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Data, frequencies, and distributions 
Types of data 
In statistics, we use the term variable to mean a quality or quantity which varies from 
one member of a sample or population to another.  Systolic blood pressure is a 
variable, which varies both from person to person and from measurement to 
measurement within the same person.  Sex is a variable, people being either male or 
female.   

It is useful to think of data as being of several different types, as the type of data is 
important in deciding which methods of presentation and analysis we should adopt.  
The first classification we make is into qualitative and quantitative data.  Qualitative 
data arise when individuals may fall into separate classes, such as diagnosis or sex.  A 
qualitative variable is also termed a categorical variable or a classification variable.  
Quantitative data are numerical, arising from counts or  measurements.  Wound area 
is a quantitative variable, as is the length of time until the wound heals and parity, the 
number of previous pregnancies which an expectant mother has had.  If the values of 
the measurements can only take a few separate values, often integers (whole 
numbers), as does parity, those data are said to be discrete.  If the values of the 
measurements can take any number in a range, such as wound area, height, or weight, 
the data are said to be continuous.  In practice, of course, measurements such as 
height are made to within some degree of precision when reading off a scale.  Heights 
might be recorded to the nearest centimetre, for example, so although there are many 
possible values, only a finite number can be recorded and height is recorded in a 
discrete way.  However, if the underlying variable is continuous, we can usually 
ignore the limitations introduced by practical measurement and treat the measurement 
as continuous, too. 

Frequency distributions 
Table 1 shows the source of referral of patients recruited to a randomised controlled 
trial of physiotherapy compared with advice for the treatment of low back pain (Frost 
et al., 2004).  Source of referral is a qualitative variable.  The count of individuals 
having a particular quality is called the frequency of that quality in the sample.  The 
proportion of individuals having the quality is called the relative frequency or 
proportional frequency.  Thus the relative frequency of general practitioner referral 
is 256/285 = 0.898 or 89.8%.  The set of frequencies of all the possible categories is 
called the frequency distribution of the variable.  
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Table 1.  Source of referral of patients in a physiotherapy trial (Frost et al., 2004)   

 
Source of referral: Frequency Relative frequency (%) 
General practitioner 256   89.8 
Consultant   18     6.3 
Triage *   10     3.5 
Sports centre     1     0.4 
Total 285 100.0 
* specialist back pain triage service set up in one centre to reduce the waiting time to 
see the orthopaedic consultants (Helen Frost, personal communication). 
 
Table 2.  Mobility of patients recruited to the VenUS I trial (data of Nelson et al., 
2004). 
 
Mobility Frequency Relative 

frequency (%) 
Cumulative 
frequency 

Cumulative 
relative 
frequency (%) 

Walks freely   238   62.1 238   62.1 
Walks with 
difficulty 

  142   37.1 380   99.2 

Immobile       3     0.8 383 100.0 
Total   383 100.0 383 100.0 
 
Table 3.  Number of episodes of venous ulcers after first onset for patients recruited to 
the VenUS I trial (data of Nelson et al., 2004). 
Number of 
episodes 

Frequency Relative frequency 
(%) 

Cumulative relative  
frequency (%) 

    0  11   2.9   2.9 
    1 145  38.7  41.6 
    2 101  26.9  68.5 
    3  39  10.4  78.9 
    4  23   6.1  85.1 
    5  14   3.7  88.8 
    6   9   2.40  91.2 
    7   4   1.1  92.3 
    8   6   1.6  93.9 
    9   1   0.3  94.1 
   10   9   2.4  96.5 
   13   1   0.3  96.8 
   15   1   0.3  97.1 
   17   1   0.3  97.3 
   20   3   0.8  98.1 
   26   1   0.3  98.4 
   29   1   0.3  98.7 
   40   1   0.3  98.9 
   50   3   0.8  99.7 
   64   1   0.3 100.0 
Total 375 100.0 100.0 
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Table 2 shows a different qualitative variable, mobility of patients with venous leg 
ulcers recruited to the VenUS I trial (Nelson et al., 2004).  For this variable the 
categories are ordered.  It clear that those who walk freely are more mobile than those 
who walk with difficulty, who are in turn more mobile than those who cannot walk at 
all.  This was not the case for the source of referral shown in Table I, where the only 
order is the order from highest to lowest frequency.  There is no other sense in which 
there is an order general practitioner, consultant, triage, sports centre.  This enables us 
to look at the distribution of mobility in a slightly different way, using cumulative 
frequencies.  The cumulative frequency for a value of a variable is the number of 
individuals with values less than or equal to that value.  Hence the cumulative 
frequency for ‘patient walks with difficulty’ is 380, meaning that 380 of the trial 
subjects could walk to some extent.  The relative cumulative frequency for a value 
is the proportion of individuals in the sample with values less than or equal to that 
value.  The relative cumulative frequency for ‘patient walks with difficulty’ is 
380/383 = 0.992 or 99.2%. 

