-1.1). A list of confounders and how they are to be adjusted 
for should always form part of the section on proposed statistical methods. If the 
applicants decide to adjust at the analysis stage then the collection of information on 
confounding variables should form part of their plan of investigation. Some consideration 
should also be given to how detailed this information needs to be. To adjust for smoking in 
the lung function vitamin C example, something more than a 3 category variable of current 
smoker, ex-smoker and non-smoker is required as both amount smoked and length of 
time exposed may be important. If the applicants propose to adjust at the design stage 
then they need to appreciate that this will build some sort of structure into their data which 
will have implications for the statistical analysis (see E-6 and E-6.1). For example, in a 1-1 
matched case-control study you cannot treat the cases and controls as two independent 
samples but rather as paired samples (see E-3).  
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E-6 Hierarchical or multilevel data 
This is where your data have some sort of hierarchy e.g. patients within GP practices, 
subjects within families. We cannot ignore the fact that subjects within the same group are 
more alike than subjects in different groups. This problem is one of a lack of 
independence. Most basic significance tests (e.g. t tests) assume that within each group 
being compared (e.g. treatment A or treatment B), the data are independent observations 
from some theoretical distribution. For example the 2-sample t test assumes that the data 
within each group are independent observations from a Normal distribution. If for example 
the data are measurements of total cholesterol made on patients from a sample of general 
practices, measurements of subjects in the same practice will tend to be more similar than 
measurements of subjects from different practices. Hence the assumption of 
independence fails.   
 
E-6.1 Analysing hierarchical data 
It is often the case that a carefully designed study incorporates balance by introducing a 
hierarchical structure to the data. For example, in a case-control study you may match one 
control of the same age and sex 1-1 to each case (see C-1.2). You then have case-control 
pairs and below them in the hierarchy, the subjects within pairs. This matching should be 
taken into account in the statistical analysis (see Breslow & Day 1980). In a clinical trial 
you may stratify your subjects by age and randomly allocate subjects to treatments within 
strata (see B-5.7). Strata should be adjusted for in the statistical analysis if we are to 
maximise precision. In a cluster randomised trial (see B-5.9) you may randomly allocate a 
sample of general practices to one of two interventions and measure outcome in the 
patients. In this case, general practice should be used as the unit of analysis and not the 
patient. In other words we have to summarise the outcome for each practice; we cannot 
simply add up all the patients in the intervention practices and the non-intervention 
practices (see Altman & Bland 1997, Bland & Kerry 1997, Kerry & Bland 1998, Kerry & 
Bland 1998c).  
 
Sometimes the hierarchical structure is there because you sample at one level and collect 
data at another as for example, in a survey of old people's homes where each client at 
each home in the sample is asked to take part. Some adjustment for clustering within 
homes is required here, which may involve complex statistical methods such as multilevel 
modelling (Goldstein 1995). 
 
The reviewer is looking for some indication that the applicants appreciate the structure of 
their data and how this will impact in terms of their proposed statistical analysis and the 
likely complexity of that statistical analysis. 
 
E-7 Multiple testing 
 
E-7.1 Multiple testing: when does it arise? 
Multiple significance testing arises in several ways: 
 
(a) More than one outcome measurement in a clinical trial, e.g. in a trial of ventilation of 

small neonates we might want to look at survival and time on ventilation.  We may 
want to look at the differences for each variable. (see B-6 and E-7.4a) 

(b) More than one predictor measurement in an observational study, e.g. in a study of the 
effects of air pollution on hospital admissions, we might need to consider the effects of 
several pollutants and several lag times, i.e. pollution on the day of the admission, the 
day before the admission, two days before, etc.  If any of these is significant we want 
to conclude that air pollution as a whole has an effect. (see E-7.4b) 
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(c) Measurements repeated over time (serial data), e.g. measurements of circulating 
hormone level at intervals after the administration of a drug or a placebo.  We may 
want to look at the difference between groups at each time. (see E-7.4c) 

(d) Comparisons of more than two groups, e.g. we may have three different treatments in 
a trial, such as two doses of an active drug and a placebo.  We may want to compare 
each pair of groups, i.e. the two doses and each dose with placebo. (see E-7.4d) 

(e) Testing the study hypothesis within subgroups, e.g. for males and females separately 
or for severe and mild disease separately. (see B-6 and E-7.4e) 

(f) Repeatedly testing the difference in a study as more patients are recruited. (see B-
5.10d, B-7.2 and E-7.4f) 

 
If the main analysis of your study involves any of these, this should be described in the 
proposal, together with how you intend to allow for the multiple testing. 
 
E-7.2 Multiple testing: why is it a problem? 
The problem is that if we carry out many tests of significance, we increase the chance of 
false positive results, i.e. spurious significant differences or type I errors.  If there are really 
no differences in the population, i.e. all the null hypotheses are true, the probability that we 
will get at least one significant difference is going to be a lot more than 0.05. (For 
explanation of statistical terms see D-4). 
 
