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Transformations 
Summary 
Many statistical methods require the data to fit assumptions of Normal distribution 
and uniform variance.  When data do not fit these, one approach is to make them do 
so by a mathematical transformation.  The most frequently used are the square root, 
the logarithm, and the reciprocal.  These all reduce positive skewness and the extent 
to which variation increases with magnitude, the square root having the least effect 
and the reciprocal the greatest for each.  The logarithm is the most often used.  For a 
single, simple sample all will give us interpretable confidence intervals after 
transformations back to the original scale.  For comparisons of means, only the 
logarithm can do this.  Concentrations in blood are often analysed on the logarithmic 
scale, counts on the square root scale.  There are other transformations in use, but they 
are seen rarely in the health research literature.  Some data cannot be transformed 
satisfactorily and some, such as cost data, should not be.  If data cannot be 
transformed, there are other strategies available, which do not require assumptions of 
Normal distribution or uniform variance.  

1.  The need for transformations 
In Week 4 I described statistical methods in which we have to assume that data follow 
a Normal distribution with uniform variance.  Later we shall meet other methods, 
regression and correlation, which require similar assumptions to be made about the 
data.  Most analyses of continuous data in the health research literature are of this 
type.  We should always check these assumptions.  If the data meet the assumptions 
we can analyse the data as described.  If they are not met, we have two possible 
strategies: we can use a method which does not require these assumptions, such as a 
rank-based method, or we can transform the data mathematically to make them fit the 
assumptions more closely.  In this lecturer I describe the second approach.  Instead of 
analysing the data as observed, we carry out a mathematical transformation first.   

For example, Figure 1 shows serum cholesterol in stroke patients.  As we have noted 
before, this does not follow a Normal distribution closely.  This is shown by both the 
shape of the histogram and the Normal plot, in which the points should be close to the 
straight line.  Figure 2 shows the same plots for the logarithms of cholesterol 
measurements.  (See separate document Logarithms.)  The logarithm follows a 
Normal distribution more closely than do the cholesterol measurements themselves.  
We could analyse the logarithm of serum cholesterol using methods which required 
the data to follow a Normal distribution.  We call the logarithm of the cholesterol a 
logarithmic transformation of the data, or log transformation for short.  We call 
the data without any transformation the raw data. 

Even if a transformation does not produce a really good fit to the Normal distribution, 
it may still make the data much more amenable to analysis.  Figure 3 shows a 
histogram and Normal plot for the area of venous ulcer at recruitment to the VenUS I 
trial, with the same for the log transformed area.  The raw data have a very skew 
distribution and the small number of very large ulcers might lead to problems in 
analysis.  Although the log transformed data are still skew, the skewness is much less 
and the data much easier to analyse. 
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Figure 1.  Histogram with Normal distribution curve and Normal plot for serum 
cholesterol in 86 stroke patients (data of Markus et al., 1995)  

 
Figure 2.  Histogram with Normal distribution curve and Normal plot for log 
transformed serum cholesterol in 86 stroke patients   

 
Figure 3.  Histogram and Normal plot for area of venous ulcer at recruitment and log 
transformed ulcer area, VenUS I trial 
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Making a distribution more like the Normal is not the only reason for using a 
transformation.  Figure 4 shows prostate specific antigen (PSA) for three groups of 
prostate patients: with benign conditions, with prostatitis, and with prostate cancer.   
One very high value makes it very difficult to see the structure in the rest of the data, 
although, as we would expect, we can see that the cancer group have the highest PSA 
values.  A log transformation of the PSA gives a much clearer picture, shown in 
Figure 5.  The variability is now much more similar in the three groups.  Figure 6 
shows a histogram and Normal plot for the raw data and the log transformed data.  
This shows the distribution of the within-group residuals, the difference between 
observed values and the mean of the group.  The log transformation not only makes 
the variability more uniform but also makes the distribution closer to the Normal, thus 
meeting both assumptions: Normal distribution and uniform variance. 

If we want to use the transformation only to make the scatter diagram easier to see, 
we sometimes use a logarithmic scale rather than the actual logarithms of the data (see 
Logarithms).  Figure 7 shows this for the PSA data.  The picture looks like the scatter 
plot for the log transformed PSA in Figure 5, but the vertical scale shows the original 
units. 

