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Health Sciences M.Sc. Programme

Applied Biostatistics

Week 10: Multiple regression

More than one predictor

In Week 9 we looked at regression with one predictor variable. Often we would like to use more
than one predictor variable. In this lecture we look at how to do that for a continuous outcome
variable, and describe a related method for use when the outcome is dichotomous.

Table 1 shows the ages, heights and maximum voluntary contraction of the quadriceps muscle
(strength) in a group of male alcoholics. The outcome variable is strength. Figure 1 shows the
relationship between strength and height. We can fit a regression line:

strength = –908 + 7.20 × height

This enables us to predict what the mean strength would be for men of any given height. But
strength varies with other things beside height. Figure 2 shows the relationship between strength
and age. We can fit a regression line from which we could predict the mean strength for any given
age:

strength = 502 – 4.12 × age

However, strength would still vary with height. To investigate the effect of both age and height, we
can use multiple regression to fit a regression equation:

strength = –466 + 5.40 × height – 3.08 × age

The coefficients are calculated by a least squares procedure, exactly the same in principle as for
simple regression. In practice, this is always done using a computer program. From this equation,
we would estimate the mean strength of men with any given age and height, in the population of
which these are a sample.

In this multiple regression equation, 5.40 is the estimated difference in mean muscle strength
between men of the same age who differ in height by one centimetre. Similarly, –3.08 is the
estimated difference in mean muscle strength between men of the same height who differ in age by
one year, i.e. men who are one year older have muscle strength less by 3.08 newtons. We say that
the 5.40 is the effect of height adjusted for age.

Both coefficients are closer to zero than they are in the separate regressions. They are pulled
towards zero because, as Figure 3 shows, age and height are related:

height = 179 – 0.195 × age,
P = 0.03

Age and height each explains some of the relationship between strength and the other variable.
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Table 1. Maximum voluntary contraction (strength) of quadriceps muscle, age and height, of 41
male alcoholics (Hickish et al., 1989)

Age
(years)

Height
(cm)

Strength
(newtons)

Age
(years)

Height
(cm)

Strength
(newtons)

24 166 466 42 178 417
27 175 304 47 171 294
28 173 343 47 162 270
28 175 404 48 177 368
31 172 147 49 177 441
31 172 294 49 178 392
32 160 392 50 167 294
32 172 147 51 176 368
32 179 270 53 159 216
32 177 412 53 173 294
34 175 402 53 175 392
34 180 368 53 172 466
35 167 491 55 170 304
37 175 196 55 178 324
38 172 343 55 155 196
39 172 319 58 160 98
39 161 387 61 162 216
39 173 441 62 159 196
40 173 441 65 168 137
41 168 343 65 168 74
41 178 540

Figure 1. Muscle strength against height
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Figure 2. Muscle strength against age
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Figure 3. Relationship between height and age in Table 1
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Significance tests and estimation in multiple regression

We can test the significance of the regression of strength on height and age together and the significance of
each predictor variable separately. These tests and the confidence intervals that go with them require the
same assumptions of independent observations and residuals with a Normal distribution and uniform
variance as for simple linear regression. For the example, both age and height have P=0.04 and we can
conclude that both age and height are independently associated with strength: strength = –466 + 5.40 ×
height – 3.08 × age

95% CI 0.25 to 10.55 –6.05 to –0.10
P=0.04 P=0.04

If we compare this with the separate regressions, we see than the P values have increased:

strength = –908 + 7.20 × height
95% CI 2.15 to 12.25

P=0.006

strength = 502 – 4.12 × age
95% CI –7.04 to –1.21

P=0.007
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Each predictor reduces the significance of the other because they are related to one another as well
as to strength. This increases the standard error of the estimates, and variables may have a multiple
regression coefficient which is not significant in a multiple regression despite being related to the
outcome variable in a simple regression. When the predictor variables are highly correlated the
individual coefficients will be poorly estimated and have large standard errors. Correlated
predictor variables may obscure the relationship of each with the outcome variable.

We check the assumptions of Normal distribution and uniform variance as for simple linear
regression, by plotting a histogram and Normal plot of residuals and scatter plots of the residuals.
We usually plot this against the strength predicted by the regression equation.

Interaction in multiple regression

An interaction between two predictor variables arises when the effect of one on the outcome
depends on the value of the other. For example, tall men may be stronger than short men when
they are young, but the difference may disappear as they age.

