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How do I analyse observer variation studies? 
This is based on work done for a long term project by Doug Altman and Martin 
Bland.  I recommend that you first read our three Statistics Notes on measurement 
error (Bland and Altman 1996, 1996b, 1996c), available online via my website. 

1. Sources of variation 
First we consider different sources of variation.  Figure 1 shows three histograms of 
Peak Expiratory Flow Rate (PEFR) in male medical students: a set of single 
measurements of PEFR obtained from 58 different students and two sets of 20 
repeated measurements of PEFR on single students A and B.  The variability for 58 
different students is much greater than that shown for students A or B, which are 
similar.  There are two different kinds of variation here: variation within individuals 
because repeated measurements are not all the same, and variation between 
individuals because some people can blow harder than others. 

We often find it useful to separate the error into different components, which might 
relate to observers, instruments, etc.  For the data of Figure 1, we could model the 
data as the sum of two variables, Xi + Eij, where Xi is the mean for subject i and Eij is 
the deviation from that mean, or measurement error, of measurement j for that subject.  
If the variance of the measurement error Eij is the same for all subjects, say σ2, the 
total variance is given by 

222
wb σσσ +=  

where σw
2 is the variance of the Eij, the within-subject variance, and σb

2 is the 
variance of the Xi, the between-subjects variance.  This is called a components of 
variance model. 

2. Repeatability and measurement error 
We first consider the problem of estimating the variation between repeated 
measurements for the same subject.  Essentially, we want to know how far from the 
true value a single measurement is likely to be.  This estimation will be simplest if we 
assume that the error is the same for everybody, irrespective of the value of the 
quantity being measured.  This will not always be the case, and the error may depend 
on the magnitude of the quantity, for example being proportional to it. 

Measurement error is assumed to be the same for everyone.  This is a simple model, 
and it may be that some subjects will show more individual variation than others.  If 
the measurement error varies from subject to subject, independently of magnitude so 
that it cannot be predicted, then we have to estimate its average value.  We estimate 
the within-subject variability as if it were the same for all subjects. 
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Figure 1.  Distribution of PEFR for 58 male medical students, with 20 repeated 
measurements for two students  
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Table 1.  One way analysis of variance for the data of Figure 1, 
Students A and B 

Source of   Degrees of   Sum of      Mean      Variance   Probability  
variation   freedom      squares     square    ratio (F)  
Total         39         215484.38          
Students       1         210975.63   210975.63   1778.1   <0.0001 
Residual      38           4508.75      118.65 
 
Consider the data of Figure 1.  Calculating the standard deviations in the usual way, 
we get standard deviations s1 = 14.3178 and s2 = 5.6835 for the two students.  We can 
get a combined estimate as in a two sample t test, which gives us  
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where m1 and m2 are the numbers of measurements for subjects A and B respectively.  
The square root of this gives us the within-subjects standard deviation, sw  = 10.8927.  
Rounding we get sw = 10.9 litre/min. 
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Table 2.  Repeated PEFR measurements for 28 school children 
 
Child      PEFR (litre/min)              Last four readings 
number                                     mean      s.d. 
 1    180   190   220   200   200         202.50    12.58  
 2    240   220   200   240   230         222.50    17.08  
 3    190   240   230   215   210         223.75    13.77  
 4    260   260   260   240   280         260.00    16.33  
 5    305   210   300   280   265         263.75    38.60  
 6    260   260   260   280   270         267.50     9.57  
 7    270   270   265   280   270         271.25     6.29  
 8    260   275   270   275   275         273.75     2.50  
 9    290   280   280   270   275         276.25     4.79  
10    270   260   280   280   300         280.00    16.33  
11    225   245   290   290   295         280.00    23.45  
12    245   275   275   275   305         282.50    15.00  
13    250   280   290   300   290         290.00     8.16  
14    260   320   290   300   290         300.00    14.14  
15    295   300   300   310   300         302.50     5.00  
16    250   270   250   330   370         305.00    55.08  
17    310   300   310   310   305         306.25     4.79  
18    290   300   300   340   315         313.75    18.87  
19    270   315   325   330   295         316.25    15.48  
20    270   320   330   330   330         327.50     5.00  
21    295   335   320   335   375         341.25    23.58  
22    255   350   320   340   365         343.75    18.87  
23    340   360   320   350   345         343.75    17.02  
24    360   330   340   380   390         360.00    29.44  
25    380   335   385   360   370         362.50    21.02  
26    380   400   400   420   395         403.75    11.09  
27    395   400   420   425   420         416.25    11.09  
28    385   430   460   480   470         460.00    21.60  
 
