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Outcome variables

An outcome variable is one which we hope to change, 
predict or estimate in a trial.

Examples:

Systolic blood pressure in a hypertension trial

Cæsarean section rate in an obstetric trial

Survival time in a cancer trial

Presence of asthma in a respiratory disease risk 
study

Number of outcome variables
Should I have few or many?

Many outcome variables

• Cover all possibilities

• Less likely to miss something

• Risk of false positives

Few outcome variables

• Easier and quick to check and analyse

• Cheaper

• Easier for research subjects

• Avoid multiple testing
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Primary and secondary outcome variables

Get round the problem by having one outcome variable on 
which the main conclusion stands or falls, the primary 
outcome variable.  

If we do not find an effect for this variable, the study has a 
negative result.

Usually several secondary outcome variables, to answer 
secondary questions.

The primary outcome variable must relate to the main aim 
of the study.

Choose one and stick to it.

How large a sample should I take?

A significance test for comparing two means is more likely 
to detect a large difference between two populations than 
a small one. 

The probability that a test will produce a significant 
difference at a given significance level is called the power
of the test. 

The power of a test is related to:

• the postulated difference in the population

• the standard error of the sample difference (which
depends on the sample size)

• the significance level, usually               . 0 05  

Relationship between:

• power of the test, P

• postulated difference in the population, 

• standard error of the sample difference, SE(d)

• significance level, α

If we know three of these we can calculate the fourth.

Bland M. (2000) An Introduction to Medical Statistics. Oxford 
University Press.

22 )(SE),( dPf  
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Relationship between:

• power of the test, P

• postulated difference in the population, 

• standard error of the sample difference, SE(d)

• significance level, α

If we know three of these we can calculate the fourth.

SE(d) depends on the particular sample size problem.

22 )(SE),( dPf  



We choose 
SE(d) depends on sample 
size and variability

),( Pf  depends on power and significance level only

Values of  f(α,P) for different P and α

α
P 0.05     0.01 
-------------------------------
0.50           3.8       6.6   
0.70           6.2       9.6   
0.80           7.9 11.7   
0.90         10.5 14.9   
0.95         15.2     20.4   
0.99         18.4     24.0 

P = power of the test, α = significance level.

22 )(SE),( dPf  

Example: trial to reduce blood pressure.

Decide a clinically important difference would be 10 mm Hg.

Where does this come from?

• Clinical judgement as to what would be important – focus
group of clinicians.

• What the treatment might achieve – pilot studies, other
trials of similar treatments.

• Back calculation from what is feasible – frowned on by
referees.
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Relationship between:

• power of the test, P

• postulated difference in the population, 

• standard error of the sample difference, SE(d)

• significance level, α

If we know three of these we can calculate the fourth.

22 )(SE),( dPf  



We choose 
SE(d) depends on sample 
size and variability

),( Pf  depends on power and significance level only

Comparison of two means 

Compare the means of two samples, sample sizes    
and    , from populations with means     and     , with the 
variance of the measurements being    . 

We have                      and 

so the equation becomes: 
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Comparison of two means 

For equal sized groups, n1 = n2 = n, the equation 
becomes: 
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Example: trial of an intervention for 
depression in primary care

Primary outcome: PHQ9 depression score after 4 
months.  PHQ9 scale from 0 to 27, high score = 
depressed.

Decide a clinically important difference would be 2 
points.

Pilot study: standard deviation of PHQ9 after treatment 
= 7

Choose power P = 0.90 = 90%, α = 0.05 =5%.

Choose power P = 0.90 = 90%, α = 0.05 = 5%:

f(α,P) 
--------------------------------

α
P 0.05     0.01 
-------------------------------
0.50           3.8       6.6   
0.70           6.2       9.6   
0.80           7.9     11.7   
0.90         10.5 14.9   
0.95         15.2     20.4   
0.99         18.4     24.0 

Detect difference μ1 – μ2 = 2 points on PHQ9.

Pilot study: σ = 7.

P = 0.90 = 90%, α = 0.05 =5%, f(α,P) = 10.5

2
2

1 2

2
( ) ( )f P

n

    

Hence we need 258 patients in each group.

25.257
2

72
5.10

2
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5.102
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That’s the hard way.  We can use:

Software, 

e.g. nQuery Advisor

Graphics, 

e.g. Altman’s nomogram

Tables,

e.g. Machin, et al. (1998) Statistical Tables for the
Design of Clinical Studies, Second Edition

nQuery Advisor, http://www.statistical-solutions-
software.com/
(commercial)

Altman, D.G. (1991) Practical Statistics for Medical 
Research. Chapman and Hall, London. (nomogram)

Machin, D., Campbell, M.J., Fayers, P., Pinol, A. (1998) 
Statistical Tables for the Design of Clinical Studies, Second 
Edition. Blackwell, Oxford.

PS, 
http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize
(free Windows program)

Effect size

Effect size or standardized difference is the difference 
in standard deviations.  

Difference divided by the standard deviation.

Example: depression measured by PHQ9.

Difference to be detected = 2, SD = 7.

Effect size = 2/7 = 0.286
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Altman’s nomogram

Standardized difference = 0.286, P = 0.90, α = 0.05

Total sample 
size N = 520.

Gives n = 260 
in each group, 
as before.

Other sample size considerations:

• Eligible patients disappear like snow in August.

• Eligible patients may refuse.

• Clinicians may forget or refuse to enrol eligible patients.

• Patients may drop out.