Table 3 shows a discrete qualitative variable, the number of episodes of venous ulcer 
experienced by the subjects in the VenUS I trial.  This is discrete because one either 
has an episode or one does not, there cannot be a fraction of an episode.  Hence the 
number must be 0 (meaning that the ulcer for which they will be treated in the trial is 
the first episode), 1, 2, 3, etc.  We can count the number of times each possible value 
occurs to get the frequency distribution, and find the relative and cumulative 
frequencies as before.   

Table 4 shows a continuous qualitative variable, serum cholesterol measured on a 
sample of stroke patients (Markus et al., 1995).  We cannot find a frequency 
distribution as we did for the number of episodes of venous ulcer.  As most of the 
values occur only once, counting the number of occurrences does not help.  There is 
one 3.6, two 3.8s, one 4.5, three 4.7s, two 4.8s, etc., but no 3.9s, 4.0s,or 4.1s.  To get a 
useful frequency distribution we need to divide the serum cholesterol scale into class 
intervals, e.g. from 3.0 to 4.0, from 4.0 to 5.0, and so on.  We then count the number 
of individuals with serum cholesterols in each class interval.  We want each serum 
cholesterol to fall in one and only one of the intervals, so the class intervals should not 
overlap.  We must decide which interval contains the boundary point to avoid it being 
counted twice.  It is usual to put the lower boundary of an interval into that interval 
and the higher boundary into the next interval.  We do not have to do this, but it is a 
handy convention and it is worth sticking to unless there is a very good reason not to 
do so.  Thus the interval starting at 3.0 and ending at 4.0 contains 3.0 but not 4.0.  We 
can write this as ‘3.0 —’ or ‘3.0 — 4.0-’, the little minus sign indicating up to but not 
including 4.0, or ‘3.0 — 3.999’. 

Table 5 shows the frequency distribution that we get if we use an interval size of 1.0 
mmol/L and start at 3.0.  Before computers were readily available, people were taught 
to do this using a tally system to mark off each observation into its correct interval, 
counting in groups of five.  Table 5 shows the appearance of the calculation of a 
frequency distribution and you will often see this in statistics books.  It is very 
difficult to do accurately and the poor researcher would keep repeating it until the 
same frequencies were obtained twice.  I did this one using a computer and I would 
recommend any researcher to do the same; our tally marks are just for show. 
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Table 4.  Serum cholesterol (mmol/L) measured on a sample of 86 stroke patients 
(data of Markus et al., 1995)   

  3.7   4.8   5.4   5.6   6.1   6.4   7.0   7.6   8.7 
  3.8   4.9   5.4   5.6   6.1   6.5   7.0   7.6   8.9 
  3.8   4.9   5.5   5.7   6.1   6.5   7.1   7.6   9.3 
  4.4   4.9   5.5   5.7   6.2   6.6   7.1   7.7   9.5 
  4.5   5.0   5.5   5.7   6.3   6.7   7.2   7.8  10.2 
  4.5   5.1   5.6   5.8   6.3   6.7   7.3   7.8  10.4 
  4.5   5.1   5.6   5.8   6.4   6.8   7.4   7.8 
  4.7   5.2   5.6   5.9   6.4   6.8   7.4   8.2 
  4.7   5.3   5.6   6.0   6.4   7.0   7.5   8.3 
  4.8   5.3   5.6   6.1   6.4   7.0   7.5   8.6 
 
Table 5.  Frequency distribution of serum cholesterol in 86 stroke patients, with count 
using a tally system 
 
Interval Tally Frequency 
3.0�4.0- ///  3 
4.0�5.0- //// //// / 11 
5.0�6.0- //// //// //// //// //// 24 
6.0�7.0- //// //// //// //// 20 
7.0�8.0- //// //// //// //// 19 
8.0�9.0- ////   5 
9.0�10.0- //  2 
10.0�11.0- //  2 
Total  86 
 
 
Table 6.  Frequency distribution of serum cholesterol in 86 stroke patients, using 
narrower class intervals 
 
Interval Frequency 
3.5�4.0-  3 
  4�4.5-  1 
4.5�5.0- 10 
  5�5.5-  8 
5.5�6. 0- 16 
  6�6.5- 13 
6.5�7.0-  7 
  7�7.5- 10 
7.5�8.0-  9 
  8�8.5-  2 
8.5�9.0-  3 
  9�9.5-  1 
9.5�10.0-  1 
 10�10.5-  2 
 86 
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The frequencies shown in Table 5 are only one possible frequency distribution.  The 
choice of intervals of width 1.0 is arbitrary and Table 6 shows the frequency 
distribution obtained using an narrower interval.  The frequencies are different.  We 
could choose a different staring point for our interval, too.  We could have intervals 
staring at 3.45 with width 0.92 if we wanted to, the choice is for convenience rather 
than because there is a single correct set of intervals.  For continuous data the 
individual frequencies do not mean very much.  It is the distribution, the set of all the 
frequencies together, which carries the information. 