For a single test when the null hypothesis is true, the probability of a false positive, 
significant result is 0.05, by definition, and so the probability of a true negative, non 
significant result is (1-0.05) = 0.95.  If we have two tests, which are independent, i.e. the 
variables used in the tests are independent, the probability that both tests are true 
negative, not significant results is 0.952 = 0.9025.  Hence the probability that at least one 
of the two tests will be a false positive is 1-0.9025 = 0.0975, not 0.05.  If we do k 
independent tests, the probability that at least one will be significant is 1-0.95k. 
 
For 14 independent tests, the probability that at least one will be significant is thus 1-
0.9514 = 0.51.  There would be a more than 50% chance of a spurious significant 
difference. 
 
Tests are independent in subgroup analysis, provided the subgroups do not overlap.  If 
the tests are not independent, as is usually the case, the probability of at least one false 
positive will be less than 1-0.95k, but by an unknown amount.  If we do get a false positive, 
however, the chance of more than one false positive is greater than when tests are 
independent.  To see this, imagine a series of variables which are identical.  Then the 
chance of a false positive is still 0.05, less than 1-0.95k, but if one occurs it will be 
significant for all the variables.  Hence having several significant results does not provide 
a reliable guide that they are not false positives. 
 
E-7.3 The Bonferroni correction 
One possible way to deal with multiple testing is to use the Bonferroni correction.  
Suppose we do several tests, k in all, using a critical P value of alpha, the null hypotheses 
all being true. The probability of at least one significant difference is 1 - (1 - alpha)k.  We 
set this to the significance level we want, e.g. 0.05.  We get 1- (1 - alpha)k = 0.05.  
Because alpha is going to be very small, we can use an approximation:  
(1 - alpha)k = 1 - k alpha. Hence 1- (1 - alpha)k = 1 - (1 - k alpha) = 0.05.   
Hence k alpha = 0.05 and alpha = 0.05/k.  So if we do our k multiple tests and find that 
one of them has P < 0.05/k, the P value for the composite null hypothesis that all k null 
hypotheses are true is 0.05.  In practice it is better to multiply all the individual P values by 
k, then if any is significant (P < 0.05) the test of the composite null hypothesis is significant 
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at the 0.05 level, and the smallest modified P value gives the P value for the composite 
null hypothesis (Bland & Altman 1995, Bland 2000a). 
 
The Bonferroni correction assumes that the tests are independent.  Applying the 
Bonferroni correction when tests are not independent means that the P value is larger 
than it should be, but by an unknown amount.  Hence the power of the study is reduced, 
also by an unknown amount.  If possible, we look for other methods which take the 
structure of the data into account, unlike Bonferroni.   
 
If we are going to have multiple significance tests in our study, we should say in the 
proposal how we are going to deal with them (see E-7.4). 
 
E-7.4 How to deal with multiple testing 
We could ignore the problem and take each test at face value.  This would lay us open to 
charges of misleading the reader, so it is not a good idea. 
 
We could choose one test as our main test and stick to it.  This is good in clinical trials but 
can be impractical in other designs.  It may ignore important information. 
 
We could use confidence intervals (see E-12) instead of significance tests.  This is often 
desirable quite apart from multiple testing problems, but confidence intervals will be 
interpreted as significance tests whatever the author may wish. 
 
There are several better options, depending on the way multiple testing comes about (see 
E-7.4a, E-7.4b, E-7.4c, E-7.4d, E-7.4e and E-7.4f). 
 
E-7.4a More than one outcome measurement in a clinical trial.   
We should keep the number of outcomes to a minimum, but there is a natural desire to 
measure anything which may be interesting and then comparing the treatment groups is 
almost irresistible.  We can use the Bonferroni method (see E-7.3).  We multiply each 
observed P value by the total number of tests conducted.  If any modified P value is less 
than 0.05 then the treatment groups are significantly different.  This tests a composite null 
hypothesis, i.e. that the treatments do not differ on any of the variables tested.  If we have 
two or three main outcome variables where a difference in any of them would lead us to 
conclude that the treatments were different, we should build this into sample size 
calculations by dividing the preset type I error probability (usually 0.05) by the number of 
tests.  If we are going to carry out many tests on things we have measured, we should 
state in the protocol that these will be adjusted by the Bonferroni method. Alternatively that 
any such tests will be described clearly as hypothesis-generating analyses which will not 
enable any firm conclusion to be drawn. 
 
E-7.4b More than one predictor measurement in an observational study.  
Usually we ignore this unless the variables are closely related making multiple testing a 
real problem.  When this is the case we can use the Bonferroni method (see E-7.3).  We 
should test each of our predictors and apply the correction to the P values. In a protocol, 
we should use 0.05/number of tests as the type I error in sample size calculations.  An 
alternative would be to put the group of variables into a multifactorial analysis such as 
multiple or logistic regression, and test them all together using the reduction in sum of 
squares or equivalent.  We would ignore individual P values.  You need quite a lot of 
observations to do this reliably. 
 
