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Inference about means 
Methods for inference about means 
Statistical inference is the process of drawing conclusions from data, for example by 
confidence intervals and significance tests.  In this lecture we shall look how we can 
draw conclusions from samples about the means of populations.   

We shall first look at large samples, and at how we can make inferences about a 
single mean, means in paired data, and the difference between the means of two 
samples.  For each of these we shall use a large sample Normal method or z method. 

We shall then look at the same problems for small samples.  For a single mean we 
shall describe the one sample t method, for paired data the paired t method, and for 
the means of two samples the two sample t method, also called the independent 
samples t method, or two group t method.  For t methods there are strong assumptions 
about the distribution of the observations.  I shall describe how we can use graphical 
methods to investigate these. 

We shall not discuss what to do if we have means of more than two samples.  The 
usual method for any size samples is one-way analysis of variance (anova), the 
assumptions of which are as for the two sample t method. 

The mean of a large sample 
We can find confidence intervals and carry out significance tests for the means of 
large samples using the Normal distribution.  We make use of two properties of large 
samples.  First, the means of large samples drawn in the same way will follow a 
Normal distribution quite closely, as described in Week 2.  Second, the standard 
deviation estimated from a large sample will be close to that for the whole population.  
This means that the standard error estimated from the sample will be a good estimate. 

We find confidence intervals for means of large samples using the Normal 
distribution.  We first estimate the standard error of the mean of the sample.  This is 
easy to do from the standard deviation of the observations, it is the standard deviation 
divided by the square root of the sample size.  Then the 95% confidence interval is the 
mean minus 1.96 standard errors to the mean plus 1.96 standard errors.   

For example, Figure 1 shows the distribution of birthweight in 1749 singleton 
pregnancies to Caucasian mothers in South London.  This is clearly negatively skew, 
unlike the distribution of birthweight for term births, which is approximately Normal.  
These birthweights have mean = 3296.0 g and standard deviation = 563.2 g.  The 
standard error of the mean is 13.5 g.  Because the sample is large, the mean 
birthweight will be from a Normal distribution with mean equal to the mean 
birthweight in the population and standard deviation very close to the estimated 
standard error of the mean, 13.5 g.  Hence the 95% confidence interval for the 
population mean birthweight will be 3296.0 – 1.96 × 13.5 g to 3296.0 + 1.96 × 13.5 g, 
which gives 3270 g to 3322 g.  Hence we estimate that the mean birthweight in this 
population to be between 3270 and 3322 g. 
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Figure 1.  Birthweights of 1749 singleton births to Caucasian mothers in South 
London (data of Brooke et al., 1989)  

 

Table 1.  Baseline depression score and fall after six weeks by treatment group for 
525 patients with depression (Christensen et al., 2004) 
     Baseline scores Fall in scores 

Number Mean SD   Mean SD 
BluePages   165  21.1 10.4   3.9 9.1 
MoodGYM   182  21.8 10.5   4.2 9.1 
Controls   178  21.6 11.1   1.0 8.4 
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Figure 2.  Student’s t distribution with 1, 4, and 20 degrees of freedom, with the 
Standard Normal distribution 
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The only assumptions we have to make about the data for this method are: 

• The observations are independent.  We should not have, for example, a group 
of 100 observations where there are 10 subjects with 10 observations on each.  

• The sample is large enough for the standard errors to be well estimated.  My 
rule of thumb is 100 for one group. 

Differences between means in paired large samples  
In healthcare research, we more often want to compare groups of subjects than use a 
single sample to estimate the mean in the population.  For example, Christensen et al. 
(2004) compared interventions for depression delivered using the internet.  They 
recruited 525 people with symptoms of depression identified in a survey.  These were 
They were randomly allocated to a website, BluePages, offering information about 
depression (n = 166) or a cognitive behaviour therapy website, MoodGYM, (n = 182), 
or a control intervention using an attention placebo (n = 178).  The main outcome 
measure was the Center for Epidemiologic Studies depression scale.  This consists of 
20 questions scored 0 (not depressed) to 3 (depressed) and summed, giving a score 
between 0 and 60.  The means and standard deviations of their depression scores 
before randomisation and of their falls in depression score are shown in Table 1.  All 
the subjects were depressed and so should have initial scores well above zero and the 
standard deviations are approximately half the mean, so we can deduce that the 
depression scores had a positively skew distribution.   