Because most people find it very difficult to get much useful insight from a column of 
frequencies like those shown in Tables 5 and 6, we usually view them not as numbers 
but as a picture, such as a histogram, described in the next section. 

Histograms and other frequency graphs 
A histogram is a graph showing a frequency distribution.  Figure 1 shows the 
histogram for Table 5.  The variable, serum cholesterol, is shown along the horizontal 
axis and the frequency on the vertical axis.  Each interval has a rectangular bar over it, 
the height of which represents the frequency, the number of observations which fall in 
that interval.   

Figure 2 shows another histogram for the same data.  The interval width is 0.5 
mmol/L, as in Table 6, but I have also changed the starting point from 3.0 to 3.25.  
Although the frequencies are different, the shapes of the two histograms are similar.  
Both have low frequencies for small cholesterols, bigger frequencies as we move 
along the axis, peaking between 5 and 6, and then declining as cholesterol increases, 
with no observations beyond 11 mmol/L.  As we shall see, it is the shape of the 
distribution which is important.  However, Figure 1 is more even than Figure 2, which 
is quite bumpy by comparison.  This is because the intervals are smaller and so the 
frequencies in them are smaller, which makes them more prone to random 
fluctuations.  We usually try to choose an interval size which makes the shape of the 
distribution most clear. 

We do not have to plot frequency on the vertical axis, and Figure 3 shows the 
distribution in Figure 1 with relative frequency on the vertical axis instead.  The scale 
shows the proportion of observations within each interval rather than the number.  
This makes it easier to compare histograms for samples with very different numbers 
of observations. 
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Figure 1 Histogram of serum cholesterol, frequency scale  
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Figure 2 Histogram of serum cholesterol using a starting point of 3.25 mmol/L and an 
interval of 0.5 mmol/L, frequency scale 
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Figure 3.  Histogram of serum cholesterol, relative frequency scale 
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Figure 4 Histogram of serum cholesterol for the distribution of Figure 2, frequency 
density scale  
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Figure 5.  Histogram of systolic blood pressure in 92 healthy controls, frequency scale 
(data of Markus et al., 1995) 
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Figure 6.  Histogram of systolic blood pressure with wider intervals, frequency scale 
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Another way to draw the histogram is to use frequency density.  Figure 4 shows the 
frequency distribution from Figure 2 using the frequency density scale.  Instead of 
showing the frequency in the interval, we show the frequency per mmol/L of serum 
cholesterol.  In other words, we show the number of observations per unit of the 
variable.  The frequency density is the frequency divided by the width of the interval.  
In Figures 2 and 4, the intervals have width 0.5, so the frequency densities are twice 
the size of the frequencies and the vertical scale in Figure 4 goes correspondingly 
higher.  This means the frequency for an interval is found by multiplying the 
frequency density by the width of the interval.  This means that the frequency 
between two serum cholesterol values is represented by area under the histogram 
between those values.  For the interval 3.75 to 4.25- mmol/L, the frequency density is 
4 observations per mmol/L.  The width of the interval is 0.5 mmol/L, so the frequency 
is 4 × 0.5 = 2, as can be confirmed from Table 4.  If we plot the relative frequency 
density, the proportion of observations per unit of the variable, the total area under the 
histogram is 1.0. 

Why on earth should we want to go to the trouble of frequency density?  The reason is 
that it enables us to have intervals of different sizes.  For example, Figure 5 shows a 
histogram for the systolic blood pressures of a group of normal healthy people, a 
control group to whom the stroke patients in Table 4 were compared (Markus et al., 
1995).  The distribution is quite bumpy and the structure may be easier to see if we 
use a wider interval (Figure 6).  Histograms tend to be less smooth where there are 
only small numbers of observations, and we could smooth things a bit more if we 
were to combine the intervals at the extremes to form larger intervals.  For Figure 6, 
we might want to combine the three intervals between 200 and 260 mmol/L.  If we do 
this on the frequency scale, we get a rather misleading picture, as Figure 7 shows.  
The frequency between 200 and 260 is correctly shown as 2, but the wide interval 
makes it appear that observations are more frequent in this area than they really are.  
If we use the frequency density, 2/60 = 0.033 observations per mm Hg, as shown in 
Figure 8, we get a less biased view and the picture is no longer misleading.  The 
frequency density scale gives a fair representation of the shape of the distribution 
when intervals have different widths. 