E-7.4c Measurements repeated over time (serial measurements)  
We should not carry out tests at each time point separately.  Not only does this increase 
the chance of a false positive but, as it uses the data inefficiently, it increases the chance 
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of a false negative also.  There are several possible approaches.  One is to create a 
summary statistic (Bland 2000b, Mathews et al 1990) such as the area under the curve.  
The peak value and time to peak can also be used, but as they do not use all the data 
they may be less efficient, particularly the time to peak.  On the other hand, they have a 
direct interpretation.  For data where the variable increases or decreases throughout the 
observation the rate of change, measured by the slope of a regression line, may be a 
good summary statistic.  For a proposal, you should decide on the summary statistic you 
are going to use.  For your sample size calculation you will need an estimate of the 
standard deviation and of the size of difference you wish to detect (much more difficult, as 
you are using an indirect measure).  A pilot study (see A-1.9) is very useful for this.  There 
are several other approaches, including repeated measures analysis of variance and 
multilevel modelling (Goldstein 1995).  These are more difficult to do and to interpret.  The 
research team should include an experienced statistician if these are to be used. 
 
E-7.4d Comparisons of more than two groups.   
We start off with a comparison of all groups, using analysis of variance or some other 
multiple group method.  If the groups difference is significant, we then go on to compare 
each pair of groups. There are several ways to do this.  One way would be to do t tests 
between each pair, using the residual variance from the analysis of variance (which 
increases the degrees of freedom and so increases the power compared to a standard t 
test).  This is called the least significant difference analysis.  However, we are multiple 
testing, the risk of false positives is high.  We can apply Bonferroni, but this loses a lot of 
power and as we are not testing a composite hypothesis it is not really appropriate.  There 
are several better and more powerful methods, which have the property that only one 
significant difference should be found in 20 analyses of variance if the null hypothesis is 
true, rather than one in 20 pairs of groups.  These include the Newman Keuls range test 
(see Armitage, Berry & Matthews 2002, Bland 2000), and Gabriel's test, suitable for 
groups of unequal size (see Bland 2000).  Different statistical packages offer different 
methods for doing this, and you may be rather limited by your software.  We will not try to 
review this as it will change as new releases of software are issued.  In your protocol you 
should say which method you are going to use.  Sample size calculations with more than 
two groups are difficult.  It should be acceptable if you use the method for two groups and 
assume that if your sample is adequate for a comparison of two of your groups it will be 
OK for all of them. 
 
E-7.4e Testing the study hypothesis within subgroups.   
There are two possible reasons for wanting to do this.  First, we might want to see 
whether, even though a treatment difference may not be significant overall, there is some 
group of patients within which there is a difference.  If so, we wish to conclude that the 
treatment has an effect.  The Bonferroni correction is required here, as we are testing a 
composite hypothesis.  As the tests are independent we should not experience loss of 
power.  Second, we might want to see whether the main study difference varies between 
groups; for example, whether a treatment effect is greater in severe than in mild cases.  
We should do this by estimating the interaction (see A-1.6a) between the main study 
factor (e.g. treatment) and the subgrouping factor (e.g. severity). (Altman & Matthews 
1996, Mathews & Altman 1996a 1996b) Separate tests within subgroups will not tell us 
this.  Not only do we have multiple testing, but we cannot conclude that two subgroups 
differ just because we have a significant difference in one but not in the other. (Matthews 
& Altman 1996a) Not significant does not mean that there is no effect. 
 
E-7.4f Repeatedly testing the difference in a study as more patients are recruited. 
This is a classic multiple testing problem.  It is solved by adopting a sequential trial design 
(see B-5.10d), where the multiple testing is built in and allowed for in the sample size 
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estimation.  The testing is arranged so that the overall P value is 0.05.  There are several 
designs for doing this.  Anyone using such designs should consult Whitehead (1997). 
 
E-8 Change over time (regression towards the mean) 
Problems occur if one of the aims of a study is to investigate the association between 
change over time and initial value. Due to measurement error alone, those with high 
values at baseline are more likely to have lower than higher values at follow-up and those 
with low values at baseline are more likely to have higher than lower values at follow-up. A 
spurious inverse association between change and initial value is therefore to be expected. 
This phenomenon is an example of regression towards the mean (Bland & Altman 1994a, 
1994b).  If we are interested in any real association between change and initial value then 
we must first remove the effects of regression towards the mean (see Hayes 1988). 
 
If we are convinced that change over time depends on initial value then we may want to 
adjust for initial value in any multifactorial analysis (see E-1.1). However if we have 
change as the outcome variable and include initial value as an explanatory variable we 
may introduce bias due to regression towards the mean. Such bias may be reduced by 
adjusting for average ((initial + follow-up)/2) rather than initial value (Oldham 1962). 
Although in observational studies (see A-1.1) any attempt to adjust for initial value may be 
an over-adjustment due to the horse racing effect. The horse racing effect is basically the 
tendency for individuals with faster rates of decline over time in the outcome measure of 
interest (e.g. lung function) to have lower initial values because of past decline. (see 
Vollmer 1988). 
  