The logarithm is not the only transformation used in the analysis of continuous data.  
Figure 8 shows arm lymphatic flow in patients with and without rheumatoid arthritis 
and oedema.  The distribution is positively skew and the variability is clearly greater 
in the groups with greater lymphatic activity.  A square root transformation has the 
effect of making the data less skew and making the variation more uniform.  In these 
data, a log transformation proved to have too great an effect, making the distribution 
negatively skew, and so the square root of the data was used in the analysis (Kiely et 
al., 1995). 

2.  Commonly used transformations for quantitative data 
There are three commonly used transformations for quantitative data: the logarithm, 
the square root, and the reciprocal.  (The reciprocal of a number is one divided by 
that number, hence the reciprocal of 2 is ½.)  There are good mathematical reasons for 
these choices, Bland (2000) discusses them.  They are based on the need to make 
variances uniform.  If we have several groups of subjects and calculate the mean and 
variance for each group, we can plot variability against mean.  We might have one of 
these situations: 

• Variability and mean are unrelated.  We do not usually have a problem and 
can treat the variances as uniform.  We do not need a transformation. 

• Variance is proportional to mean.  A square root transformation should 
remove the relationship between variability and mean. 

• Standard deviation is proportional to mean.  A logarithmic transformation 
should remove the relationship between variability and mean. 

• Standard deviation is proportional to the square of the mean.  A reciprocal 
transformation should remove the relationship between variability and mean. 

We call these transformations variance-stabilising, because their purpose is to make 
variances the same.  For most data encountered in healthcare research, the first or 
third situation applies.   
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Figure 4.  Prostate specific antigen (PSA) by prostate diagnosis (data of Cutting et al., 
1999) 

 
Figure 5.  Log transformed PSA by prostate diagnosis  

 
Figure 6.  Histograms and Normal plots for the within-group residuals for the raw 
PSA data and the log transformed PSA data   
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Figure 7.  PSA by prostate diagnosis, shown on  a logarithmic scale.  

 

 
Figure 8.  Arm lymphatic flow in rheumatoid arthritis with oedema (data of Kiely et 
al., 1995) 

 

Table 1.  Biceps skinfold thickness (mm) in two groups of patients 
       Crohn’s Disease           Coeliac Disease  
    ---------------------        ---------------  
    1.8   2.8   4.2   6.2         1.8   3.8  
    2.2   3.2   4.4   6.6         2.0   4.2   
    2.4   3.6   4.8   7.0         2.0   5.4   
    2.5   3.8   5.6  10.0         2.0   7.6   
    2.8   4.0   6.0  10.4         3.0 



6 

Variance-stabilising transformations also tend to make distributions Normal.  There is 
a mathematical reason for this, as for so much in statistics.  It can be shown that if we 
take several samples from the same population, the means and variances of these 
samples will be independent if and only if the distribution is Normal.  This means that 
uniform variance tends to go with a Normal Distribution.  A transformation which 
makes variance uniform will often also make data follow a Normal distribution and 
vice versa. 

There are many other transformations which could be used, but you see them very 
rarely.  We shall meet one other, the logistic transformation used for dichotomous 
data, in Week 7.  By far the most frequently used is the logarithm.  This is particularly 
useful for concentrations of substances in blood.  The reason for this is that blood is 
very dynamic, with reactions happening continuously.  Many of the substances we 
measure are part of a metabolic chain, both being synthesised and metabolised to 
something else.  The rates at which these reactions happen depends on the amounts of 
other substances in the blood and the consequence is that the various factors which 
determine the concentration of the substance are multiplied together.  Multiplying and 
dividing tends to produce skew distributions.  If we take the logarithm of several 
numbers multiplied together we get the sum of their logarithms.  So log 
transformation produces something where the various influences are added together 
and addition tends to produce a Normal distribution. The square root is best for fairly 
weak relationships between variability and magnitude, i.e. variance proportional to 
mean or standard deviation proportional to the square root of the mean.  The 
logarithm is next, for standard deviation proportional to the mean, and the reciprocal 
is best for very strong relationships, where the standard deviation is proportional to 
the square of the mean.  In the same way, the square root removes the least amount of 
skewness and reciprocal the most.   

