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University of York Department of Health Sciences 

Measurement in Health and Disease 

Interpretation of Diagnostic Tests 
Diagnostic Tests 
One of the main purposes of making clinical measurements is to aid in diagnosis.  This may be to 
identify one of several possible diagnoses in a patient, or to find people with a particular disease in 
an apparently healthy population.  The latter is known as screening.  In either case the measurement 
provides us with a test, which we may be able to compare later with a true diagnosis.  The test may 
be based on a continuous variable and the disease indicated if it is above or below a given level, or 
it may be a qualitative observation such as carcinoma in situ cells on a cervical smear.  In either 
case we will call the test positive if it indicates the disease and negative if not, and the diagnosis 
positive if the disease is later confirmed, negative if not. 

How do we measure the effectiveness of the test?  Table 1 shows three artificial sets of test and 
diagnosis data.  We could take as an index of test effectiveness the proportion giving the true 
diagnosis from the test.  For Test 1 in the example it is 94%.  Now consider Test 2, which always 
gives a negative result.  Test 2 will never detect any cases of the disease.  We are now right for 
95% of the subjects!  However, the first test is useful, in that it detects some cases of the disease, 
and the second is not, so this is clearly a poor index.  We could use a coefficient of agreement, for 
example the number positive on both tests over the number positive on at least one test.  For Test 1 
this is 4/(4+5+1) = 0.4; for Test 2 it is 0/(0+0+5) = 0.  This is better, but still not good enough.  
Compare Test 3, which has the same coefficient of agreement as Test 1, 2/(2+0+3) = 0.4.  For 
Cohen’s kappa we get κ = 0.54, κ = 0.54, and κ = 0.56 for tests 1, 2, and 3 respectively.  However, 
Test 3 is not as good as Test 1 in one respect: it only detects 2 of the 5 disease positives, compared 
to 4.  On the other hand, it is a better test in another way: it does not diagnose as positive any 
disease negatives. 
 

Table 1.  Some artificial test and diagnosis data 

            Disease diagnosis 
Test 1     positive    negative      Total 
positive      4           5             9   
negative      1          90            91    
Total         5          95           100    
  
            Disease diagnosis  
Test 2     positive    negative      Total 
positive      0           0             0   
negative      5          95           100    
Total         5          95           100    
  
            Disease diagnosis  
Test 3     positive    negative      Total 
positive      2           0             2   
negative      3          95            98    
Total         5          95           100    
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Sensitivity and Specificity 
There is no one simple index which enables us to compare different tests in all the ways we would 
like.  This is because there are two things we need to measure: how good the test is at finding 
disease positives, i.e. those with the condition, and how good the test is at excluding disease 
negatives, i.e. those who do not have the condition.  The indices conventionally employed to do this 
are:  
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In other words, the sensitivity is a proportion of disease positives who are test positive, and the 
specificity is the proportion of disease negatives who are test negatives.  For our three tests these 
are: 

                          Sensitivity         Specificity  

      Test 1               0.80                   0.95  
      Test 2               0.00                   1.00   
      Test 3               0.40                   1.00 

Test 2, of course, misses all the disease positives and finds all the disease negatives, by saying all 
are negative.  The difference between Tests 1 and 3 is brought out by the greater sensitivity of 1 
and the greater specificity of 3.  We are comparing tests in two dimensions.  We can see that Test 3 
is better than Test 2, because its sensitivity is higher and specificity the same.  However, it is more 
difficult to see whether Test 3 is better than Test 1.  We must come to a judgement based on the 
relative importance of sensitivity and specificity in the particular case.  Sensitivity and specificity 
are often multiplied by 100 to give percentages. 

For a practical example, a remarkable number of alcoholics have evidence at X-ray of past rib 
fractures.  We asked whether this would be of any value in the detection of alcoholism in patients.  
Among 74 patients with alcoholic liver disease, 20 had evidence of at least one past fracture on 
chest X-ray and 11 had evidence of bilateral or multiple fractures.  In a control group of 181 
patients with non-alcoholic liver disease or gastro-intestinal disorders, 6 had evidence of at least 
one fracture and 2 of bilateral or multiple fractures. 

For any fractures as a test for alcoholism, the sensitivity was 20/74 = 0.27, and the specificity  
(181-6)/181 = 0.97.  For bilateral or multiple fractures the sensitivity was 11/74 = 0.15 and the 
specificity was (181-2)/181 = 0.99.  Hence both tests were very specific; very few non-alcoholics 
would be indicated as alcoholics by them.  On the other hand, neither was very sensitive; many 
alcoholics would be missed.  As might be expected, the more stringent test of bilateral or multiple 
fractures was more specific and less sensitive than the test of any fracture. 