An interaction may take two simple forms. As height increases, the effect of age may increase so
that the difference in strength between young and old tall men is greater than the difference
between young and old short men. Alternatively, as height increases, the effect of age may
decrease. If we create an interaction variable = height × age and include it in the model, we can
allow either for either of these possibilities:

strength = 4661 – 24.7 × height – 112.8 × age + 0.650 × height × age
P=0.02 P=0.004 P=0.005

The regression is still significant, as we would expect. However, the coefficients of height and age
have changed; they have even changed sign. The coefficient of height depends on age. The
regression equation can be written

strength = 4661 + (–24.7 + 0.650 × age) × height – 112.8 × age

The coefficient of height depends on age, becoming –24.7 + 0.650 × age. The difference in
strength between short and tall subjects is greater for older subjects than for younger. Or we could
write

strength = 4661 –24.7 × height + (–112.8 + 0.650 × height) × age

The coefficient of age depends on height, becoming –112.8 + 0.650 × height. The difference in
strength between young and old subjects being less for taller subjects than for shorter.
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Figure 4. Interaction between age and height in their effects on muscle strength
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Figure 5. Fitted quadratic curve
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Figure 4 shows this interaction as separate regression lines for younger and older men.

Curvilinear regression

So far, we have assumed that all the regression relationships have been linear, i.e. that we are
dealing with straight lines. This is not necessarily so. We may have data where the underlying
relationship is a curve rather than a straight line. Unless there is a theoretical reason for supposing
that a particular form of the equation, such as logarithmic or exponential, is needed, we test for
non-linearity by using a polynomial.

Clearly, if we can fit a relationship of the form

strength = constant + constant × height + constant × age

we can also fit one of the form

strength = constant + constant × height + constant × height2

to give a quadratic equation, which would produce a curve rather than a straight line. We can
continue adding powers of height to give equations which are cubic, quartic, etc., which would
produce more complex curves.

For the example data we get
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Strength = 1693 – 23.70 × height + 0.0918 × height2

P=0.9 P=0.8

here is no evidence that the quadratic term improves the prediction of strength. Figure 5 shows the curve,
which is hard to distinguish from the straight line.

Height and height squared are highly correlated, which can lead to problems in estimation. To
reduce the correlation, we can subtract a number close to mean height from height before squaring.
For the data of Table 1, the correlation between height and height squared is 0.9998. This is why
the height coefficient has changes and become non-significant. Mean height is 170.7 cm, so 170 is
a convenient number to subtract. The correlation between height and height minus 170 squared is
–0.44, so the correlation has been reduced, though not eliminated. The regression equation is

strength = –961 + 7.49 × height + 0.092 × (height – 170)2

P=0.01 P=0.8

The coefficient and P value for the quadratic term have not changed, but the coefficient for the
linear term, height, has returned to something like its former value.

Qualitative predictor variables

The predictor variables height and age are quantitative. In the study from which these data come,
we also recorded whether or not subjects had cirrhosis of the liver. Cirrhosis was recorded as
‘present’ or ‘absent’, so the variable was dichotomous. It is easy to include such variables as
predictors in multiple regression. We create a variable which is 0 if the characteristic is absent, 1 if
present, and use this in the regression equation just as we did height. The regression coefficient of
this dichotomous variable is the difference in the mean of the outcome variable between subjects
with the characteristic and subjects without. If the coefficient in this example were negative, it
would mean that subjects with cirrhosis were not as strong as subjects without cirrhosis. In the
same way, we can use sex as a predictor variable by creating a variable which is 0 for females and
1 for males. The coefficient then represents the difference in mean between male and female. If
we use only one, dichotomous predictor variable in the equation, the regression is exactly
equivalent to a two sample t test between the groups defined by the variable.

For the strength data, we define a variable cirrhosis = 1 if subject has cirrhosis, 0 if not.

Strength = –544 + 5.86 × height – 2.75 × age – 34.5 × cirrhosis
P=0.03 P=0.07 P=0.3

Men with cirrhosis have mean strength lower than men without cirrhosis, of the same height and
age, by 34.5 newtons (but not significant, 95% CI for coefficient = –100 to +31).

When we have continuous and categorical predictor variables, regression is also called analysis of
covariance or ancova. The continuous variables (here height and age) are called covariates and
the categorical variables (here cirrhosis) are called factors. We can also have factors with more
than two categories or classes, see below.