E-9 Intention to treat in clinical trials 
In a randomised clinical trial subjects are allocated at random to groups. The aim of this is 
to produce samples that are similar/comparable at baseline in terms of factors, other than 
treatment, that might influence outcome. In effect they can be regarded as random 
samples from the same underlying population. However as a clinical trial progresses some 
patients may change treatments or simply stop taking their’ allocated treatment. There is 
then a temptation to analyse subjects according to the treatment they actually received 
rather than the treatment to which they were originally allocated. This approach though 
appearing reasonable at first glance fails to retain the comparability built into the 
experiment at the start by the random allocation. Patients that change or stop taking 
treatment are unlikely to be 'typical'. Indeed they may well have changed because the 
treatment they were on was not working or they were experiencing adverse side effects. It 
is therefore important in the analysis of randomised controlled trials to adhere (and to be 
seen to adhere) to the concept of analysis by intention to treat. This means that in the 
statistical analysis all subjects should be retained in the group to which they were 
originally allocated regardless of whether or not that was the treatment that they actually 
received. A statement to this effect should be made when describing the proposed 
statistical analysis for any randomised trial. (see also B-9) 
  
E-10 Cluster randomised trials 
When subjects are in clusters, such as GP practices, this must be taken into account in 
the analysis plan (see B-5.9, E-6.1, E-6.2, Altman & Bland 1997, Bland & Kerry 1997, 
Kerry & Bland 1998 and Kerry &Bland 1998c). 
 
E-11 Collapsing variables 
If information is collected on a continuous (see A-4.2) or pseudo-continuous variable then 
in general it is this variable that should be used in any statistical analysis and not some 
grouped version. If we group a continuous variable prior to analysis we are basically losing 
information unless the variable has been recorded to some spurious level of precision and 
grouping simply reflects a more realistic approach. The idea of grouping continuous 
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variables for presentation purposes is fine provided it is the full ungrouped variable that is 
used in any significance testing. For example you may wish to present lung function by 
5ths of the distribution of dietary fatty fish intake. However when testing for an association 
between fatty fish and lung function the continuous fatty fish variable should be used. One 
exception would be if some strong a priori reason existed for us to believe that any 
association between fatty fish and lung function was step like or discontinuous rather than 
following a straight-line or smooth curve. For example if we believed a priori that lung 
function was influenced by any versus no intake of fatty fish but did not vary according to 
the amount eaten. Another exception would be if very few people ate fatty fish. In either 
case fatty fish could be analysed as a dichotomy (yes/no).  
 
E-12 Estimation and confidence intervals 
In most studies, even those primarily designed to detect as statistically significant a 
difference in outcome between two groups, the magnitude of any difference or association 
is of interest. In other words in most studies one of the study aims is estimation whether 
we are estimating some beneficial effect of a treatment, the prevalence of a disease, the 
gradient of some linear association, the relative risk associated with some exposure, or 
the sensitivity of a screening tool etc. In all these examples we are attempting to estimate 
some characteristic of a wider population using a single sample/study and we need to be 
mindful that another study of the same size might yield a slightly different estimate. It is 
therefore important when presenting estimates that we provide some measure of their 
variability from study to study of the same size. This is done by the calculation of 
confidence intervals. A 95% confidence interval is constructed in such a way that 95 times 
out of 100 it captures the true population value that we are trying to estimate. A 90% 
confidence interval will capture the true population value 90 times out of 100. Confidence 
intervals are based on the standard error of the estimate and therefore reflect the 
variability of the estimate from sample to sample of the same size. They give us some 
idea of how large the true population value might be (i.e. the upper limit of the interval) 
and how small it might be (the lower limit). Further if the interval is wide it tells us that we 
do not have a very accurate estimate but if it is narrow then we have a good and useful 
estimate. 
 
In most studies therefore the calculation of confidence intervals should form an important 
part of the statistical analysis and the fact that confidence intervals will be calculated and 
how they will be calculated should form part of the section in the grant proposal on 
proposed statistical methods. Normally 95% confidence intervals are calculated. If the 
applicant envisages calculating say 90% confidence intervals or 99% confidence intervals 
etc then some justification should be given. The method of calculation should always be 
appropriate to the data. Further the validity of confidence intervals as with significance 
tests depends on certain assumptions. For example if we use the t method to calculate a 
95% confidence interval around the difference in two means (Bland 2000) then the basic 
data should be continuous. Further, we assume (as for the two-sample t test; see E-4) that 
data come from two Normal distributions with the same variance. The reviewer is looking 
for some acknowledgement that the applicants are aware of assumptions and that they 
have some idea of what they will do if assumptions do not hold (see Altman et al. 2000).  
 