ROC curves 
Sometimes a test is based on a continuous variable.  For example, Table 2 shows measurements of 
creatinekinase (CK) in patients with unstable angina and acute myocardial infarction.  Figure 1 
shows a scatter plot.  We wish to detect patients with AMI among patients who may have either 
condition and this measurement is a potential test, AMI patients tending to have high values.  How 
do we choose the cut-off point? 
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Table 2.  Creatinekinase in patients with unstable angina  
and acute myocardial infarction (AMI) (data of Frances Boa)  

          Unstable angina                 AMI 
  23   48   62   83  104  130  307      90    648  
  33   49   63   84  105  139  351     196    894  
  36   52   63   85  105  150  360     302    962  
  37   52   65   86  107  155          311   1015  
  37   52   65   88  108  157          325   1143  
  41   53   66   88  109  162          335   1458  
  41   54   67   88  111  176          347   1955  
  41   57   71   89  114  180          349   2139  
  42   57   72   91  116  188          363   2200  
  42   58   72   94  118  198          377   3044  
  43   58   73   94  121  226          390   7590  
  45   58   73   95  121  232          398  11138  
  47   60   75   97  122  257          545         
  48   60   80  100  126  257          577         
  48   60   80  103  130  297          629         
 

 

Figure 1.  Scatter diagram and ROC curve for the data of Table 2, showing cut-off at 200 and 
corresponding sensitivity and specificity 
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The lowest CK in AMI patients is 90, so a cut-off below this will detect all AMI patients.  Using 
80, for example, we would detect all AMI patients, sensitivity = 1.00, but would also only have 
42% of angina patients below 80, so the specificity = 0.42.  We can alter the sensitivity and 
specificity by changing the cut-off point.  Raising the cut-off point will mean fewer cases will be 
detected and so the sensitivity will be decreased.  However, there will be fewer false positives, 
positives on test but who do not in fact have the disease, and the specificity will be increased.  For 
example, if CK ≥ 100 were the criterion for AMI, sensitivity would be 0.96 and specificity 0.62.  
There is a trade-off between sensitivity and specificity.  It can be helpful to plot sensitivity against 
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specificity to examine this trade-off. This is called a receiver operating characteristic or ROC 
curve.  (The name comes from telecommunications.)  We often plot sensitivity against one minus 
specificity, as in Figure 1.  We can see from Figure 1 that we can get both high sensitivity and high 
specificity if we choose the right cut-off.  With 1-specificity less than 0.1, i.e. sensitivity greater 
than 0.9, we can get sensitivity greater than 0.9 also.  In fact, a cut-off of 200 would give sensitivity 
= 0.93 and specificity = 0.91 in this sample.  These estimates will be biased, because we are 
estimating the cut-off and testing it in the same sample.  We should check the sensitivity and 
specificity of this cut-off in a different sample to be sure. 

The area under the ROC curve is often quoted (here it is 0.9753).  It estimates the probability that a 
member of one population chosen at random will exceed a member of the other population.  It can 
be useful in comparing different tests.  In this study another blood test gave us an area under the 
ROC curve = 0.9825, suggesting that the test may be slightly better than CK.   

Positive and Negative Predictive Value 
We can also estimate the probability that a subject who is test positive will also be a disease 
positive, called the positive predictive value or PPV.  This depends on the prevalence of the 
condition.  If our test and true diagnosis data are from a simple random sample of the population in 
which we are interested, we can estimate these as simple proportions.  If this is not the case, the 
usual situation, we can calculate the PPV for any population prevalence.  Denote the sensitivity by 
psens, the specificity by pspec, and the prevalence by pprev.  The probability of being both disease 
positive and test positive is pprev×psens and the probability of being disease negative and test positive 
is (1-pprev)×(1-pspec).  The total probability of being test positive is the sum of these: 
pprev×psens + (1-pprev)×(1-pspec).  The positive predictive value is the proportion of test positives 
who are disease positives: 
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In screening situations the prevalence is almost always small and the PPV is low.  Suppose we have 
a test which is both sensitive and specific, psens = 0.95 and pspec = 0.95, and the disease has 
prevalence pprev = 0.01 (1%).  Then  
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so only 16% of test positives would be disease positives. 

The probability that a subject who is test negative will not have the disease is the negative 
predictive value or NPV. 
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It is usually high. 

PPV and NPV are what we really want to know to interpret a test result, but they are properties of 
the test in a particular population, not just of the test. 

There are other statistics quoted for tests, such as the odds ratio and the likelihood ratio, but they 
are beyond the scope of this course. 

J. M. Bland 
May 2004. 