The square root can be used for variables which are greater than or equal to zero, the 
log and the reciprocal can only be used for variables which are strictly greater than 
zero, because neither the logarithm nor the reciprocal of zero are defined.  We shall 
look at what to do with zero observations in Section 6.   

Which transformation should we use for what kind of data?  For physical body 
measurements, like limb length or peak expiratory flow, we often need use only the 
raw data.  For concentrations measured in blood or urine, we usually try the log first, 
then if this is insufficient try the reciprocal.  For counts, the square root is usually the 
first thing to try.  There are methods to determine which transformation will best fit 
the data, but trial and error, with scatter plots, histograms and Normal plots to check 
the shape of the distribution and relationship between variability and magnitude, are 
usually much quicker because the computer can produce them almost instantaneously. 

3.  Are transformations cheating? 
At about this point, someone will ask ‘Aren’t transformations cheating?’.  Data 
transformation would be cheating if we tried several different transformations until 
we found the one which gave the result we wanted, just as it would be if we tried 
several different tests of significance and chose the one which gave the result nearest 
to what we wanted, or compared treatment groups in a clinical trial using different 
outcome variables until we found one which gave a significant difference.  Such 
approaches are cheating because the P values and confidence intervals we get are 
wrong.  However, it is not cheating if we decide on the analysis we want to use before 
we see its result and then stick to it.   
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It should be remembered that the linear scale is not the only scale which we use for 
measurements.  Some variables are always measured on a log scale.  Well-known 
examples are the decibel scale for measuring sound intensity and the Richter scale for 
measuring earthquakes.  The reason we use logarithmic scales for these is that the 
range of energy involved is huge and a difference which is easily perceived at low 
levels would not be noticed at high.  If you are sitting in a library and someone said 
‘Hello’ to you, you would certainly notice it, but if you were standing next to a jumbo 
jet preparing for take-off or in a disco you would not.  Many healthcare professionals 
see several measurements of acidity every working day, but they do worry about pH 
being a logarithmic scale, and a logarithm with its minus sign removed at that.  It is 
simply the most convenient scale on which to measure. 

Should we measure the power of spectacle lenses by focal length or in dioptres?  We 
use dioptres in ophthalmology, which is the reciprocal transformation of the focal 
length in metres.  Concentrations are measured in units of solute in contained in one 
unit of solvent, but this is an arbitrary choice.  We could measure in units of solvent 
required to contain one unit of solute � the reciprocal.  Similarly, we measure car 
speed in miles or kilometres per hour, but we could just as easily use the number of 
hours or minutes required to go one mile.  We measure fuel consumption like this, in 
miles per gallon or kilometres per litre rather than gallons per mile or litres per 
kilometre.   

We often choose scales of measurement for convenience, but they are just that, 
choices.  There is often no overwhelming reason to use one scale rather than another.  
In the same way, when we use a transformation, we are choosing the scale for ease of 
statistical analysis, not to get the answer we want. 

4.  Transformations for a single sample 
As we have seen, for the serum cholesterol in stroke patients data, the log 
transformation gives a good fit to the Normal.  What happens if we analyse the 
logarithm of serum cholesterol then try to transform back to the natural scale? 

For the raw data, serum cholesterol: mean = 6.34, SD = 1.40.  

For log (base e) serum cholesterol: mean = 1.82, SD = 0.22. 

If we take the mean on the transformed scale and back-transform by taking the 
antilog, we get exp(1.82) = 6.17.  This is less than the mean for the raw data.  The 
antilog of the mean log is not the same as the untransformed arithmetic mean. 

In fact, it is the geometric mean, which is found by multiplying all the observations 
and taking the n’th root.  (It is called geometric because if we have just two numbers 
we could draw a rectangle with those two numbers as the lengths of the long and short 
sides.  The geometric mean is the side of a square which has the same area as this 
rectangle.)  Now, if we add the logs of two numbers we get the log of their product.  
Thus when we add the logs of a sample of observations together we get the log of 
their product.  If we multiply the log of a number by a second number, we get the log 
of the first raised to the power of the second.  So if we divide the log by n, we get the 
log of the n’th root.  Thus the mean of the logs is the log of the geometric mean. 