 
Table 3.  One way analysis of variance for the data of Table 2 
 
Source of   Degrees of   Sum of      Mean      Variance   Probability  
variation   freedom      squares     square    ratio (F)  
Total        111         397973       3585  
Children      27         365604      13541       35.1     <0.001 
Residual      84          32369        385   
 
In this way we obtain the standard deviation, sw, of repeated measurements from the 
same subject, called the within-subject standard deviation.  We would expect that 
about two thirds of observations would fall within one standard deviation of the 
subject's true value and about 95% within two standard deviations.  If errors 
(differences between the observations and the true value) follow a Normal 
distribution, then we can formalise this by saying that we expect 68% of observations 
to lie within one standard deviation of the true value and 95% within 1.96 standard 
deviations.  (I discuss the assumption of a Normal distribution in Sections 5 and 6). 

This is the same as the residual mean square in one-way analysis of variance 
(ANOVA) and programs for one-way ANOVA may be used for the calculation, the 
subjects being the ‘groups’.  Table 1 shows the ANOVA table for students A and B.  
The estimate of within-subjects variance is the residual mean square, 118.65.  The 
square root of this is the within-subjects standard deviation, sw = 10.89 litre/min, as 
before.  Another example is shown in Tables 2 and 3.  We get sw  = √385 = 19.63 
litre/min. 
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3. Observer variation studies 
The study of observer variation and observer agreement is straightforward in 
principle, but in practice is one of the most difficult areas in the study of clinical 
measurement.  In principle, what we want to know is whether measurements taken on 
the same subject by different observers vary more than measurements taken by the 
same observer, and if so by how much.  All we need to do is to ask a sample of 
observers, representative of the observers whose variation we wish to study, to make 
repeated observations on each of a sample of subjects, the order in which observers 
make their measurements being randomized.  We then ask by how much the variation 
between measurements on the subject is increased when different observers make 
these measurements. 

To estimate the increase in variation when different observers are used, we use 
analysis of variance.  We assume that the effects of subject, observer and 
measurement error are added.  The observer may have a bias, a fixed effect where one 
observer consistently measures high or low.  There may also be a random effect, 
which we will call the heterogeneity, where the observer measures higher than others 
for some subjects and lower for others.  The final measurement is made up of the 
overall mean, the difference from the mean for that particular subject, the difference 
from the mean for the observer, and the measurement error.  The statistical model for 
measurements by different observers can be written: 

Yijk = µ + Xi + Oj + Hij + Eijk 

where Yijk is the observed value, µ is the mean of all possible measurements, Xi is 
difference between µ and the mean value for subject i, Oj is the difference between µ 
and the mean value of observations by observer j (the observer's bias), Hij is the 
heterogeneity, i.e. the extra variation in subject i due to observer j, the subject times 
observer interaction, and Eijk is the error in measurements by a single observer on a 
single subject. 

The meaning of heterogeneity may be obscure, and a thought experiment may make it 
clearer.  In the film 10 (Edwards 1979), Dudley Moore scores sexual attractiveness 
out of ten.  Suppose we wish to estimate the observer variation of this highly 
subjective measurement.  We persuade several observers to rate several subjects, and 
repeat the rating the several times.  Now there will be an overall mean rating, for all 
subjects by all observers on all occasions.  This mean is µ.  Some subjects will receive 
higher mean scores than others.  The difference of the subject mean from the overall 
mean is Xi.  If we get the same observer to rate the same subject several times, the 
ratings will vary.  The difference between the individual measurement and the mean 
for that observer's measurement of that subject is the measurement error, Eijk.  Some 
observers will be more generous in their ratings than others.  The difference of the 
observer mean from the overall mean is Oj.  For a given observer, this is the bias, the 
tendency to rate high or low.  What about the heterogeneity?  It is well known that 
people tend to be attracted to partners who look like them.  Tall, thin women marry 
tall, thin men, and short, fat men marry short, fat women, for example.  (Take a good 
look at your friends if you don't believe us.)  Thus Bland, who is short, may give 
higher ratings to short women than to tall ones, and Altman, who is tall, may give 
higher ratings to tall women than to short, even though their overall mean ratings may 
be the same.  This is the heterogeneity, or observer times subject interaction, and it 
may be just as important as the observer bias.  Hij is the difference between the mean 
rating for subject i by observer j and the mean we would expect given the mean rating 
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over all observers for subject i and the mean rating over all subjects by observer j.  
Physical measurements can behave in the same way.  Measured blood pressure is said 
to be higher when subject and observer are of opposite sex than when they are the 
same sex.  If both observers and subjects include both sexes, this will contribute to 
heterogeneity.  In general, there may be unknown observer and subject factors which 
contribute to heterogeneity and our method of analysis must allow for their presence.   