Multiple correlation coefficient

If we calculate the sum of squares of deviations from the regression line and divide by the sum of
squares of the dependent variable about the mean, we get the proportion of variation unaccounted
for or not explained by the regression. One minus this is the proportion of variation explained by
the regression, R2:

variableoutcomeofSS

deviationsofSS2 R
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Figure 6. Distribution of residuals
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Figure 7. Residuals against predicted or fitted values
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R is called the multiple correlation coefficient. Unlike the bivariate correlation coefficient, r, it
depends on the choice of dependent variable.

Assumptions of multiple regression

As for simple linear regression, we must assume that the deviations from the regression equation,
the differences between the observed values of the outcome variable and the values predicted by
the equation, also called the residuals, follow a Normal distribution with uniform variance. We can
check these assumptions by plots of the distribution such as a histogram and a Normal quantile plot
of the residuals (Figure 6) and a scatter plot of deviation against predicted values (Figure 7).

Logistic regression

Logistic regression is used when the outcome variable is dichotomous, a ‘yes or no’, whether or not
the subject has a particular characteristic such as a symptom. We want a regression equation which
will predict the proportion of individuals who have the characteristic, or, equivalently, estimate the
probability that an individual will have the characteristic. We cannot use an ordinary linear
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regression equation, because this might predict proportions less than zero or greater than one,
which would be meaningless. If we used the odds, rather than the proportion, as the outcome we
would have a variable which could take any positive value, but could not be negative. We use the
log of the odds, also called the logistic transformation or logit of the proportion as the outcome
variable.

The logit can take any value from minus infinity, when the proportion = 0, to plus infinity, when
the proportion = 1. We can fit regression models to the logit which are very similar to the ordinary
multiple regression models found for data from a Normal distribution. We assume that
relationships are linear on the logistic scale. The method is called logistic regression, and the
calculation is computer intensive. The effects of the predictor variables are found as log odds
ratios. We will look at the interpretation in an example.

When giving birth, women who have had a previous caesarean section usually have a trial of scar,
that is, they attempt a natural labour with vaginal delivery and only have another caesarean if this is
deemed necessary. Several factors may increase the risk of a caesarean, and in this study the factor
of interest was obesity, as measured by the body mass index or BMI, defined as weight/height2

(data of Andreas Papadopoulos). For caesareans, the mean BMI was 26.4 Kg/m2 and for vaginal
deliveries the mean was 24.9 Kg/m2. Two other variables had a strong relationship with a
subsequent caesarean. Women who had had a previous vaginal delivery (PVD) were less likely to
need a caesarean, odds ratio = 0.18, 95% confidence interval 0.10 to 0.32. Women whose labour
was induced had an increased risk of a caesarean, odds ratio = 2.11, 95% confidence interval 1.44
to 3.08. All these relationships were highly significant. The question to be answered was whether
the relationship between BMI and caesarean section remained when the effects of induction and
previous deliveries were allowed for.

The logistic regression equation predicting the log odds of a caesarean was:

log odds caesarean = –3.70 + 0.0883 × BMI + 0.647 × induction – 1.80 × PVD
0.0492 to 0.1275 0.228 to 1.067 –2.38 to –1.21

P<0.001 P=0.003 P<0.001

where induction and PVD are 1 if present, 0 if not.

Because the logistic regression equation predicts the log odds, the coefficients represent the
difference between two log odds, a log odds ratio. The antilog of the coefficients is thus an odds
ratio. Some programs will print these odds ratios directly. If we antilog the equation we get

odds caesarean = 0.0247 × 1.092BMI × 1.910induction × 0.166PVD

1.050 to 1.136 1.256 to 2.906 0.09 to 0.98
P<0.001 P=0.003 P<0.001

This means that induction increases the odds of a caesarean by a factor of 1.910 and a previous
vaginal delivery reduces the odds by a factor of 0.166. These are often called adjusted odds ratios
and 1.91 is the odds ratio for induction of labour adjusted for BMI and previous vaginal delivery.
In this example they and their confidence intervals are similar to the unadjusted odds ratios given
above, because the three predictor variables happen not to be closely related to each other.