When people had to draw their histograms on graph paper with pencil and ruler, it 
was often quicker to combine intervals with small and zero frequencies in this way, as 
well as being more aesthetically pleasing.  Since computers have been easily available 
to draw histograms many more have been drawn but far less time is taken over them 
and equal intervals are almost always used.  Indeed, many statistical programs do not 
have any facility for defining unequal intervals in a histogram.  I don’t know of any 
commercial software which does this.   

Sometimes we use a variation of the histogram, where we show the distribution as a 
line graph.  We join the tops of the bars in the histogram, as shown in Figure 9, to 
make a frequency polygon.  This is good for showing more than one distribution on 
the same axes.  Figure 10 shows the serum cholesterol for the stroke patients and for 
the healthy controls.  Not surprisingly, the stroke patients tend to have higher serum 
cholesterols, as raised serum cholesterol is a well-known risk factor for cardiovascular 
disease.  The graph is quite informative, as it shows us that the stroke patients were 
also more variable and that some had cholesterol values as low as the lowest for the 
controls. 
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Figure 7.  Misleading histogram of systolic blood pressure, frequency scale, showing 
three interval combined to a single, wider interval  
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Figure 8.  Histogram of systolic blood pressure, frequency density scale, showing 
three intervals combined to a single, wider interval 

0
5

10
15

20
25

R
el

at
iv

e 
fre

qu
en

cy

2 3 4 5 6 7 8 9 10 11 12
Serum cholesterol (mmol/L)

 
Figure 9.  Histogram of serum cholesterol for stroke cases with frequency polygon 
superimposed 
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Figure 10.  Frequency polygons showing the distribution of serum cholesterol for 
stroke cases and for healthy controls. 
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Figure 11.  Histogram for a discrete variable, number of episodes of venous ulcers 
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Figure 12.  The mode and tails of a distribution 
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When we draw a histogram for a discrete variable, such at the number of ulcer 
episodes shown in Table 3, we may separate the different values to remind ourselves 
and our readers that this is indeed a discrete variable and that intermediate values, 
such as 2.3 episodes, would be meaningless.  Figure 11 shows a histogram for the data 
of Table 3.  

Shapes of frequency distributions 

I have said that for a quantitative variable it is the shape of the distribution which is 
important.  To describe this, we highlight two aspects of the distribution: the mode 
and the tails.  The mode is the most frequently occurring value in the distribution.  
For Table 3 it is easy to see that the mode is one episode, which was reported for 145 
of the 375 subjects.  For continuous data the mode is more difficult to determine from 
a sample.  For the data of Table 4, the most frequently occurring cholesterol is 5.6, but 
there were 7 observations for the 86 subjects.  Rather than the modal observation, we 
think about the modal class, the interval in which the largest number of observations 
lie.  For Figure 1, this is the interval 5.0 to 6.0, which includes 24 observations.  The 
mode is in the middle of the distribution, where observations are usually frequent.  
The tails are the places are the extremes of the distribution, where observations are 
usually sparse.  Figure 12 shows the mode, i.e. the modal class, and the upper and 
lower tails of the distribution of serum cholesterol in stroke patients. 

The distributions shown in Figures 1, 6, and 11 each have one obvious mode.  We call 
a distribution with one mode unimodal.  Sometimes we have a distribution which has 
more than one mode.  For example, Figure 13 shows systolic blood pressure for a 
sample of subjects from a very different population to the normal subjects in Figure 6.  
These were patients on admission to an intensive therapy unit (Friedland et al., 1996).  
In the sample of normal subject, there was clear modal class at 120 to 140 mm Hg.  In 
Figure13, the frequency between 120 and 140 is very low and the peak is between 100 
and 120.  However, there is a second, lower peak between 160 and 180.  What is 
happening here is that we have a sample of very sick people, sick enough to need 
intensive care, but there are many different reasons for this need.  In fact, among these 
251 patients there were 77 different diagnostic categories.  In some cases their 
condition lowers blood pressure below normal, in others it raises it above normal.  
Relatively few have what we would regard as optimum systolic pressure. 

Although 100 to 120 mm Hg is the most frequent interval in Figure 13, and is 
therefore the mode as defined above, the second peak at 160 to 180 is called a second 
mode for the distribution.  We call this distribution shape bimodal.  Distributions 
with more than one mode are very unusual in healthcare data and when we see one we 
should suspect that there is more than one population mixed together.  We only regard 
the distribution as bimodal if there is a clear separation of the peaks, as in Figure 13.  
Irregular bumps as seen in Figures 4 and 5 do not qualify as separate modes.  Almost 
all the distributions we shall see are unimodal.  