Ninety (17%) of subjects did not return post-intervention questionnaires and the 
authors assumed that their scores were unchanged.  This means that whatever the 
original distribution of the scores, the differences must have a large spike of at least 
90 observations at zero.  They could not have a Normal distribution.   

Because the three treatment groups are all fairly large samples, we can estimate a 
confidence interval for the mean fall for each of them.  For BluePages, 165 subjects 
had mean fall in depression score = 3.9 with standard deviation = 9.1.  The standard 
error of the mean is 0.71 and so the 95% confidence interval for the mean fall is 3.9 – 
1.96 × 0.71 to 3.9 + 1.96 × 0.71, which is 2.5 to 5.3 points on the depression scale.  
This is our interval estimate for the mean fall in depression score assuming non-
responders do not change.   

We can also test the null hypothesis that the mean change is zero against the 
alternative hypothesis that there is a change, in either direction.  Because the sample is 
large, the mean will be from a Normal distribution with standard deviation equal to 
the standard error of the mean, 0.71.  Hence the observed sample mean minus the 
unknown population mean then divided by the standard error will be an observation 
from the Standard Normal distribution.  The null hypothesis says that the population 
mean is zero, so if this is true then sample mean over standard error will be from a 
Standard Normal distribution.  For the BluePages group this is z = 3.9/0.71 = 5.49.  
The probability of getting such an extreme value from a Standard Normal distribution 
is very small indeed, 0.00000004.  We cannot trust the approximation to the Normal 
distribution will be close enough for such very small probabilities to be reliable, so we 
usually quote this as P<0.0001.  This is the large sample Normal test for a single 
mean, also called the z test for a single mean.  
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The assumptions required for this method are: 

• The observations are independent.   

• The sample is large enough.  My rule of thumb is 100 for one group. 

• The mean and standard deviation of differences are constant, i.e. not 
related to the size of the variable. 

We can check the last by plotting the difference against the average of the two 
measurements for the subject.  I shall describe this in detail later under paired t test. 

Comparing the means of two independent large samples  
We can also find a confidence interval for difference between the means of two 
independent samples.  For example, we shall compare the mean fall in score for 
BluePages with MoodGYM.  The difference between the means, BluePages minus 
MoodGYM, = –0.3.  We can find the standard error for the difference by squaring the 
standard error of each mean, adding, and taking the square root.  This only works 
when the groups are independent.  If we were to do it for paired data like the before 
and after measurements above, the standard error might be much too large.  For 
BluePages and MoodGYM, we have 

  

The 95% CI is then given by –0.3 – 1.96 × 0.98 to –0.3 + 1.96 × 0.98 = –2.2 to +1.6. 

We can also do a test of the null hypothesis that in the population the difference 
between the means is zero against the alternative hypothesis that the difference in the 
population is not zero.  As for the paired example above, because we have a large 
sample the observed difference minus the population difference then divided by the 
estimated standard error of the difference should be an observation from a Standard 
Normal distribution.  If the null hypothesis were true, the population difference would 
be zero.  The test statistic is observed difference divided by its standard error,  
z = –0.3/0.98 = –0.31.  The probability of an observation from the Standard Normal 
distribution being as far from its expected value, zero, as –0.31 is P=0.76.  Hence the 
difference is not significant.  We can tell this from the 95% confidence interval, also, 
as this includes zero, the null hypothesis value for the difference.  This is the large 
sample Normal distribution test or z test for the means of two independent groups. 

We can carry out the same calculations for the comparison of each active intervention 
with control.  For BluePages, the difference between mean falls is 3.9 – 1.0 = 2.9 and 
the standard error of the difference is 0.95.  Hence the 95% confidence interval is 2.9 
– 1.96 × 0.95 to 2.9 + 1.96 × 0.95 which gives 1.0 to 4.8.  The test of significance 
gives z = 2.9/0.95 = 3.05, P = 0.002.  For MoodGYM minus control the observed 
difference is 3.2 with standard error 0.92, the 95% confidence interval being 1.4 to 5.0 
and z = 3.48, P = 0.0005.   