What about the units for the geometric mean?  If cholesterol is measured in mmol/L, 
the log of a single observation is the log of a measurement in mmol/L.  The sum of n 
logs is the log of the product of n measurements in mmol/L and is the log of a 
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measurement in mmol/L to the power n.  The n’th root is thus again the log of a 
number in mmol/L and the antilog is back in the original units, mmol/L. 

The antilog of the standard deviation is not measured in mmol/L.  To find a standard 
deviation, we calculate the differences between each observation and the mean, 
square and add.  On the log scale, we take the difference between each log 
transformed observation and subtract the log geometric mean.  We have the difference 
between the log of two numbers each measured in mmol/L, giving the log of their 
ratio, which is the log of a dimensionless pure number.  We cannot transform the 
standard deviation back to the original scale. 

If we want to use the standard deviation, it is easiest to do all calculations on the 
transformed scale and transform back, if necessary, at the end.  For example, to 
estimate the 95% confidence interval for the geometric mean, we find the confidence 
interval on the transformed scale.  On the log scale the mean is 1.8235 with standard 
error of 0.0235.  This standard error is calculated from the standard deviation, which 
is a pure number without dimensions, and the sample size, which is also a pure 
number.  It, too, is a pure number without dimensions.  The 95% confidence interval 
for the mean is  

1.8235 – 1.96 × 0.0235 to 1.8235 + 1.96 × 0.0235 = 1.777 to 1.870.   

If we antilog these limits we get 5.91 to 6.49.  To get the confidence limits we took 
the log of something in mmol/L, the mean, and added or subtracted the log of a pure 
number, the standard error multiplied by 1.96.  On the natural scale we have taken 
something in mmol/L and multiplied or divided by a pure number.  We therefore we 
still have something in mmol/L.  The 95% confidence interval for the geometric mean 
is therefore 5.91 to 6.49 mmol/L. 

For the arithmetic mean, using the raw, untransformed data we get 6.04 to 6.64 
mmol/L.  This interval is slightly wider than for the geometric mean.  In highly skew 
distributions, unlike serum cholesterol, the extreme observations have a large 
influence on the arithmetic mean, making it more prone to sampling error and the 
confidence interval for the arithmetic mean is usually quite a lot wider. 

In the same way we can estimate centiles on the transformed scale and then 
transformed back.  In the a Normal distribution the central 95% of observations are 
within 1.96 standard deviations from the mean.  For log serum cholesterol, this is 
1.396 to 2.251.  The antilog is 4.04 to 9.50 mmol/L.   

We can do this for square root transformed and reciprocal transformed data, too.  If 
we do all the calculations on the transformed scale and transform back only at the end, 
we will be back in the original units.  The mean calculated in this way using a 
reciprocal transformations also has a special name, the harmonic mean.   

5.  Transformations when comparing two groups 
Table 1 shows measurements of biceps skinfold thickness compared for two groups of 
patients, with Crohn’s disease and Coeliac disease.  We ask whether there is any 
difference in skinfold between patients with these diagnoses and what it might be. 
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Figure 9.  Untransformed biceps skinfold thickness for Crohn’s disease and Coeliac 
disease patients, with histogram and Normal plot of residuals 

 
Figure 10.  Square root transformed biceps skinfold thickness 

 
Figure 11.  Log transformed biceps skinfold thickness 
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Figure 12.  Reciprocal transformed biceps skinfold thickness 

 

Table 2.  Comparison of mean biceps skinfold between Crohn’s disease and Coeliac 
disease patients using different transformations 
Transform-    Two sample   95% confidence     Variance  
ation         t test,      interval           ratio 
              27 d.f.      for difference     larger/ 
               t    P      on transformed     smaller 
                           scale  

