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Multiple Linear Regression

More than one predictor:

Strength = –908 + 7.20 × height Strength = 502 – 4.12 × age

Strength = –466 + 5.40 × height – 3.08 × age

Multiple Linear Regression

More than one predictor:

Strength = –466 + 5.40 × height – 3.08 × age

5.40 is the estimated difference in mean muscle strength
between men of the same age who differ in height by one
centimetre.

–3.08 is the estimated difference in mean muscle strength
between men of the same height who differ in age by one year.

Men who are one year older have muscle strength less by 3.08
newtons.

We say that the 5.40 is the effect of height adjusted for age.
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Multiple Linear Regression

More than one predictor:

Strength = –908 + 7.20 × height Strength = 502 – 4.12 × age

Strength = –466 + 5.40 × height – 3.08 × age

Both coefficients are pulled towards zero because age and
height are related:

Height = 179 – 0.195 × age,
P = 0.03

Age and height each
explains some of the
relationship between
strength and the other.

Multiple Linear Regression

More than one predictor:

Strength = –466 + 5.40 × height – 3.08 × age
95% CI 0.25 to 10.55 –6.05 to –0.10

P=0.04 P=0.04

Compare:

Strength = –908 + 7.20 × height
95% CI 2.15 to 12.25

P=0.006

Strength = 502 – 4.12 × age
95% CI –7.04 to –1.21

P=0.007

Each predictor reduces the significance of the other because
they are related to one another as well as to strength.

Interactions

Does the age of the subject change the effect of height on
strength?

Define an interaction variable.

interaction = height × age

strength = –466 + 5.40 × height – 3.08 × age
P=0.04 P=0.04

strength = 4661 – 24.7 × height – 112.8 × age
+ 0.647 × interaction

P=0.02 P=0.004 P=0.005

If the interaction is significant, both main variables must have a
significant effect, so ignore the other P values.
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Interactions

Muscle strength data: interaction between height and age.

interaction = height × age

strength = 4661 – 24.7 × height – 112.8 × age
+ 0.647 × interaction

P=0.02 P=0.004 P=0.005

The slope for height depends on age:

slope = –24.7 + 0.647 × age

The slope for age depends on height :

slope = –112.8 + 0.647 × height

We cannot interpret the main effects on their own.

Interactions

Muscle strength data: interaction between height and age.

Curvilinear Regression

We can fit a curve:

Strength = 1693 – 23.70 × height + 0.0918 × height2

Strength = 961 + 7.49 × height + 0.0918 × (height – 170)2

Subtracting a number
close to the mean
height makes the slope
for height easier to
interpret.
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Curvilinear Regression

We can fit a curve:

Strength = 1693 – 23.70 × height + 0.0918 × height2

Strength = 961 + 7.49 × height + 0.0918 × (height – 170)2

In this case the line is
almost straight.

height: P = 0.01,

(height – 170)2: P = 0.8.

Dichotomous predictor variables

Dichotomous predictor: cirrhosis of the liver.

Variable = 1 if subject has cirrhosis, 0 if not.

Strength = –544 + 5.86 × height – 2.75 × age – 34.5 × cirrhosis
P=0.03 P=0.07 P=0.3

Men with cirrhosis have mean strength lower than men without
cirrhosis by 34.5 newtons (but not significant, 95% CI for
coefficient = –100 to +31).

When we have continuous and categorical predictor variables,
regression is also called analysis of covariance or ancova.

The continuous variables (here height and age) are called
covariates.

The categorical variables (here cirrhosis) are called factors.

Dichotomous predictor variables

Dichotomous predictor: cirrhosis of the liver.

Variable = 1 if subject has cirrhosis, 0 if not.

Strength = –544 + 5.86 × height – 2.75 × age – 34.5 × cirrhosis
P=0.03 P=0.07 P=0.3

Strength = –466 + 5.40 × height – 3.08 × age
P=0.04 P=0.04

The relationship between
cirrhosis and age is
sufficient to make age a
non-significant predictor of
strength.
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Multiple correlation coefficient

If we calculate the sum of squares of deviations from the
regression line and divide by the sum of squares of the
dependent variable about the mean, we get the proportion of
variation unaccounted for or not explained by the regression.

One minus this is the proportion of variation explained by the
regression, :

is called the multiple correlation coefficient. Unlike the
bivariate correlation, it depends on the choice of dependent
variable.

Assumptions of multiple regression

As for simple linear regression, we must assume that the
deviations from the regression equation, the differences
between the observed values of the outcome variable and the
values predicted by the equation, follow a Normal distribution
with uniform variance.