If we want to test the overall null hypothesis that the three treatments would produce 
the same mean fall in the population, we could do this by applying the Bonferroni 
correction to these three P values.  Multiplying by 3 would give the smallest P value = 
0.0005 × 3 = 0.0015, which is still highly significant.  Christensen et al. (2004) did 
not do the analysis exactly as we have here.  They used an analysis of variance 
method, which I shall omit, to compare all three groups simultaneously.   

98.067.071.0 22 =+
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The large sample Normal method for comparing two means requires two assumptions 
about the data.   

• The observations and groups are independent.  We should not have links 
between observations in the two groups, such as a matched study where each 
subject in one group is matched, e.g. by age and sex, with a subject in the 
other group.   

• The samples are large enough for the standard errors to be well estimated and 
for the means to be observations from Normal distributions.  My rule of thumb 
is that for a single sample there should be at least 100 observations and for two 
samples at least 50 in each. 

Some computer programs do not do large sample z tests directly.  You have to use the 
command for a one sample or paired t test, or for a two-sample t test with unequal 
variances.  I describe these below.  For large samples, they give the same answers as 
the z tests. 

The t distribution 
When samples are small, we cannot apply the large sample Normal distribution 
methods safely.  This problem was tackled by a statistician who published under the 
pseudonym Student, because his employers would not allow him to publish the results 
of his work.  The probability distribution which he discovered is known as Student’s t 
distribution as a result and the methods which use it as Student’s t tests. 

We have seen that when the sample is large, the observed sample mean minus the 
population mean divided by the standard error follows the Standard Normal 
distribution.  When the sample is small this is not so.  The distribution followed 
depends on the distribution of the observations themselves, unlike the large sample 
case where this is irrelevant.  We have to assume that the data themselves come from 
a population which follows a Normal distribution.  We have seen that some naturally 
occurring variables do this and some do not.  We shall see in Week 5 that many 
variables which do not follow a Normal distribution can be made to do so by 
changing the way in which we look at them, using a transformation such as the 
logarithm.  When the observations come from a population which follows a Normal 
distribution, then the sample mean minus the population mean divided by the standard 
error of the mean follows Student’s t distribution, or simply the t distribution.  
Student’s t distribution may be defined as the distribution which this ratio would 
follow. 

Like the Normal distribution, Student’s t distribution is a family of distributions rather 
than just one.  This family has only has one parameter, the number which tells us with 
which member of the family of t distributions we are dealing.  This is called the 
degrees of freedom.  We have already used this term in the calculation of variances 
and standard deviations.  The degrees of freedom of the t distribution is equal to the 
degrees of freedom of the standard deviation used in the calculation of the standard 
error. 
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Table 2.  Two tailed probability points of the t Distribution 
            Probability                        Probability 
      0.10  0.05  0.01  0.001            0.10  0.05  0.01  0.001  
D.f. (10%)  (5%)  (1%)  (0.1%)     D.f. (10%)  (5%)  (1%) (0.1%) 
  1   6.31 12.70 63.66 636.62       16   1.75  2.12  2.92   4.02  
  2   2.92  4.30  9.93  31.60       17   1.74  2.11  2.90   3.97  
  3   2.35  3.18  5.84  12.92       18   1.73  2.10  2.88   3.92  
  4   2.13  2.78  4.60   8.61       19   1.73  2.09  2.86   3.88  
  5   2.02  2.57  4.03   6.87       20   1.73  2.09  2.85   3.85  
  6   1.94  2.45  3.71   5.96       21   1.72  2.08  2.83   3.82  
  7   1.90  2.36  3.50   5.41       22   1.72  2.07  2.82   3.79  
  8   1.86  2.31  3.36   5.04       23   1.71  2.07  2.81   3.77  
  9   1.83  2.26  3.25   4.78       24   1.71  2.06  2.80   3.75  
 10   1.81  2.23  3.17   4.59       25   1.71  2.06  2.79   3.73  
 11   1.80  2.20  3.11   4.44       30   1.70  2.04  2.75   3.65  
 12   1.78  2.18  3.06   4.32       40   1.68  2.02  2.70   3.55  
 13   1.77  2.16  3.01   4.22       60   1.67  2.00  2.66   3.46  
 14   1.76  2.15  2.98   4.14      120   1.66  1.98  2.62   3.37  
 15   1.75  2.13  2.95   4.07       �    1.65  1.96  2.58   3.29 
D.f. = Degrees of freedom  
� = infinity, same as the Standard Normal Distribution 