None          1.28 0.21    -0.71mm to 3.07mm   1.52  
Square root   1.38 0.18    -0.140 to 0.714     1.16  
Logarithm     1.48 0.15    -0.114 to 0.706     1.10 
Reciprocal   -1.65 0.11    -0.203 to 0.022     1.63 
 
 

Table 3.  C-reactive protein (CRP) (mg/L) before and after debridement of wounds 
using larval therapy (Steenmoorle and Julena, 2004) 
CRP before larvae CRP after larvae CRP difference, 

after minus before 
CRP average of 
before and after 

    3     2     –1     2.5 
    5     9       4     7.0 
  16   36     20   26.0 
  17     5   –12   11.0 
  26 218   192 122.0 
  29 193   164 111.0 
  29   24     –5   26.5 
  30     6   –24   18.0 
  32   77     45   54.5 
  47     0   –47   23.5 
  61   19   –42   40.0 
  87   42   –45   64.5 
123   26   –97   74.5 
124   68   –56   96.0 
163   59 –104 111.0 
227   26 –201 126.5 
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Figure 9 shows the distribution of biceps skinfold.  This is clearly positively skew.  
Figure 10 shows the same data after square root transformation.  This is still skew, 
though less so than the untransformed data.  Figure 11 shows the effect of a log 
transformation.  The distribution is now more symmetrical and the Normal plot is 
closer to a straight line.  Figure 12 shows the effect of a reciprocal transformation, 
which looks fairly similar to the log.  Any of the transformations would be an 
improvement on the raw data. 

Table 2 shows the result of a two sample t test and confidence interval for the raw 
data and the transformations.  The transformed data clearly gives a better test of 
significance than the raw data, in that the P values are smaller.   

The confidence intervals for the transformed data are more difficult to interpret.  The 
confidence limits for the difference between means cannot be transformed back to the 
original scale.   

For the square root transformation, the lower limit is negative.  We can square this, 
which would give a positive number, and this will happen whatever the limits because 
all squares are positive.  Hence squaring the limits will not give a 95% confidence 
interval for the difference in biceps skinfold.  The confidence interval must include 
the null hypothesis value, which would be zero.  The same problem arises with the 
logarithmic transformation, all antilogs are positive.  For the reciprocal, we could 
transform back, but what would this mean?  The closer the limits are on the reciprocal 
scale, the further apart they will be on the natural scale.  The upper limit for the 
reciprocal is very small (0.022) with reciprocal 45.5.  The difference clearly could not 
be 45.5 mm, as all the observations are much smaller than this.  The null hypothesis 
value, zero on the reciprocal scale, transforms back to infinity!  A point to watch out 
for is that the square root and logarithm keep differences in the same direction as the 
raw data, the reciprocal reverses the direction.   

Confidence limits for the difference cannot be transformed back to the original scale.  
However, the logarithm does give interpretable results (0.89 to 2.03) but these are not 
limits for the difference in millimetres.  They do not contain zero yet the difference is 
not significant.  The back-transformed 95% confidence interval using the log 
transformation, 0.89 to 2.03, are the 95% confidence limits for the ratio of the Crohn’s 
disease mean to the Coeliac disease mean.  When we take the difference between the 
logarithms of the two geometric means, we get the logarithm of their ratio, not of their 
difference.  

Transformed data give us only a P value when comparing groups, unless we use the 
log, in which case we can get confidence intervals for ratios. 

6.  Transformations for paired data 
Table 3 shows C-reactive protein (CRP) (mg/L) before and after debridement of hard 
to heal wounds using larval therapy (Steenmoorle and Julena, 2004).  Wounds with 
large CRP showed much more variable CRP than did wounds with small CRP.  The 
data are shown graphically in Figure 13.  This is shown by the plot of difference 
against average; the differences clearly get larger as the magnitude of CRP increases.  
The Normal plot is not a particularly good fit, although there is no clear curve 
indicating skewness.  Rather, the curve is first convex and rises from below to above 
the straight line then drops below, indicating a long tail on the left, then concave and 
falls from above to below the line and then rises above, indicating a long tail on the 
right.  This distribution is symmetrical but with long tails in either direction. 
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Table 4.  Square root transformed C-reactive protein (CRP) (mg/L) before and after 
debridement of wounds  
�CRP before larvae �CRP after larvae �CRP difference, 