The variables Xi, Oj, Hij, and Eijk all represent deviations from a central value and so 
have mean zero.  We shall assume that they follow Normal distributions, are 
independent of one another, and denote their variances by σb

2, σo
2, σh

2, and σw
2 

respectively.  Thus σb
2 is the variance between subjects, i.e. between the true values 

for subjects, σo
2 is the variance between observers, σh

2 is the variance between 
different observers on different subjects, over and above the variance between the 
average values of the observers and of the subjects, and σw

2 is the variance of 
observations by one observer on one subject.  The assumptions that these variables are 
Normal, independent and have uniform variances are quite strong, particularly that the 
measurement error variance σw

2 is the same for all observers, but as Healy (1989) 
notes, it is very difficult to proceed without them. 

Under the assumption of independent errors, the variance of single observed 
measurements by different observers on different subjects is  

σ2 = σb
2 + σo

2 + σh
2 +σw

2 

We can estimate the components of variance by analysis of variance, which is 
straightforward provided we have repeated measurements by each observer on each 
subject. 

4. Repeated observations by each observer 
Table 4 shows measurements of abdominal circumference measured by fetal 
ultrasound.  Four observers each made three measurements on three patients.  This is 
an extract from a larger data set, given for illustration.  We have measurements by 
each observer on each subject, and we can carry out a simple two-way analysis of 
variance as shown in Table 5. 

Each of the numbers in the ‘mean square’ column of Table 5 is an estimate of 
variance.  Analysis of variance is usually introduced as a method of comparing the 
means of more than two groups, and the name ‘analysis of variance’ may seem rather 
inappropriate.  The application to the comparison of means is called the fixed effects 
model, because we are comparing groups defined by some fixed attribute, such as a 
particular treatment.  For estimation of variances we use the random effects model, 
where the subjects are regarded as a sample of subjects and the observers as a sample 
of observers.  We are interested in estimating the variance of the population of 
observers, not in comparing the means for these particular observers. 
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Table 4.  Ultrasound abdominal circumference measurements (cm)  
by 4 observers, data of Chitty 
 
Observer    Subject 1        Subject 2        Subject 3 
   1      13.6 13.3 12.9   14.7 14.8 14.7   17.1 17.1 18.3  
   2      13.8 14.2 13.2   14.9 14.1 14.5   17.2 17.5 17.6  
   3      13.2 13.1 13.1   14.5 14.2 13.8   16.3 15.2 16.1  
   4      13.7 13.7 13.4   14.4 14.3 13.6   16.8 16.8 17.5 
 
Table 5.  Analysis of variance for fetal abdominal circumference, 
three subjects and four observers 
 
Source of   Degrees of   Sum of      Mean      Variance   Probability  
variation   freedom      squares     square    ratio (F)  
Total         35         90.4222     2.5835   
Subjects       2         79.9439    39.9719    250.26     <0.0001 
Observers      3          3.9089     1.3030      8.16      0.0006 
Subs × obs     6          2.7361     0.4560      2.86      0.03 
Residual      24          3.8333     0.1597    
 
Table 6.  Expected values of mean squares in a two-way analysis of 
variance table, random effects model, o observers each measuring n 
subjects m times 

Source of    Degrees of Mean  
variation   freedom square 
-------------------------------------------------------------------- 
Total    mno−1   
Subjects   n−1  moσb2 + mσh2 +σw2 
Observers   o−1  mnσo2 + mσh2 +σw2 
Subjects × observers (n−1)(o−1) mσh2 +σw2 
Residual error  (m−1)no σw2 
 
The expected values of the sums of squares are shown in symbolic form in Table 6.  
We can use Tables 5 and 6 to estimate the components of variance for the data of 
Table 4.  From the residual mean square, we have σw

2 = 0.1597.  If we subtract this 
from the interaction mean square we get 3σh

2 = 0.4560 - 0.1597, σh
2 = 0.0988.  If we 

subtract the interaction row from the observers row we get 3×3σo
2 = 1.3030 - 0.4560, 

σo
2 = 0.0941.  If we subtract the interaction row from the subjects row we get 4×3σb

2 
= 39.9719 - 0.4560, σb

2 = 3.2930. 