For a continuous predictor variable, such as BMI, the coefficient is the change in log odds for an
increase of one unit in the predictor variable. The antilog of the coefficient, the odds ratio, is the
factor by which the odds must be multiplied for a unit increase in the predictor. Two units increase
in the predictor increases the odds by the square of the odds ratio, and so on. A difference of 5
Kg/m2 in BMI gives an odds ratio for a caesarean of 1.0925 = 1.55, thus the odds of a caesarean are
multiplied by 1.55.
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Categorical variables with more than two levels

It is straightforward to use qualitative or categorical variables as predictors when there are two
groups, but a bit more complicated when there are more. For example, Coste et al. (1997) followed
up children of short stature given growth hormone treatment. There were three types of treatment:
human growth hormone only (311 children), human growth hormone followed by recombinant
growth hormone (1455), and recombinant growth hormone only (1467). Hence the treatment is a
categorical variable with three categories. If we code these as 1, 2, and 3, then put this variable as a
predictor into a multiple or logistic regression, the equation is forced to estimate the difference
between human growth hormone only and human growth hormone followed by recombinant
growth hormone as the same as the difference between human growth hormone followed by
recombinant growth hormone and recombinant growth hormone only. What we do instead is to set
up what we call dummy variables, a set of variables which together represent the categorical
variable and which can be used in the regression equation. One way to do this would be:

dummy1 = 1 if human growth hormone only,
dummy1 = 0 if any other treatment

dummy2 = 1 if human growth hormone followed by recombinant growth hormone
dummy2 = 0 if any other treatment

We do not need a dummy3, because if dummy1 = 0 and dummy2 = 0, we must have the third
treatment, recombinant growth hormone only. We need one fewer dummy variables than there are
categories.

If we put both dummy variables as predictors into a multiple or logistic regression, the coefficient
of dummy1 represents the difference between human growth hormone only and recombinant
growth hormone only. The coefficient of dummy2 represents the difference between human
growth hormone followed by recombinant growth hormone and recombinant growth hormone only.
The category represented by all the dummy variables being zero is called the reference category,
the category to which all the others are compared.

Coste et al. (1997) chose recombinant hormone only as the reference category and gave the
regression coefficients for predicting standard deviation score of final height (i.e. standard
deviations from the normal population mean). For pre-pubertal boys, these were human hormone
only –0.295 (95% CI –0.456 to –0.134), human hormone followed by recombinant hormone –0.148
(–0.255 to –0.039), and recombinant hormone only 0. The coefficient for recombinant hormone
only was 0 by definition, because it was the reference category to which the others were compared.
Because it is 0 by definition, it has no confidence interval. The confidence interval for human
hormone only is much wider than for the combination treatment, because there are fewer subjects
in this category. When we choose the reference category there are two considerations. First, we
want a category which gives a meaningful comparison. If there is a control group, we usually
choose that. There is no control group here, but we would prefer not to have the more complex
regime of both types of hormone. Second, we want a large category so that the confidence
intervals would be narrow. If we had chosen human hormone only as the reference category,
though logical, this would mean that both confidence intervals would include comparisons with the
small group and so both would be as wide as that between human only and recombinant only.

Treatment regimen was a highly significant predictor of final height, P = 0.0008. There is only one
P value because treatment regimen is a single variable with three possible values. The regression
program will give a P value for each dummy variable, but we ignore these. There is an overall test,
called an F test, to test the dummy variables as a group rather than individually.
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Most statistical computer programs will calculate the dummy variables for you. You need to
specify in some way that the variable is categorical, using terms such as ‘factor’ or ‘class variable’
for a categorical variable and ‘covariate’ or ‘continuous’ for quantitative predictors.

Sample size

We should always have more observations than variables. There are some rules of thumb which
have been developed using simulation studies:

 for multiple regression, we should have at least 10 observations per variable,

 for logistic regression, we should have at least 10 observations with a ‘yes’ outcome and 10
observations with a ‘no’ outcome per variable.

Otherwise, things get very unstable. With logistic regression, we may not be able to trust the large
sample P values and confidence intervals.

Types of regression

Multiple regression and logistic regression are the types of regression most often seen in the health
care literature in general. There are other types of regression developed for different kinds of
outcome variable. These include:

 Cox regression or proportional hazards regression (survival analysis, for data which give the
time to an event),

 ordered logistic regression (for outcome variables which are ordered categories, such as
health is poor, fair, good, or excellent),

 multinomial regression (for unordered categories, this is very rarely seen),

 Poisson regression (counts, such as the number of deaths per year),

 negative binomial regression (counts with extra variability, such as the numbers of deaths in
different case series, becoming increasing popular because there are programs to do it).

J. M. Bland,
1 March 2012
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