after minus before 

�3 = 1.73 �2 = 1.41  –0.32 
 �5 = 2.24 �9 = 3.00    0.76 

 �16 = 4.00 �36 = 6.00          2.00 
�17 = 4.12 �5 = 2.24  –1.88 

 �26 = 5.10 �218 = 14.76   9.66 
�29 = 5.39 �193 = 13.89   8.50 
�29 = 5.39 �24 = 4. 90 –0.49 
�30 = 5.48 �6 = 2.45  –3.03 
�32 = 5.66 �77 = 8.77    3.11 
�47 = 6.86 �0 = 0.00  –6.86 
�61 = 7.81 �19 = 4.36  –3.45 
�87 = 9.33 �42 = 6.48  –2.85 

�123 = 11.09 �26 = 5.10  –5.99 
�124 = 11.14 �68 = 8.25  –2.89 
�167 = 12.77 �59 = 7.68  –5.09 
�227 = 15.07 �26 = 5.10   –9.97  

 

 
Figure 13.  Difference against average and Normal plot for differences for CRP in 16 
patients with hard to heal wounds treated with larval therapy 
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Figure 14.  Difference against average and Normal plot for differences for square root 
transformed CRP  

 
Table 5.  Log plus one transformed C-reactive protein (CRP) (mg/L) before and after 
debridement of wounds  
Log (CRP +1) 
before larvae 

Log (CRP +1) after 
larvae 

Log (CRP +1)  
difference, after 
minus before 

1.386 1.099 –0.287 
1.792 2.303   0.511 
2.833 3.611   0.778 
2.890 1.792 –1.098 
3.296 5.389   2.093 
3.401 3.219 –0.182 
3.401 5.268   1.867 
3.434 1.946 –1.488 
3.497 4.357   0.860 
3.871 0.000 –3.871 
4.127 2.996 –1.131 
4.477 3.761 –0.716 
4.820 3.296 –1.524 
4.828 4.234 –0.594 
5.100 4.094 –1.006 
5.429 3.296 –2.133 
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We would like to transform the data to make them fit the assumptions required for the 
paired t method.  Differences are often negative, as several are here.  We cannot log 
or square root negative numbers.  Mathematically, there is nothing to stop us taking 
reciprocals, but the reciprocal has what we call a discontinuity at zero.  As we go 
towards zero from the positive end, we get larger and larger positive numbers and 
zero has no reciprocal, it is an infinitely large number.  As we go towards zero from 
the negative end, we get larger and larger negative numbers.  So at zero the reciprocal 
switches from an infinitely large negative number to an infinitely large positive 
number.  We cannot use any of these transformations for the differences.  Instead, we 
transform the original observations then calculate the differences from the 
transformed observations.   

Table 5 shows the square root transformed data.  A plot of difference against average 
is shown in Figure 14.  This is an improvement on Figure 13, but there is still some 
relationship apparent.   

CRP is a concentration in blood and so we might expect a log transformation to be the 
best bet.  Also, the conical shape of the difference against average plot suggests (to 
the experienced eye) that the standard deviation will be proportional to the mean.  
There is a problem, however.  We have a zero observation and zero has no logarithm.  
What we usually do is to add a small constant to everything.  This should be 
somewhere between zero and the smallest non-zero observation.  If there is no reason 
not to do so, we usually choose 1.0 for this constant.  Table 5 shows the transformed 
data and Figure 15 shows the scatter plot of difference against average and the 
Normal plot for the differences.  There is little to suggest a relationship between 
difference and magnitude, as the largest difference is for a subject with one of the 
smallest averages and the next largest is for a subject with one of the largest averages.  
In the Normal plot, the points lie much closer to the straight line than in Figure B.  
The transformed data appear to fit the assumptions needed for the paired t method 
much better than the raw data.   