We can now calculate the variance of observations on the same subject by two 
different observers: 

σo
2 + σh

2 +σw
2 = 0.0941 + 0.0988 + 0.1597 = 0.3526  

We can interpret this as in Section 2.  We can compare this to the variance of 
observations on the same subject by the same observer, σw

2 = 0.1597, and we see that 
the variance is more than doubled when different observers are used.  The maximum 
difference likely between to measurements by the same observer (the repeatability) is 
estimated as 2.83×σw

2 = 2.83×√0.1597 = 1.13.  If different observers were employed 
the corresponding figure is estimated to be 2.83×√0.3526 = 1.68. 

To estimate the intra-class correlation coefficient for measurements by different 
observers, we estimate the total variance of measurements by different observers on 
different subjects: σ2 = σb

2 + σo
2 + σh

2 + σw
2 = 3.2930 + 0.3526 = 3.6456.  The ICC is 

then estimated by ICC = σb
2/σ2 = 3.2930/3.6456 = 0.90.  We can also estimate the 

intra-observer ICC, for measurements by a single observer, to be σb
2 /(σb

2 + σw
2) = 
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3.2930/(3.2930+0.1597) = 0.95.  This is greater than the inter-observer ICC because 
using different observers increases the variation. 

One of the possible difficulties in this method of analysis is that we may get negative 
estimates of variance, which are, of course, impossible.  We solve this problem by 
setting any negative estimates to zero. 

It is possible to get confidence intervals for the variances and ICCs, but it can be quite 
complicated.  You can ignore the P values in the ANOVA table. 

5. Checking assumptions 
Although I have continued the discussion of the components of variance above, the 
first step in the analysis should be to check whether the within-subjects standard 
deviation is independent of the mean and variation within the subject is approximately 
Normal.  This is best done graphically, as illustrated in Section 6. 

6. An example with only one measurement per subject and deviation 
from assumptions 
Moertel and Hanley (1976) made model tumours from 12 solid spheres, arranged in 
random order on a soft mattress and covered with foam rubber.  They then invited 16 
experienced oncologists to measure the diameter of each sphere, each observer using 
the technique and equipment which they routinely used in clinical practice.  The data 
are shown in Table 7. 

Figure 2 shows the measured value against the true value, showing that the variability 
increases with increasing size.  (If we did not have the true value, as is usually the 
case, we could use the subject mean instead of the true value in this plot.)  The 
increasing variation is associated with the marked digit preference in Table 7.  The 
digit preference is very strong, the majority of terminal digits being `0' and none being 
`9', but is less marked for the small `tumours' and strongest for the large, all of the 
terminal digits for ‘tumour’ 12 being ‘0’.  As Figure 2 also shows, the relationship 
between variability and diameter disappears after log transformation, apart from a 
possible reduction in variability for the largest ‘tumour’. 

Sometimes it is impracticable to take repeated measurements by the same observer on 
a subject, because knowledge of the first reading would bias the second.  The artificial 
tumour data of Table 7 are like this.  We cannot then estimate the measurement error, 
but we can still get a reasonable estimate of the variability between measurements by 
different observers on the same subject.  We calculate the analysis of variance as in 
Section 4, but this time we cannot include the observer times subject interaction, 
because it cannot be estimated separately from single observations.  It is included in 
the residual.  The expected mean squares are shown in Table 8. 

Following the method of Section 4, we can use Tables 8 and 9 to estimate the 
components of variance in Table 7.  There are 12 subjects (in this case dummy 
tumours) and 16 observers, so n = 12, o = 16.  From the residual mean square, we 
have σh

2 +σw
2 = 0.0167.  Subtracting this from the observers mean square we get  

12σo
2 = 0.2320 - 0.0167, so σo

2 = 0.0179.  Subtracting the residual mean square from 
the subjects mean square we get 16σb

2 = 6.2387 - 0.0167, so σb
2 = 0.3889. 
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Table 7.  Measurements of the diameter of 12 model tumours by 16 
observers (Moertel and Hanley 1976)  