Much more interesting than the number of modes are the sizes and shapes of the tails 
of the distribution, the parts of the histogram near the extremes.  Figure 14 shows the 
distribution heights of 222 women admitted to the VenUS I trial.  In this distribution 
the two tails are of very similar size and shape.  If the tail on the right is of similar 
length to the tail on the left, the distribution is said to be symmetrical.  The tails need 
only be approximately the same; the exact shape depends on our choice of starting 
point and interval size in any case. 
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Figure 13.  Systolic blood pressure in 251 patients admitted to an intensive therapy 
unit (data of Friedland et al., 1996) 
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Figure 14.  Heights of 222 women admitted to the VenUS I trial 
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Figure 15.  Gestational age at birth for 1749 babies (data of Brook et al., 1989) 
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If the tail on the right is longer than the tail on the left, as in the distributions shown in 
Figures 1, 6, and 11, the distribution is skew to the right or positively skew.  If the 
tail on the right is longer than the tail on the left, the distribution is skew to the left or 
negatively skew.  These names often bother people because they feel, very 
reasonably, that if most of the observations are on the left hand side the distribution 
should be called skew to the left.  However, the convention is that the direction of the 
skew is in the direction of the long tail and we are stuck with it.   

Negatively skew distributions are much less common than are positively skew 
distributions.  They do exist, however, and Figure 15 shows one: gestational age at 
birth.  This may be artificially skew, in that babies who would be born in the upper 
tail are delivered after obstetric intervention, for their own safety and that of their 
mothers.  Most medical data follow either a symmetrical or positively skew 
distribution.  The shape of the distribution is an important guide to the methods of 
analysis which we can use. 

Summarising data  
For qualitative data the frequency distribution can be presented as a convenient 
percentage or table of percentages, which usually have a straightforward 
interpretation.  There is nothing else to be done before we present or analyse them.  
For quantitative data, the frequency distribution is not a very handy thing and we 
cannot present our data in the form of page after page of histograms.  We shall now 
look at how we summarise the data to make them easier to interpret and analyse.  We 
do this by calculating summary numbers such as averages.  We call these summary 
statistics.  We use the word statistic is anything calculated from the data alone. 

In healthcare research, we are using our observations as a sample, which we hope will 
tell us something about a wider population.  The summary statistics we calculate, such 
as averages, are used to estimate the corresponding values for this wider population, 
the population from which our sample was drawn and which it represents.  For this 
reason our choice of what statistics to calculate is guided by whether they estimate the 
population value and how little they vary from sample to sample.  

Medians and quantiles 
The median is one of the simplest summary statistics to calculate.  The median is the 
central value of the distribution, such that half the observations are less than or equal 
to it and half are greater than or equal to it.  For example, consider the serum 
cholesterol measurements on a group of stroke patients shown in Table 4.  There are 
86 observations, so the middle of the distribution will be between the 43rd and 44th 
observations.  43 will be below this and 43 above.  The observations in Table 4 are 
arranged in ascending order in columns of 10, so it is easy to see where the 
observations numbered 43 and 44 are, in the fifth column.  They are 6.1 and 6.2 
mmol/L.  We regard the centre of the distribution as being midway between them: 
6.15 mmol/L.  If we have an odd number of observations, the median is the central 
value and is equal to an actual observation.  For an even number of observations, the 
median may not be an actual observation. 
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Figure 16.  Histogram of serum cholesterol among 86 stroke patients, showing 
position of the three quartiles. 
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Figure 17.  Histogram of heights of 222 women admitted to the VenUS I trial showing 
the 2.5 and 97.5 centiles 
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Figure 18.  Histogram of serum cholesterol in stroke patients, showing position of 
median and mean 
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Two other statistics which we use to summarise a distribution are the first and third 
quartiles.  The first quartile is the value which cuts off the lowest quarter of the 
distribution.  For 86 observations, one quarter of them is 86/4 = 21.5, so the first 
quartile will be midway between the 21st and 22nd observations.  These are 5.4 and 
5.4, so the first quartile is 5.4 mmol/L.  The third quartile has three quarters of the 
distribution below is and one quarter above, so is at the 86×3/4 = 64.5 observation.  
The 64th and 65th serum cholesterol measurements are 7.1 and 7.2, so the third 
quartile is 7.15 mmol/L.  There are actually three quartiles which divide the 
distribution into four equal parts.  The first quartile has one quarter of the 
observations below it, the third quartile has three quarters of the observations below 
it.  The second quartile must have two quarters, i.e. one half, of the observations 
below it.  The second quartile is the median.  Figure 16 shows the positions of the 
quartiles on the histogram. 