If we apply the paired t method to Table 5, we get mean difference = –0.495, 95% CI 
= –1.299 to 0.308, P = 0.2.  How can we interpret this?  If we had used a simple log 
transformation, we could antilog to get exp(–0.495) = 0.61, and say that we estimate 
the mean CRP to fall to 61% of the pre-treatment value, with 95% CI 27% to 136%.  
Does our addition of 1.0 to everything before log transformation affect this?  The 
answer is: not much.  The antilog transformation which gives the ratio becomes 
approximate rather than exact, but the effect of adding one before logging is not great.  
We will illustrate this using the data of Table 3.   If we drop the zero observation, we 
have a sample with no zeros and we can log the data.  (This is purely to illustrate the 
properties of the transformation, we would not do this as a method of analysis.)  This 
gives a difference estimate = –0.291.  If we use the add one then log transformation 
for the same data, omitting the case with a zero, we get difference = –0.270.  If we 
take the antilogs of each of these we get exp(–0.291) = 0.75, exp(–0.270) = 0.76, so 
these are very similar.  After the add constant then log transformation, we can antilog 
the estimated difference and its confidence interval and still interpret these as 
estimates of the ratios of the original observations. 
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7.  Can all data be transformed? 
Not all data can be transformed successfully.  Sometimes we have very long tails at 
both ends of the distribution, which makes transformation by log, square root or 
reciprocal ineffective.  For example, Figure 16 shows the distribution of blood sodium 
in ITU patients.  This is fairly symmetrical, but has longer tails than a Normal 
distribution.  The shape of the Normal plot is first convex then concave, reflecting 
this, just like the differences for the raw CRP data in Figure B.  We can often ignore 
this departure from the Normal distribution, for example when using the two-sample t 
method, but not always.  If we were trying to estimate a 95% range, for example, we 
might not get a very reliable answer.   

Sometimes we have a bimodal distribution, which makes transformation by log, 
square root or reciprocal ineffective.  Figure 17 shows systolic blood pressure in a 
sample of ITU patients.  This is clearly bimodal.  The serpentine Normal plot reflects 
this.  None of the usual transformations will affect this and we would still have a 
bimodal distribution.  We should not ignore this departure from the Normal 
distribution.   

Sometimes we have a large number of identical observations, which will all transform 
to the same value whatever transformation we use.  These are often at one extreme of 
the distribution, usually at zero.  For example, Figure 18 shows the distribution of 
coronary artery calcium in a large group of patients.  More than half of these 
observations were equal at zero.  Any transformation would leave half the 
observations with the same value, at the extreme of the distribution.  It is impossible 
to transform these data to a Normal distribution. 

What can we do if we cannot transform data to a suitable form?  If the sample is large 
enough, we can ignore the distribution and use large sample z methods.  For small 
samples we can do the same, and hope that the effect of the departure from 
assumptions is to make confidence intervals too wide and P values too big, rather than 
the other way round.  This is usually the effect of skewness, but we should always be 
very cautious in drawing conclusions.  It is usually safer to use methods that do not 
require such assumptions.  These include the non-parametric methods, such as the 
Mann-Whitney U test and Wilcoxon matched-pairs test, which are beyond the scope 
of this course.  These methods will give us a valid significance test, but usually no 
confidence interval. 

Are there data which should not be transformed?  Sometimes we are interested in the 
data in the actual units only.  Cost data is a good example.  Costs of treatment usually 
have distributions which are highly skew to the right.  However, we need to estimate 
the difference in mean costs in pounds.  No other scale is of interest.  We should not 
transform such data.  We rely on large sample comparisons or on methods which do 
not involve any distributions.  Economists often use a group of methods which do not 
rely on any assumptions about distributions called bootstrap or resampling methods.   

8.  Pitfalls of transformations 
The most obvious pitfall is not using a transformation when one is indicated, but 
instead using methods requiring Normal assumptions on data which clearly do not 
meet them. 
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Figure 15.  Difference against average and Normal plot for differences for log plus 
one transformed CRP 

 
Figure 16.  Blood sodium in 221 ITU patients (data of Friedland et al., 1996) 
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Figure 17.  Systolic blood pressure in 250 ITU patients (data of Friedland et al., 1996) 

 
Figure 18.  Coronary artery calcium in 2217 subjects (Data of Sevrukov et al., 2005) 
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