Check by plots of the distribution and of deviation against
predicted values;

Logistic regression

Logistic regression is used when the outcome variable is
dichotomous, a ‘yes or no’.

We want to predict the proportion who have a characteristic, or
probability that a subject will have characteristic.

We would like a regression equation:

proportion = intercept + slope × predictor + slope × predictor
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Logistic regression

We would like a regression equation:

proportion = intercept + slope × predictor + slope × predictor

Problem: proportions cannot be less than zero or greater than
one. How can we stop our equation predicting impossible
proportions?

Find a scale for the outcome which is not constrained.

Odds has no upper limit, but must be greater than or equal to
zero.

Log odds can take any value.

Use log odds, called the logit or logistic transformation.

Logistic regression

Example: caesarean section

Several factors may increase the risk of a caesarean, and in
this study the factor of interest was obesity, as measured by the
body mass index or BMI, defined as weight/height2 (data of
Andreas Papadopoulos).

For caesareans, the mean BMI was 26.7 Kg/m2 and for vaginal
deliveries the mean was 24.9 Kg/m2, P < 0.001.

Women who had had a previous vaginal delivery (PVD) were
less likely to need a caesarean, odds ratio = 0.18, 95% CI 0.10
to 0.32.

Women whose labour was induced had an increased risk of a
caesarean, odds ratio = 1.76, 95% CI 1.19 to 2.62.

Logistic regression

Example: caesarean section

Logistic regression equation:

log odds caesarean =
–3.70 + 0.0883 × BMI + 0.647 × induction – 1.80 × PVD

95% CI 0.0492 to 0.1275 0.228 to 1.067 –2.38 to –1.21
P<0.001 P=0.003 P<0.001

where induction and PVD are 1 if present, 0 if not.

Logistic regression equation predicts log odds.

Coefficients represent the difference between two log odds, a
log odds ratio.

The antilog of the coefficients is an odds ratio.
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Logistic regression

Example: caesarean section

Logistic regression equation:

log odds caesarean =
–3.70 + 0.0883 × BMI + 0.647 × induction – 1.80 × PVD

95% CI 0.0492 to 0.1275 0.228 to 1.067 –2.38 to –1.21
P<0.001 P=0.003 P<0.001

If we antilog the equation we get

odds caesarean =
0.0247 × 1.092BMI × 1.910induction × 0.166PVD

95% CI 1.050 to 1.136 1.256 to 2.906 0.09 to 0.98
P<0.001 P=0.003 P<0.001

Logistic regression

Example: caesarean section

If we antilog the equation we get

odds caesarean =
0.0247 × 1.092BMI × 1.910induction × 0.166PVD

95% CI 1.050 to 1.136 1.256 to 2.906 0.09 to 0.98
P<0.001 P=0.003 P<0.001

If not induced, induction = 0, 1.9100 = 1

If induced, induction = 1, 1.9101 = 1.910

If induced, multiply odds ratio by 1.910.

1.910 = odds ratio for induction.

Logistic regression

Example: caesarean section

If we antilog the equation we get

odds caesarean =
0.0247 × 1.092BMI × 1.910induction × 0.166PVD

95% CI 1.050 to 1.136 1.256 to 2.906 0.09 to 0.98
P<0.001 P=0.003 P<0.001

If BMI = 25, 1.092BMI =1.09225 = 9.027

If BMI = 26, 1.092BMI =1.09226 = 9.027 × 1.092

1.092 = odds ratio for an increase of one unit of BMI.

A difference of 5 Kg/m2 in BMI gives an odds ratio for a
caesarean of 1.0925 = 1.55 and the odds of a caesarean are
multiplied by 1.55.
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Factors with more than two levels

We can use factors with more than two levels, i.e. categorical
variables with more than two categories as predictors.

Example: follow-up of children of short stature given growth
hormone treatment.

Three types of treatment:

1. human growth hormone only (311 children),

2. human growth hormone followed by recombinant growth
hormone (1455),

3. recombinant growth hormone only (1467).

Coste J, Letrait M, Carel JC, Tresca JP, Chatelain P, Rochiccioli P, Chaussain JL,
Job JC. (1997) Long term results of growth hormone treatment in France in children
of short stature: population, register based study. British Medical Journal 315, 708-
713.

Factors with more than two levels

We can use factors with more than two levels, i.e. categorical
variables with more than two categories as predictors.

Example: follow-up of children of short stature given growth
hormone treatment.

Three types of treatment:

1. human growth hormone only (311 children),

2. human growth hormone followed by recombinant growth
hormone (1455),

3. recombinant growth hormone only (1467).