                      ‘Tumour’ number and diameter (cm)}  
           1    2    3    4    5    6    7    8    9   10   11    12  
Observer  1.8  2.3  2.7  3.5  4.3  4.4  5.3  5.5  6.4  7.5  8.6  14.5 
   1      1.3  1.8  2.5  3.0  4.0  4.0  5.0  6.5  5.0  7.0  7.5  15.0 
   2      1.5  2.0  3.0  4.0  4.5  3.0  5.0  4.5  5.0  6.5  7.5  13.0 
   3      1.5  2.0  2.5  3.5  4.0  4.0  5.5  5.0  6.0  7.0  8.0  15.0 
   4      1.5  1.8  2.5  3.3  4.0  3.8  4.7  4.5  5.0  6.4  7.0  13.0 
   5      1.8  2.0  3.0  4.0  4.5  5.0  5.5  6.0  6.0  6.5  9.0  15.0 
   6      1.8  2.3  3.0  4.0  4.5  5.0  5.5  5.5  6.0  7.5  7.5  15.0 
   7      1.0  2.0  2.5  3.0  4.0  3.5  4.0  5.0  4.0  6.0  6.0  15.0 
   8      1.5  2.0  3.0  4.0  5.0  3.5  7.0  5.5  6.5  6.5  4.0  19.0 
   9      1.6  2.0  2.5  3.5  4.0  4.5  5.5  5.5  5.5  7.5  9.0  14.0 
  10      1.2  1.5  2.0  3.0  4.0  5.4  4.5  6.0  6.0  7.0  7.5  15.0 
  11      1.5  2.2  3.0  4.3  4.2  5.2  5.5  5.4  6.0  7.5 10.5  18.0 
  12      1.5  1.5  2.0  3.0  4.5  3.0  6.0  4.0  4.5  4.5  8.5  14.0 
  13      2.0  2.0  3.0  3.5  4.0  4.5  5.5  5.5  6.0  7.0  8.0  15.0 
  14      1.6  2.2  2.8  3.8  4.5  5.6  5.3  5.4  6.2  6.8  8.1  14.0 
  15      0.8  1.0  1.5  2.0  3.0  2.0  4.0  3.0  4.0  5.0  6.0  12.0 
  16      1.7  1.8  2.2  3.5  3.8  3.8  4.8  4.6  5.0  6.0  6.0  13.0 
 
Figure 2.  Measurements by 16 observers of the diameter of 12 model tumours, 
against true diameter  
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Table 8.  Expected values of sums of squares in a two-way analysis of 
variance table without replicated measurements, random effects model 
 
Source of   Degrees of Mean  
variation  freedom square 
-------------------------------------------------------------------- 
Total   no−1   
Subjects  n−1  oσb2 + σh2 +σw2 
Observers  o−1  nσo2 + σh2 +σw2 
Residual error (n−1)(o−1) σh2 +σw2 
 
Table 9.  Analysis of variance for log ‘tumour’ diameter 

Source of   Degrees of   Sum of      Mean      Variance   Probability  
variation   freedom      squares     square    ratio (F)  
Total         191        74.8586     0.3919   
Subjects       11        68.6254     6.2387     373.95     <0.0001 
Observers      15         3.4806     0.2320      13.91     <0.0001 
Residual      165         2.7527     0.0167   
 
We can now estimate the variance of observations on the same subject by two 
different observers:  

σo
2 + σh

2 +σw
2 = 0.0179 + 0.0167 = 0.0346 

We can interpret this variance estimated on the logarithmic scale as described by 
Bland and Altman (1996c).  The standard deviation is √0.0346 = 0.186.  The antilog 
is exp(0.186) = 1.20.  The coefficient of variation is found by subtracting 1, giving 
1.20 – 1.00 = 0.20 or 20%.  The inter-observer coefficient of variation is thus 20%. 

The variance between subjects is estimated by 16σb
2 = 6.2387 - 0.0167, σb

2 = 0.3889.  
The inter-observer ICC might be estimated by σb

2/(σb
2 + σo

2 + σh
2 +σw

2) = 
0.3889/(0.3889+0.0346) = 0.92.  However, as this is not a sample of subjects but a set 
of true values predetermined by the investigator, correlation is not appropriate and we 
should not quote it in this particular case. 

We can estimate the between-observer variation from this design, but as we cannot 
estimate the within-observer measurement error, we cannot say by how much 
observer variation increases the error. 
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