There are only three quartiles which divide the distribution into four parts, which we 
should call quarters.  These are often misleading called quartiles, too.  You will hear 
of ‘people in the top quartile’.  This usage is so common that the distinction between 
the dividing points and the sets of values is becoming lost. 

The quartiles are not the only way we can divide up the distribution.  We often divide 
the distribution into 100 equal parts at the centiles or percentiles.  We talk of the 
point which cuts of 20% of the observations as the 20 centile or 20th percentile.  
There are only 99 centiles and there is no 100th centile.  This would be above all the 
observations (100%) and we usually have no idea where this would be.  The median is 
thus the 50th centile, the first quartile is the 25th centile, and the third quartile is the 
75th centile.  The centile number does not have to be an integer.  We often talk about 
the 2.5th centile, for example.  This means the value below which we estimate 2.5% 
of subjects to lie.  This does not mean much for the cholesterol data, because there are 
only 86 observations, but it does for the heights of women in the VenUS I trial, of 
whom there were 222.  2.5% of this is 222×2.5/100 = 5.55, so we need the 5th and 6th 
observations.  These were 147.32 and 149.86 cm, the odd values being because these 
were converted from inches.  The 2.5 centile will be approximately the midway point 
between these, which is 148.6 cm.  In the same way, the 97.5 centile will be between 
the 216th and 217th observations, which were both 177.8 cm, so this is the centile.  
Figure 17 shows these centiles marked on a histogram.  Between them lie 95% of the 
observations. 

We sometimes use tertiles, which divide the distribution into three equal parts and 
quintiles which divide the distribution into five equal parts.  There are, of course, two 
tertiles and four quintiles.  We call all of these division points quantiles, defined as 
values which divide the distribution such that there is a given proportion of 
observations below the quantile. 

The mean 
The median is one way to identify the middle of a distribution, but it is not the only 
one.  More often, we use the arithmetic mean or average, usually referred to simply 
as the mean.  This is found by taking the sum of the observations and dividing by 
their number.  For the cholesterol data, the sum is 545.3 mmol/L.  Dividing by the 
number of observations, 86, gives the mean, 6.34 mmol/L.   
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The mean  and median are both summary statistics which give a numerical value to 
the middle of the distribution.  They are called measures of central tendency.  There 
are many others which can be devised, but only one is much used in healthcare 
research.  This is the geometric mean.  We shall meet it in the lecture on 
transformations. 

The sample mean has two advantages over the median as a measure of the middle of 
the distribution.  First, the mean uses all the data equally, that is, each observation 
carries equal weight in its calculation.  For the median, observations at the extremes 
have very little effect on the median and can be changed quite a lot without the 
median being changed.  This means that the mean uses the information more 
efficiently than the median and so it varies less from sample to sample than does the 
median.  We shall look at this again in the lecture on estimation.  Second, the mean 
has much more convenient mathematical properties which makes it much easier to 
compare the means of different groups than it is to compare the medians of different 
groups.  On the other hand, the lack of effect of extreme observations on the median 
make it preferable to mean sometimes as a summary statistic to describe data, 
especially when there are extreme observations.  The median is a very useful 
descriptive statistic, but not much used for other purposes. 

The mean for the cholesterol data, which have a positively skew distribution, was 6.34 
mmol/L.  Compare this with the sample median, 6.15 mmol/L.  They are not the 
same, the mean being slightly larger.  However, for the 222 heights, which have a 
symmetrical distribution, the mean is 162.2 cm and the median 162.6 cm, differing 
only in the fourth figure.  In general, If the distribution is symmetrical the sample 
mean and median will be about the same.  Indeed, if the distribution were exactly 
symmetrical, for every observation above the median there would be an observation 
below the median the same distance from it.  The average of the pair would be the 
median, and so the average for all the pairs of observations would be the median also.   

In a skew distribution the mean and the median will usually be different. If the 
distribution is skew to the right, as for serum cholesterol, the mean will usually be 
greater, if it is skew to the left the median will usually be greater.  This is because the 
values in the tails affect the mean but not the median.  Figure 18 shows the cholesterol 
data  with the positions of mean and median on the histogram.  If we were to change 
the data by increasing the largest observation this would pull the mean higher, but it 
would not affect the median.  Hence if the distribution is very skew to the right, we 
would expect the mean to exceed the median.  For the very skew distribution of 
number of previous episodes of venous ulcer (Figure11) the median is 2 episodes 
(easily seen from Table 3) and mean is 3.8 episodes.  If the distribution is negatively 
skew, with the long tail on the left, the median is usually greater than the mean.   