Hence the treatment is a categorical variable with three
categories.

Factors with more than two levels

Three types of treatment:

1. human growth hormone only,

2. human growth hormone followed by recombinant growth
hormone,

3. recombinant growth hormone only.

If we code these as 1, 2, and 3, then put this variable as a
predictor, the equation is forced to estimate the difference
between human growth hormone only and human growth
hormone followed by recombinant growth hormone as the
same as the difference between human growth hormone
followed by recombinant growth hormone and recombinant
growth hormone only.
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Factors with more than two levels

Define dummy variables, a set of variables which together
represent the categorical variable and which can be used in the
regression equation.

One way to do this would be:

dummy1 = 1 if human growth hormone only
dummy1 = 0 if any other treatment

dummy2 = 1 if human growth hormone followed by
recombinant growth hormone

dummy2 = 0 if any other treatment

We do not need a dummy3, because if dummy1 = 0 and
dummy2 = 0, we must have the third treatment, recombinant
growth hormone only.

We need one fewer dummy variables than categories.

Factors with more than two levels

Dummy variables:

dummy1 = 1 if human growth hormone only
dummy1 = 0 if any other treatment

dummy2 = 1 if human growth hormone followed by
recombinant growth hormone

dummy2 = 0 if any other treatment

Put both dummy variables as predictors into a multiple or
logistic regression.

coefficient of dummy1 = difference between human growth
hormone only and recombinant growth hormone only.

coefficient of dummy2 = difference between human growth
hormone followed by recombinant growth hormone and
recombinant growth hormone only.

Factors with more than two levels

Dummy variables:

dummy1 = 1 if human growth hormone only
dummy1 = 0 if any other treatment

dummy2 = 1 if human growth hormone followed by
recombinant growth hormone

dummy2 = 0 if any other treatment

The category represented by all the dummy variables being
zero is called the reference category, the category to which all
the others are compared.
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Factors with more than two levels

Coste et al. (1997) chose recombinant hormone only as the
reference category and gave the regression coefficients for
predicting standard deviation score of final height (i.e. standard
deviations from the normal population mean).

For pre-pubertal boys, these were:

human hormone only –0.295 (95% CI –0.456 to –0.134),

human hormone followed by recombinant hormone –0.148
(–0.255 to –0.039),

recombinant hormone only 0.

Coefficient for recombinant hormone only = 0 by definition,
because it was the reference category.

Because it is 0 by definition, it has no confidence interval.

Factors with more than two levels

Coste et al. (1997) chose recombinant hormone only as the
reference category and gave the regression coefficients for
predicting standard deviation score of final height (i.e. standard
deviations from the normal population mean).

For pre-pubertal boys, these were:

human hormone only –0.295 (95% CI –0.456 to –0.134),

human hormone followed by recombinant hormone –0.148
(–0.255 to –0.039),

recombinant hormone only 0.

The confidence interval for human hormone only is much wider
than for the combination treatment, because there are fewer
subjects in this category.

Factors with more than two levels

When we choose the reference category there are two
considerations.

We want a category which gives a meaningful comparison. If
there is a control group, we usually choose that.

We want a large category so that the confidence intervals
would be narrow.

If we had chosen human hormone only as the reference
category, though logical, this would mean that both confidence
intervals would include comparisons with the small group and
so both would be as wide as that between human only and
recombinant only.
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Factors with more than two levels

Treatment regimen was a highly significant predictor of final
height, P = 0.0008.

Only one P value because treatment regimen is a single
variable with three possible values.

The regression program will give a P value for each dummy
variable, but we ignore these.

Use an overall test, called an F test, to test the dummy
variables as a group rather than individually.

Factors with more than two levels

Most statistical computer programs will calculate the dummy
variables for you.

You need to specify in some way that the variable is
categorical, using terms such as ‘factor’ or ‘class variable’ for a
categorical variable and ‘covariate’ or ‘continuous’ for
quantitative predictors.

Sample size

We should always have more observations than variables.

Rules of thumb:

Multiple regression: at least 10 observations per variable.

Logistic regression: at least 10 observations with a ‘yes’
outcome and 10 observations with a ‘no’ outcome per variable.

Otherwise, things get very unstable.
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Types of regression

Multiple regression and logistic regression are the types of
regression most often seen in the health care literature.

There are other types of regression for different kinds of
outcome variable:

 Cox regression (survival analysis)

 Ordered logistic regression (ordered categories)

 Multinomial regression (unordered categories)

 Poisson regression (counts)

 Negative binomial regression (counts with extra variability)