�

2.5% 2.5%

95%

-2.78 2.78

0

.1

.2

.3

.4

P
ro

ba
bi

lit
y 

de
ns

ity

-6 -4 -2 0 2 4 6
t with 4 degrees of freedom

 
Figure 3.  5% probability points of the t distribution with 4 degrees of freedom 
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Figure 4.  Histogram for the MAGS score before treatment, with Normal distribution 
of same mean and variance 
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Figure 2 shows some members of the Student’s t distribution family.  When the 
degrees of freedom are small, corresponding to small samples, the t distribution has 
much longer tails than the Normal.  This reflects the greater uncertainty in the 
standard error of the mean.  As the degrees of freedom and hence the related sample 
size gets bigger, the t distribution gets closer and closer to the Standard Normal 
distribution.  The t distribution reaches the Normal distribution in theory when the 
sample is infinitely large.  In practice, it is difficult to tell the Normal and t 
distributions apart at about 30 degrees of freedom. 

Like the Normal, the t distribution has no simple formulae for its probabilities.  
Instead we used numerical approximations to calculate the number which replaces 
1.96 in confidence interval calculations and the P values in significance tests.  If we 
do these calculations using one of the many computer programs available, the 
program will calculate these for us.  For the purposes of illustration, I shall also give a 
short table of the distribution for different degrees of freedom (Table 2).  For each of 
the degrees of freedom given, this gives the value which will be exceeded, in either 
positive or negative direction, with the given probability.  For example, Figure 3 
shows the 5% two sided probability points of the t distribution with 4 degrees of 
freedom. 

We can use Student’s t distribution to replace the Normal distribution in confidence 
interval and significance tests for small samples.  To do this we must be able to 
assume that the observations themselves come from a Normal distribution, plus other 
assumptions for different applications as described below. 

The one sample t method  
We can use the t distribution to carry out all the analyses of means of small samples 
which we did above using the Normal distribution for large samples.  We seldom 
want to estimate the mean of a population from the mean of a small sample, but we 
shall start with this as it is the easiest.   

For our example, we shall use data from nine patients with chronic non-healing 
wounds (Shukla et al., 2004).  Biopsies were assessed using the microscopic 
angiogenesis grading system (MAGS) score, which provides an index of how well 
small blood vessels are developing and hence of epithelial regeneration.  High scores 
are good.  The nine observations were 20, 31, 34, 39, 43, 45, 49, 51, and 63.   

We can use these measurements to estimate the mean MAGS score in non-healing 
patients.  The mean score before treatment is 41.7 and the standard deviation is 12.5 
with 8 degrees of freedom.  The standard error of the mean is 4.2.  If we had a large 
sample, we could estimate a 95% confidence interval for the mean by subtracting and 
adding 1.96 standard errors: 41.7 – 1.96×4.2 to 41.7 + 1.96×4.2.  But we have only 9 
observations, so this would not be valid.  Instead we use the t distribution with 8 
degrees of freedom.  From Table 2, the 5% point of the t distribution with 8 degrees 
of freedom is 2.31, so the confidence interval for the mean MAGS score is 41.7 – 
2.31×4.2 to 41.7 + 2.31×4.2 = 32.0 to 51.4.   

This is only valid provided we can assume the observations come from a Normal 
distribution.  We may know from our experience of the measurement that this variable 
usually follows a Normal distribution, but we always like to check that our sample is 
compatible.  I describe how to do this in the next section. 
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Table 3.  MAGS score before and after treatment with topical placental extract in 9 
patients with non-healing wounds (Shukla et al., 2004) 

MAGS score 
before 

MAGS score after Difference, MAGS 
before minus 
MAGS after 

Average of MAGS 
before and MAGS 
after 

20 32 12 26.0 
31 47 16 39.0 
34 43   9 38.5 
39 43   4 41.0 
43 55 12 49.0 
45 52   7 48.5 
49 61 12 55.0 
51 55   4 53.0 
63 71   8 67.0 
 

Checking the assumption of a Normal distribution 
When I introduced the Normal distribution, I showed histograms of several large 
samples and superimposed Normal distribution curves on them to show whether the 
Normal distribution fitted the data.  For small samples, it can be difficult to judge 
from a histogram whether the Normal distribution is a good fit.  Figure 4 shows a 
histogram for the MAGS score before treatment.  We cannot really say whether the 
distribution and the data have the same shape.   