You will often seen it said that the median is always less than the mean for a 
positively skew distribution and greater for a negatively skew distribution.  This is not 
true, but it is usually the case for the distributions encountered in healthcare research.  
What we can say is that a substantial difference between the median and mean is an 
indicator that there is skewness present. 

Measuring variability using ranges 
The mean and median are measures of the central tendency or position of the middle 
of the distribution.  We shall also need a measure of the spread, dispersion or 
variability of the distribution.  How much do our subjects differ from one another? 
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An obvious measure of variability is the range, the difference between the highest 
and lowest values.  This is a useful descriptive measure, but has two disadvantages.  
First, it depends only on the extreme values and so can vary a lot from sample to 
sample.  Second, it depends on the sample size.  The larger the sample is, the further 
apart the extremes are likely to be.  No matter how big the biggest member of the 
sample is, sooner or later we will find a bigger one, and no matter how small the 
smallest is, sooner or later we will find a smaller one.  For these reasons, we never use 
the range, although as a descriptive statistic we often quote the minimum and 
maximum values.  For example, for the serum cholesterol measurements in stroke 
patients the minimum is 3.7 and the maximum is 10.4 mmol/L.  This would usually 
be quoted as ‘Range (3.7 to 10.4)’ or ‘(3.7 - 10.4)’.  Dashes can be confused with 
minus signs, so I usually prefer ‘to’.  Ranges are often used in the presentation of 
baseline descriptive data of subjects recruited to a study.   

We can get round some of the problems of the range by using the interquartile range 
or IQR, the difference between the first and third quartiles.  For the cholesterol, as we 
have seen, the first and third quartiles are 5.4 and 7.15 mmol/L, so the interquartile 
range is 7.15 – 5.4 = 1.75 mmol/L.  As with the range, this is almost always used 
purely as a descriptive statistic and quoted as ‘IQR (5.4 to 7.15)’ rather than as the 
actual difference.  It is a useful descriptive measure, but very difficult to use for any 
further statistical calculations.  Another range often calculated is the range between 
the 2.5 centile and the 97.5 centile.  This will include the central 95% of the 
observations and we call it a 95% range.  It is not used often as a descriptive statistic, 
because we need quite a large sample to calculate it.  For the height data, we had 222 
women and can calculate this directly as 148.6 to 177.8 cm, as described in the 
discussion of centiles above.  We see below how we can estimate this more reliably 
from the mean and standard deviation, even using quite small samples. 

If the mean or the median is near to one end of the range or interquartile range, this 
tells us that the distribution must be skew.  If the mean or median is near the lower 
limit it will be positively skew, if near the upper limit it will be negatively skew. 

Measuring variability using variance 
For use in the analysis of data, range and IQR are not satisfactory.  Instead we use two 
other measures of variability: variance and standard deviation.  These both measure 
how far observations are from the mean of the distribution. 
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Figure 19.  Histogram of female height showing position of mean and mean ± 2 
standard deviations 
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Figure 20.  Histogram of serum cholesterol in stroke patients showing position of 
mean and mean ± 2 standard deviations 
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Figure 21.  Histogram of duration of venous ulcer showing position of mean and 
mean ± 2 standard deviations 
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If we subtract the mean from each observation, we a new set of numbers which we 
call the deviations from the mean.  If many of these are large then the observations 
will be very variable, if most of them are small then the observations will have little 
variability.  We might think that the average of these deviations would be a good 
measure, but it is not.  Some of the observations will be greater than the mean and 
will have positive deviations, some will be less than the mean and will have negative 
deviations.  When we add them all together, we get exactly zero, whatever the data 
are like.  We could just ignore the signs and take them all as positive (what we call the 
absolute values) but this leads to mathematical difficulties and turns out not to be 
very helpful for statistical analysis.  Instead, we get rid of the signs in a different way: 
we square the deviations.  Now we can add the squared deviations and get a positive 
number which we call the sum of squares about the mean.  We often abbreviate this 
to sum of squares.  The sum of squares about the mean will be big for highly variable 
data and small for data with little variability.  It also has mathematical properties 
which are much more convenient for statistical analysis.   