If estimation rather than significance testing is the primary aim of the study then 
confidence intervals will also form an intrinsic part of any sample size calculations. Sample 
size will be chosen such that population characteristics will be estimated with adequate 
precision where precision is measured in terms of the width of confidence intervals (see 
D-8.1 and Altman et al. 2000). 
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E-12.1 Proportions close to 1 or zero 
When estimating a proportion close to 1 (e.g. 0.95, 0.92), as is often the case in studies of 
sensitivity and specificity, or a proportion close to 0 (e.g. 0.05, 0.07), the 95% confidence 
interval is unlikely to be symmetrical and should be calculated using exact rather than 
large sample methods. A few programs are available to calculate exact 95% confidence 
intervals including StatXact by Cytel and CIA (Altman DG et al. 2000). For the simple case 
of a single proportion, we offer biconf, a free DOS program by Martin Bland 
[http://martinbland.co.uk/soft/soft.htm]. (See also D-8.1).  Robert Newcombe gives some 
free Excel programs to do this and more 
(http://www.cardiff.ac.uk/medic/aboutus/departments/primarycareandpublichealth/ourrese
arch/resources/index.html). 
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F. General 
 
F-1     Statistical expertise (statistical analysis) 
F-2     Statistical software 
 
F-3     Ethics 
F-3.1  The misuse of statistics 
F-3.2  Critical appraisal 
F-3.3  Studies involving human subjects 
 
F-4      Useful websites 
F-4.1   Research governance 
F-4.2   Data protection 
 
F-1 Statistical expertise (statistical analysis) 
To some it may seem pointless to describe in detail a proposed statistical analysis for data 
that are not yet in existence. It might be argued, that at this stage the correct approach is 
difficult to judge, as without the data you cannot be sure of distributional properties (e.g. 
whether a variable is Normally distributed) and therefore assumptions. However, all too 
often statisticians are presented with data that they cannot analyse. The flaws in design 
which lead to this problem only come to light when someone starts to think about how the 
data can be analysed. How much better for all concerned if these flaws come to light at 
the proposal stage. If applicants are not sure how to analyse their data, they should 
consult a statistician.  
 
Thinking about the statistical analysis or discussing it with a statistician brings home to 
some researchers the need to buy in statistical expertise. How much statistical input is 
required may vary from a few days of a statisticians time to enlisting a statistical 
collaborator /co-applicant. Where the statistical methods are complex (e.g. multilevel 
modelling) the statistical reviewer will be looking for some reassurance that the research 
team has the ability to complete such an analysis and to interpret the results appropriately; 
clearly a statistical collaborator would provide that reassurance.  
 
F-2 Statistical software  
Applicants need to make sure that they have access to the right statistical software or that 
a request for the correct software is included in the grant proposal. There are many 
commercial statistical software packages, e.g. STATA, SAS, SPSS, GENSTAT, StatXact, 
MLWin, S-PLUS, BMDP, MINITAB, CIA, etc., but they do not all do the same things 
and they vary both in their flexibility and in their complexity of operation. Free statistical 
software is also available in the form of EPI INFO 2000 (http://www.cdc.gov/epiinfo) and 
CLINSTAT (http://www.sghms.ac.uk/depts/phs/staff/jmb/jmbsoft.htm) 
both of which can be downloaded from the web.  
 
F-3 Ethics 
 
F-3.1 The misuse of statistics 
Altman  (1991, 1982) argued forcefully that the misuse of statistics was unethical. The 
term misuse of statistics covers both poor study design and inappropriate statistical 
analysis. These are unethical as they can lead to conclusions that are erroneous or 
misleading. At best, patients are inconvenienced and resources squandered for no good 
reason. At worst patients are harmed through inappropriate clinical decisions based on the 
erroneous research results. 
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F-3.2 Critical appraisal 
Altman  (1991, 1982) extends his ethical debate stressing the need for the results of 
previous studies to be reviewed critically and not taken on face value. Without critical 
appraisal erroneous results may lead to further research in a totally unhelpful direction. 
This observation is particularly pertinent to grant applicants when compiling the 
Background section of any research proposal. Results of previous research should not be 
presented uncritically. 
 
F-3.3 Studies involving human subjects 
Studies involving human subjects, especially clinical trials, raise many ethical issues. 
Guidance on these issues is contained in the Declaration of Helsinki 
(http://www.wma.net/en/30publications/10policies/b3/). This declaration of ethical 
principles was first adopted by the World Medical Association at its General Assembly 
Meeting in Helsinki in 1964. It was updated in 1975, 1983, 1989, 1996, 2000, 2004, and 
most recently in 2008. It is essential reading for any medical researcher, especially those 
planning to conduct a clinical trial. Indeed mainstream journals consider it a condition of 
publication that studies are conducted in accordance with the Declaration of Helsinki. How 
the guidance offered by the Declaration should be implemented in practice still causes 
some debate. Recently this focussed on the design of clinical trials where a proven 
alternative exists to the new treatment under investigation. Rothman, Michels & Baum 
(2000) argued that the new treatment should be compared with the proven alternative and 
not with placebo and that the use of a placebo group in this particular situation is 
unethical. At their meeting in Scotland in 2000, the World Medical Association adopted 
this view which is now stated explicitly as principle No. 32 (see 
http://www.wma.net/en/30publications/10policies/b3/ and B-3). For further information on 
ethical considerations in clinical trials see sections B-1, B-3 and B-8 of this handbook. 
 