There is a better graphical method to examine the fit of a Normal distribution to a set 
of data, the Normal quantile plot or Normal plot for short.  We shall not cover this in 
the IAPT course, but should you need to do statistical analysis, you can find details in 
my other statistics courses. 

The paired t method  
The paired t method is the version of the one sample t method usually seen in research 
publications.  Here we have paired observations, such as the same subject before and 
after an intervention, the same subject receiving two different interventions as in a 
cross-over trial, or matched case and control in a case-control study.  Table 3 shows 
fuller data from Shukla et al. (2004).  In this trial, patients with chronic non-healing 
wounds were randomised to receive topical placental extract or to control.  The data 
in Table 3 show the MAGS score before and after treatment in a group 9 of the 
patients in the active treatment group.  We want to know whether we have evidence 
that mean MAGS score changed and what the average score might be.  I have 
calculated the difference between the MAGS score after treatment and the MAGS 
score before treatment, i.e. the increase in the MAGS score. 

The authors of the paper did not do any further analysis of these data, as they were all 
positive differences and the MAGS score clearly increases following treatment.  We 
shall use them to estimate the mean increase in MAGS score.  The mean and standard 
deviation of the increase in MAGS score are 9.33 and 4.03 respectively.  We have 9 
observations so the number of degrees of freedom for the calculation of the standard 
deviation is 9 – 1 = 8. 
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The standard error of the mean difference is 1.34.  To estimate the 95% confidence 
interval for the mean from this small sample, we use the 5% point of the t distribution 
with 8 degrees of freedom.  From the 8 degrees of freedom row in Table 2 this is 2.31.  
The 95% confidence interval is therefore the mean minus or plus 2.31 standard errors, 
9.33 – 2.31 × 1.34 to 9.33 + 2.31 × 1.34, which gives us 6.2 to 12.4. 

We can also test the null hypothesis that in the population the mean increase is zero.  
The test statistic is the mean divided by its standard error.  This is 9.33/1.34 = 6.96.  If 
we look in the 8 degrees of freedom row in Table 2, we see that this is larger than the 
largest number there, 5.04, which corresponds to a probability of 0.001.  Hence we 
could say P<0.001.  In practice, we would do this using a computer program, which 
gives us P = 0.0001.  The difference is highly significant. 

There are several assumptions which we must make about the data for the paired t 
method test to be valid: 

• the observations must be independent, apart from the pairing, 

• the differences must follow a Normal distribution, 

• the mean and standard deviation of the differences must be constant, i.e. not 
related to the size of the measurement. 

The first of these, independence, depends on the design.  It is met for the MAGS data, 
because the pairs of data come from nine different subjects.  The second can be tested 
graphically.  The third, that the mean and the variability are not related to the 
magnitude, can also be investigated graphically.  We do a scatter plot of the difference 
against the average of the two observations, as in Figure 5.  We do this because the 
average of the two measurements is the best estimate we have of the subject’s true 
MAGS score over the period.  Using only one of the measurements, either before or 
after, on the horizontal axis tends to produce spurious relationships between 
difference and magnitude.  For the MAGS data, Figure 5 shows little evidence that 
either the mean difference or the variability of the differences is related to the 
magnitude of MAGS score for the subject. 

The two sample t method 
This is also called the unpaired t method or unpaired t test, the two group t method, or 
Student’s two sample t test.  It enables us to estimate the difference between means or 
test the null hypothesis of no difference in the population, even when the samples are 
small. 

Our example is a comparison of capillary density between patients with diabetic foot 
ulcers and a group of non-ulcerated controls (Table 4).  The data are shown 
graphically in Figure 6.  The samples are small, only 23 ulcer patients and 19 controls, 
so we cannot use the large sample Normal method.  The standard error will not be 
sufficiently well estimated. 
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Figure 5.  Difference versus mean plot for the increases in MAGS score. 
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Figure 6.  Scatter diagram showing capillary density in two groups of patients 

 

For the two-sample t method, we must make three assumptions about the data: 

• The observations and groups are independent. 

• The observations come from Normal distributions, 

• The distributions in the two populations have the same variance.  (N.B.  The 
populations, not the samples from them, have the same variance.) 