This sum of squares about the mean will clearly also depend on the sample size and 
we want an average, not the a sum.  We would like to divide by the number of 
observations.  This is where we hit a snag.  If we have only one observation, we 
cannot do this.  The mean is equal to the lone observation and the difference is zero.  
The average deviation from the mean will always be zero for a single observation.  
We need at least two observations to estimate variability.  This is fairly obvious, but it 
points up a difficulty.  The sum of squares about the sample mean cannot be 
proportional to the sample size, because at sample size = one the sum of squares is 
always zero.  In fact, the sum of the squared differences from the mean is proportional 
to the number of observations minus one, not the number of observations.  (Bland, 
2000, goes into some detail about why this is.)  We therefore estimate the variance as 
the average squared difference from the mean, the sum of squares about the mean 
divided by the number of observations minus one.  We call the number of 
observations minus one the degrees of freedom for the variance.  The sample 
variance is estimated as the sum of the squared differences from the mean divided by 
the degrees of freedom. 

For the height data the variance is 49.7 square cm.  It is in square cm because to get it 
we subtracted the mean (cm) from the height (cm) to give the deviation (cm).  We 
squared these to give square cm and summed them to get the sum of squares (square 
cm).  We divided by a pure number, the degrees of freedom, which has no units, so 
we finished with a variance in square cm.   

Measuring variability using standard deviation 
The variance is based on the squares of the observations and so is in squared units.  
This makes it difficult to interpret.  If the variance of height = 49.7 square cm is 
difficult, how much more so is the variance of the serum cholesterol, which is 1.96 
square millimoles per square litre, whatever they may be.  For the number of episodes 
of venous ulceration, the variance is 42.3 square episodes, an even more bizarre 
concept. 

If we take the square root of the variance, this will then have the same units as the 
original observations.  The square root of something in square cm is in cm, the square 
root of square millimoles per square litre is in mmol/L.  The square root of the 
variance is called the standard deviation or SD, usually denoted by s.  For the 
heights it is �49.7 = 7.1 cm.  For the serum cholesterol the standard deviation is �1.96 



20 

= 1.40 mmol/L.  For the episodes of ulceration the standard deviation is �42.3 = 6.5 
episodes. 

The standard deviation is quite a good descriptive statistic.  For most distributions the 
majority of observations (usually about 2/3) fall within one SD of mean.  Almost all 
fall within about two SD of mean (usually about 95%).  For example, Figure 19 
shows the heights of women in the VenUS I trial with the positions of the mean, the 
mean plus or minus one standard deviation, and the mean plus or minus one standard 
deviation marks.  We can see that about two thirds of the observations lie within one 
standard deviation on either side of the mean.  In fact, 65% of the heights lie between 
these limits.  Most of the heights appear in Figure 19 to fall within two standard 
deviations of the mean, in fact it is 94% in this sample.  The mean minus two standard 
deviations is 148.1 cm, which is very close to the 2.5 centile, 148.6 cm.  Similarly, the 
mean plus two standard deviations is 176.3 cm, very close to the 97.5 centile, which is 
177.8 cm. 

Figure 20 shows the same thing for the serum cholesterol.  The picture is quite 
similar.  Of the 86 observations, 4 = 5% are outside two standard deviations from the 
mean, though all four of them are above the upper limit.  58% are within one standard 
deviation of the mean.  This is typical of a positively skew distribution, that about 
95% of observations are within two standard deviations from the mean, but the 5% 
outside the limits tend to be at the high end.  Figure 21 shows a much more positively 
skew distribution, for the duration of venous leg ulcers prior to admission to the 
VenUS I trial.  Here the standard deviation, 14.0 months, is actually bigger than the 
mean, 9.4 months.  The mean minus one standard deviation is therefore a negative 
number and no observations can be below it.  The 87% observations within one 
standard deviation from the mean therefore include the smallest.  There are 7% of 
observations more than two standard deviations above the mean and 93% within the 
limits.  We can use this as a handy check for skewness in a published paper.  If the 
variable must be positive, like most measurements, and the mean is less than two 
standard deviations, then the distribution must be positively skew.  Otherwise, we 
would expect 2½% of the observations to be negative.  (These rules of thumb for 
skewness only work one way, e.g. the mean may exceed two standard deviations and 
the distribution may still be positively skew, as for the serum cholesterol data.) 

Finally, Figure 22 shows the same thing for the negatively skew gestational age.  This 
time the observations more than two standard deviations from the mean are nearly all 
small.  Only 2 out of 1749 observations are more that two standard deviations above 
the mean, with 62 below, making 64/1749 = 4% altogether.   

To sum up, the majority of observations (usually about two thirds) are expected to be 
within one standard deviation from the mean.  Almost all observations (usually about 
95%) are expected to be within about two standard deviations from the mean, but 
those outside may all be at one end. 

Variance and standard deviation use all the data equally, unlike ranges, and so use the 
data most efficiently.  This is why we use them as our first choice methods of 
measuring variability. 

 

Martin Bland 
7 April 2006 
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Figure 22.  Histogram of gestational age at birth showing position of mean and mean 
± 2 standard deviations 
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