F-4 Other research issues 
 
F-4.1 Research governance 
All research should be carried out to high scientific and ethical standards. Research 
governance is the process by which these are ensured. Sponsors and funders of research 
are expected to conform to these standards and to have procedures in place to ensure 
that research projects for which they are responsible do, too 
(http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGui
dance/DH_4108962). 
 
F-4.2 Data protection 
All research on human subjects should be done under data protection principles, ensuring 
the confidentiality of personal data and restricting the use of data to applications for which 
consent has been given. In the UK, this is the responsibility of the Information 
Commissioner (http://www.ico.gov.uk/). Applications should include a statement as to how 
data protection principles and legislation will be compiled with. 
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Appendix 1 
 

Checklist 
 
Tick [4] those that apply 
 
Design 
• Is the study observational? [  ] 
    (see A-1.1 and A-1.2) 
                    If Yes   
                   •  Is it a cohort study? [  ]      

   (see A-1.3) 
                   •  Is it a case-control study? [  ]   
                           (see A-1.4) 
                   •  Is it a cross-sectional study? [  ]   
                            (see A-1.5) 
                                           If Yes to cross-sectional study 
                                       • Is it a prevalence study? [  ] 
                                          (see A-1.5a) 
                                       • Is it estimating sensitivity and specificity? [  ] 
                                          (see A-1.5b and A-1.5c) 
                                       • Is it an ecological study? [  ] 
                                          (see A-1.5d) 
                    • Have you addressed the issue of confounding in your proposal? [  ] 
                       (see A-1.6) 
• Is the study experimental? [  ] 
   (see A-1.1, A-1.2) 
                   If Yes 
                   • Is the study a type of trial e.g. a clinical trial? [  ] 
                      (see A-1.7, A-1.8) 
                                       If Yes 
                                       • Is the study a controlled  trial  
                                          (i.e. is there a control group)? [  ] 
                                          (see A-1.8 and B-3) 
                                       • Is it a randomised trial  
                                          (i.e. are study subjects randomly allocated to groups)? [  ] 
                                                   (see A-1.8 and B-5) 
                                                                If Yes to randomised trial 
                                                           • Is it important to have similar numbers in each randomisation 
                                                              group? (you may need to use blocks) [  ]  
                                                              (see B5.6) 
                                                           • Are any known factors strongly prognostic? [  ] 
                                                              (you may need to randomise in strata)   
                                                              (see B5-7) 
                                                                                      If Yes to strongly prognostic factors 

                                                       • Is the proposed sample size small? [  ] 
                                                          (see B-5.8) 
                                    • Are groups of individuals to be randomised together to the 
                                       same treatment? [  ]       
                                       (see B-5.9) 
                                    • Is this a cross over trial? [  ] 
                                                (see B-5.10b) 

                                         • Is the assessor blind? [  ] 
                                           (see A-1.8 and B-4) 
                                         • Are the study subjects blind? [  ] 
                                           (see A-1.8 and B-4) 
• Is the study prospective? [  ] 
   (see A-2) 
                   If Yes 
                   • Have you specified the length of follow up? [  ] 
                    (see A-2) 
 



 63 

 
The Study Subjects 
(see A-3) 
• Have you described where they come from? [  ] 
• Have you explained why they are an appropriate group? [  ] 
• Have you described how the study subjects will be selected? [  ] 
• Have you specified inclusion / exclusion criteria? [  ] 
• Have you specified your proposed sample size taking into account refusals/drop-outs? [  ] 

 
Types of Variables 
(see A-4) 
• Have you described all outcome and explanatory variables in terms of data type and scale of 
  measurement? [  ] 
   (see A-4.1 and A-4.2) 
• Have you described how the data will be collected? [  ] 
   (see A-4.3) 
• If using a questionnaire or a non-standard measurement, have you provided information on its  
   reliability and validity? [  ] 
   (see A-4.4, A-4.4a, A-4.4b, A-4.4c) 
 
Sample Size 
• Have you provided a sample size calculation? [  ]  
  (see D-1) 
• Have you defined the outcome variable(s) used in the sample size calculation? [  ] 
  (see D-5) 
• Have you defined the effect size which would be of clinical importance? [  ]  
  (see D-4.5) 
• Have you described the power and significance level of the sample size calculation? [  ] 
  (see D-4.3 and D-4.4) 
• Has your sample size made allowance for expected response rates and other sample 
  attrition? [  ]  
  (see D-6) 
• Is your sample size consistent with the study aims? [  ]  
   (see D-7) 
• Is your sample size consistent with the proposed analysis of the study? [  ]  
   (see D-7) 
• Is your description of the sample size calculation adequate? [  ]  
   (See examples in D-8) 
 