If  the distributions in the two populations have the same variance, we need only one 
estimate of variance.  We call this the common or pooled variance estimate.  It is a 
weighted average of the two sample variances, weighted by the degrees of freedom.  
The degrees of freedom for this common variance estimate are the number of 
observations minus 2.  We then use this common estimate of variance to estimate the 
standard error of the difference between the means. 
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Table 4.  Capillary density (per mm2) in the feet of 
ulcerated patients and a healthy control group  
(data supplied by Marc Lamah) 

------------------------------ 
Controls Ulcerated patients 
------------------------------ 
  17.5    9.0 
  27.5   11.0 
  27.0   12.5 
  29.5   18.0 
  27.0   18.0 
  29.0   18.0 
  34.5   18.5 
  31.0   20.0 
  35.5   20.0 
  33.5   22.0 
  35.5   22.5 
  34.0   22.5 
  36.5   23.0 
  38.0   23.0 
  40.0   24.0 
  39.5   26.5 
  40.0   26.5 
  40.0   27.0 
  52.0   27.5 

        28.0 
      28.5 

        29.0 
      44.5 
------------------------------ 

Number  19    23 
Mean   34.08   22.59 
SD    7.29    7.31 

------------------------------ 
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Figure 7.  Histograms of capillary density in two groups of patients 



12 

For the capillary density example, the common variance = 53.31, SD = 7.30 
capillaries/mm2, df = 19 + 23 – 2 = 40.  The difference (control – ulcer) =  
34.08 – 22.59 = 11.49 capillaries/mm2.  The standard error of the difference = 2.26 
capillaries/mm2.  Then the 95% confidence interval for difference is given by 11.49 – 
t × 2.26 to 11.49 + t × 2.26.  Here t comes not from the Normal distribution but the t 
distribution with 40 degrees of freedom.  It is the 5% point of the distribution, because 
5% of observations will be further from zero than t, 95% will be closer to zero than t.  
From Table 2, for 40 degrees of freedom, t = 2.02.  Hence the 95% CI is  
11.49 – 2.02 × 2.26 to 11.49 + 2.02 × 2.26 = 6.92 to 16.07 capillaries/mm2. 

We can also carry out a test of significance, testing the null hypothesis that in the 
population the difference between means = 0.  We take the observed difference 
divided by its standard error and, if the null hypothesis were true, this would be an 
observation from the t distribution with 40 degrees of freedom.  We have 

difference/SE = 11.49/2.26 = 5.08. 

From Table 2, the probability of such an extreme value is less than 0.001.  If we use a 
good computer program, this will calculate the P value for us more accurately.  In this 
case we get P = 0.0000, which we report as P<0.0001. 

We can check the assumption that capillary density follows a Normal distribution in 
each population by histograms.  Figure 7 shows histograms for each group.  There are 
not enough observations to judge whether the data follow Normal distributions.  We 
can improve matters by combining the two groups.  The distribution would be 
affected by any difference between the means, perhaps even becoming bimodal.  We 
get round this by subtracting the group mean from each observation to give residuals.  
The residuals have mean = 0 in each group.  We can then put them together to form a 
single distribution, as shown in Figure 8.  This looks fairly symmetrical, but there are 
still only a few observations.   

The other assumption is that the variances are the same in each population.  For the 
capillary density, Table 4 shows that the standard deviations are similar, being 7.29 
capillaries/mm2 for the control sample and 7.31 capillaries/mm2 for the ulcerated 
sample. 

We can also test the equality of variances, either with an F test or Levene’s test.  
However, tests have the unfortunately property that they miss large differences for 
small samples, when differences might matter, and find them for large samples, when 
they matter much less.  It is usually preferable to judge whether the assumption of 
uniform variance is plausible from the scatter plot (Figure 6).  For the capillary 
density, the spread of the two groups looks fairly similar. 

Methods using the t distribution depend on some strong assumptions about the 
distributions from which the data come.  In general, for two equal sized samples the t 
method is very resistant to deviations from Normality, though as the samples become 
less equal in size the approximation becomes less good.  The most likely effect of 
skewness is that we lose power.  P values are then too large and confidence intervals 
too wide.   
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Figure 8.  Distribution of residual capillary density, with corresponding Normal 
distribution curve 
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