Statistical Analysis 
• Have you described the proposed statistical methods using appropriate terminology? [  ] 
(see E-1.1, E-1.2) 
• Are the proposed methods appropriate for the types of data generated by your study? [  ] 
(see E-2, E-2.1, E-11) 
• Will the assumptions made by the proposed methods hold? [  ] 
(see E-4, E-4.1) 
• Do the proposed methods take account of the structure of the data set (structure such as hierarchy, 
clustering, matching, paired data)? [  ] 
(see E-3,E-6.1, E-6.2, E-10) 
• Have important confounding factors been listed and methods of adjusting for them presented?  [  ] 
(see E-5) 
• Will the proposed methods take account of multiple testing where appropriate? [  ] 
(see E-7.1, E-7.2, E-7.3, E-7.4, E-7.4a, E-7.4b, E-7.4c, E-7.4d, E-7.4e, E-7.4f) 
• Have biases due to measurement error been considered e.g. regression towards the mean? [  ] 
(see E-8) 
• Have details on the calculation of confidence intervals been provided? [  ] 
(see E-12) 
For clinical trials only 
•Have you specified that your analysis will be by intention to treat? [  ] 
(see E-9) 
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Appendix 2 
Directory of randomisation software and services  

This is a directory of randomisation software and services for clinical trials, including both 
simple do-it-yourself software and 24 hour telephone randomisation services. It is 
intended to help people planning and seeking funding for clinical trials.  

If you know of other software or services which should be included, please email Martin 
Bland mb55@york.ac.uk and they will be added to the directory. If your service is listed 
here and you do not want it to be, please email Martin Bland and you will be removed. 
This is an updated version of the Directory of randomisation software and services 
previously held at running at St. George's Hospital Medical School.  

This directory is partial. Exclusion from it does not imply that the service is inferior in any 
way, just tell us who you are and we will include you. Inclusion in it does not imply that the 
service has been approved by us. We take responsibility only for getting the links right.  

Randomisation programs: 
• Clinstat is an old DOS program by Martin Bland, which is free. It is suitable for 

small scale trials. It does blocked and unblocked allocations and random sampling. 
Randomisation is found under main menu option 8. It prints simple lists of random 
allocations. For stratified randomisation, just print a blocked randomisation list 
separately for each stratum.  

• Minim is a DOS program by Stephen Evans, Simon Day and Patrick Royston. It 
does allocation by minimisation very effectively and is free. The authors have 
generously allowed us to put it on this site for downloading. It runs interactively 
through your study, as this is how minimisation works.  

• Randomization.com is a free on-line randomisation program. It randomises while 
you wait. It prints simple lists of random allocations.  

• GraphPad QuickCalcs, a free online calculator for scientists, offers simple random 
allocation into equal-sized groups.  

• EDGAR, Experimental Design Generator And Randomiser, is a free on-line 
randomisation program by James K. M. Brown (John Innes Centre). This is 
designed for agriculture, and does Latin squares and split plots as well as simple 
randomisation. It randomises while you wait. It prints lists of random allocations.  

• Stata is a commercial statistical analysis program. There is an add-on called 
"ralloc", written by P. Ryan, that does blocked randomization, stratified 
randomization, or both. Stata is a great program for analysis, though you would not 
buy it just to randomise. In the UK, Stata is supplied by Timberlake Consultants.  

• PARADIGM Registration-Randomisation Software is a web-based package 
produced by the Netherlands Cancer Institute and the UK Medical Research 
Council Cancer Trials Office. It is free and runs through your study interactively.  

• KEYFINDER by Pete Zemroch is a menu-driven interactive program suitable for 
statisticians. It produces factorial designs, including blocked and/or fractional-
replicate designs with user-specified confounding and aliasing properties. 
KEYFINDER is available free of charge. (This link also leads to other advanced 
statistical design programs.)  

• Iain Buchan's programme StatsDirect carries out randomisation into two groups 
and in matched pairs, among many other statistical functions. The software is semi-
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commercial, in that the revenue is used for more research in computational 
statistics, but the cost is relatively low.  

• Random Allocation Software by Dr. Mahmood Saghaei, Isfahan University of 
Medical Sciences, Iran, is a free downloadable program which carries out simple 
and blocked random allocation.  

• Research Randomizer by Geoffrey C. Urbaniak and Scott Plous is a free net-based 
program which generates sequences of random digits which can be used for a 
variety of randomisation tasks. It can download randomisations in Excel format.  

• Adaptive Randomization, outcome-adaptive randomization program for clinical 
trials from the M. D. Anderson Cancer Center, University of Texas. This is available 
with much other statistical software on this site, including sample size and 
predictive probability interim analysis software for randomized trials.  

• TENALEA (Trans European Network for Clinical Trials Services) is a free online 
randomisation program and much more. TENALEA has been developed by the 
Netherlands Cancer Institute and is currently in deployment phase, with a 
European Union grant. This means that it can be offered free for non commercial 
use.  

• Etcetera is one of Joe Abramson's free WinPepi programs for epidemiologists. 
Randomisation is found under menu option A. The program offers simple and 
balanced randomisation (unstratified or stratified), balanced randomisation of 
successive blocks, an aid to minimisation, and random sequencing of procedures. 
It prints lists of allocations.  

• RANDOM.ORG provides several on-line randomisation programs using random 
numbers generated by atmospheric noise, rather than the pseudo-random number 
algorithms used in most randomisation programs. It might not be the most suitable 
program for randomised trials, but it is certainly Worth a look.  

Randomisation services: 
These provide trial support services including telephone randomisation. These are not 
free. You must discuss your trial with the centre and agree their involvement before 
applying for your grant. These services are not cheap. 10 pounds per patient randomised 
is typical. They also provide many other collaborative services for trials. Some of these 
organisations have their origins in academic research, others are purely commercial. 
Telephone randomisation may be provided during normal working hours or 24 hours per 
day. You should check what service you need and what the service provider offers. You 
should also check what out-of-hours procedure they provide. This might be a voice 
activated computer, a person sitting by the phone, or a phone directed to someone doing 
something else.  

• York Trials Unit, Dept of Health Sciences, University of York. This group works in 
collaboration with researchers on all aspects of trial design and analysis, including 
telephone randomisation.  

• Birmingham Clinical Trials Unit offers customised minimisation randomisation 
programs as well as a telephone service.  

• MRC/ICRF/BHF Clinical Trial Service Unit & Epidemiological Studies Unit, 
University of Oxford, carries out large-scale collaborative trials.  

• The Clinical Trials Research Unit (CTRU) at the University of Leeds offers a wide 
range of collaborative trial services.  
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• The Health Services Research Unit (HSRU) at the University of Aberdeen offers a 
24-hour automated telephone randomisation service. Please direct all enquiries to 
Gladys McPherson gcm@hsru.abdn.ac.uk .  

• The Clinical Trial Support Unit at the University of Nottingham offers both web 
based and telephone based randomization or minimization.  

• The Mental Health and Neuroscience Clinical Trials Unit at the Institute of 
Psychiatry, King's College London, offers randomisation and other trials services to 
mental health and neuroscience trials across the UK.  

• Clinical Trials Research Unit (CTRU), Faculty of Medical and Health Sciences, 
University of Auckland, New Zealand offers 24 hour randomisation.  

• The NHMRC Clinical Trials Centre of the University of Sydney, Australia, provides 
a randomisation service, available daily from 6 a.m. to 8 p.m. (24 hours a day for 
acute cardiovascular trials).  

• Randomizer is a web-based online randomisation service provided by Medical 
University of Graz. A fee is payable for this service.  

• Duke Clinical Research Institute (DCRI) Duke University Medical Center, USA, 
offers Randomization: a 24-hour on-site, staffed randomization service with 
interactive voice response system technology and emergency unblinding.  

• Rho, Inc. Randomization Systems and Services offer an interactive voice response 
system for managing patient randomization during clinical trials, 24-hour.  

• Nottingham Clinical Research Limited (NCRL) provides a broad range of services 
oriented to the Pharmaceutical and Biotechnology industries. As well as an 
interactive voice response system NCRL provide statistics, data management, 
monitoring and drug and materials storage & distribution. Main expertise is in large 
cardiovascular outcome trials, in excess of 5000 patients.  

• Covance InterActive Trial Management Systems offers randomisation by an 
interactive voice response system, oriented towards the pharmaceutical industry.  

• The Sealed Envelope is a web-based on-line random allocation system.  

• ClinPhone provides a service oriented towards the pharmaceutical industry, 
offering data collection as well as randomisation by phone.  

• ASCOPHARM offer a variety of central randomisation systems for the 
pharmaceutical industry.  

• IDDI (International Drug Development Institute) is a Belgian Central Service 
Randomization Provider with offices in France and in the United States. Since 
1991, IDDI has developed an expertise in Phase I through IV clinical trials mainly in 
oncology, ophthalmology and cardiovascular.  

• Clarix LLC provides fully web-integrated Interactive Voice Response Systems 
(IVRS), Electronic Data Capture (EDC) systems and a portfolio of web-enabled 
technology solutions to streamline clinical trial management.  

Thanks for the information to Joe Abramson, Doug Altman, Andrea Berghold, Jan 
Brogger, Iain Buchan, Mike Clarke, Tim Cole, John Cook, Jon Cooke, Christian Coppe, 
Simon Coulton, Cynthia Beck, Diana Elbourne, Matthew Gillman, Johnathan Goddard, 
Jacqui Hill, Steff Lewis, Richard Martinez, Gladys McPherson, Caroline Murphy, John C. 
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Nash, Mark Nixon, Nicole Rensonnet, David Shuford, Pete Zemroch, and a couple of 
Google searches.  
 
 