Allow for this by increasing the sample size and making 
sure that the new sample size is much smaller than the 
predicted number of eligible patients.
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Comparing two proportions:

Proportions p1 and p2.  SE(d) depends on p1 and p2.

2 1 1 2 2
1 2

1 2
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p p p p
p p f P

n n


  
   

 

Several different variations on this formula.  Different 
books, tables, or software may give slightly different 
results.

Two equal groups:

2 1 1 2 2
1 2

(1 ) (1 )
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p p p p
p p f P
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Example: Cæsarean section.

P = 0.90, α = 0.05, so f(α,P) = 10.5.

From clinical records we observe 24%.  A reduction to 
20% would be of clinical interest.  

We have p1 = 0.24, p2 = 0.20.

2 1 1 2 2
1 2

(1 ) (1 )
( ) ( , )

p p p p
p p f P

n
       

 

2 0.24(1 0.24) 0.20(1 020)
(0.24 0.20) 10.5

n

      
 

2

0.24(1 0.24) 0.20(1 020)
10.5 2247

(0.24 0.20)
n

   
    

Example: Cæsarean section.

P = 0.90, α = 0.05, p1 = 0.24, p2 = 0.20.

2

0.24(1 0.24) 0.20(1 020)
10.5 2247

(0.24 0.20)
n

   
    

So n = 2,247 in each group.

Detecting small differences between proportions requires 
a very large sample size.

Using PS . . .
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Expressing differences between two 
proportions

p1 = 24%, p2 = 20%, so difference = 4.

Are we looking for a reduction of 4% in Cæsarean 
sections?

NO.

A reduction of 4% would be 4% of 24% = 4×24/100 = 0.96, 
i.e. from 24% down to 23.04%.

The reduction from 24% to 20% is 4 percentage points,
NOT 4%.

Power may be increased by

 adjustment for baseline and prognostic variables.

Power may be reduced by

 cluster randomisation.

If in doubt, consult a statistician.

Allowing for adjustment

Power may be increased by adjustment for baseline and 
prognostic variables.

We need to know the reduction in the standard deviation 
produced by the adjustment.

Researchers often simply say: 

“Power will be increased by adjustment for . . .”.

so that things will actually be be better than they estimate, but 
they cannot say by how much.
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Allowing for adjustment

Proportion of variation explained by regression = r2.

Standard deviation after regression is σ√(1– r2).

Example:

We want to do a trial of a therapy programme for the 
management of depression.

Measure depression using the PHQ9 scale, 0 to 27, high 
score = depression.

From an existing trial we know that people identified with 
depression in primary care and given treatment as usual have 
baseline PHQ9 score with mean = 18 and SD = 5.  After four 
months they had mean 13, SD = 7.

We want to detect a difference in mean PHQ9 = 2 points.

Allowing for adjustment

Standard deviation after regression is σ√(1– r2).

Example:

We want to design a trial to detect a difference in mean PHQ9 
= 2 points.

Power = 0.90, significance level = 0.05, difference = 2, SD = 
7: n = 258 per group.

We also know r = 0.42.

Standard deviation after regression = σ√(1– r2) 
= 7×√(1– 0.422) = 6.35.

Power = 0.90, significance level = 0.05, difference = 2, SD = 
7: n = 213 per group.

Allowing for adjustment

If we have a good idea of the reduction in the variability that 
reduction will produce, we can use this to reduce the required 
sample size.

The effect is not usually very great.

For example, to halve the required sample size, we must 
have (1– r2) = ½ r2= ½  r = 0.71.

0.71 is a pretty big correlation coefficient.
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Confidence intervals

Movement to present results of trials in the form of confidence 
intervals rather than P values. 

Motivated by the difficulties of interpreting significance tests, 
particularly when the result was not significant.  

Major journals changed their instructions to authors to say 
that confidence intervals would be the preferred or even 
required method of presentation.  

Endorsed by the wide acceptance of the Consort standard for 
the presentation of clinical trials.

Gardner MJ and Altman DG.  Confidence intervals rather than P values: 

estimation rather than hypothesis testing.  Br Med J 1986; 292: 746-50.

Confidence intervals

We ask researchers to design studies the results of which will 
be presented as confidence intervals, rather than significance 
tests.

We should base our sample size calculations on confidence 
intervals, rather than significance tests.  

How do we do this?

We need a formula for the confidence interval for the 
treatment difference in terms of the expected parameters and 
sample size.

We must decide how precisely we want to estimate the 
treatment difference.

Bland JM.  (2009)  The tyranny of power: is there a better way to calculate 
sample size?  BMJ 2009; 339: b3985.

Confidence intervals

For a large study, the 95% confidence interval will be 1.98 
standard errors on either side of the observed difference.

For a trial with equal sized samples, the 95% confidence 
interval for the difference between two means will be 

±1.96σ √(2/n)

and for two proportions it will be 

±1.96√(p1(1–p1)/n + p2(1–p2)/n)
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Confidence intervals

For example, the International Carotid Stenting Study (ICSS)  
was designed to compare angioplasty and stenting with 
surgical vein transplantation for stenosis of carotid arteries, to 
reduce the risk of stroke.  

We did not anticipate that angioplasty would be superior to 
surgery in risk reduction, but that it would be similar in effect.  

Featherstone RL, Brown MM, Coward LJ.  International Carotid Stenting 
Study: Protocol for a randomised clinical trial comparing carotid stenting 
with endarterectomy in symptomatic carotid artery stenosis.  Cerebrovasc 
Dis 2004; 18: 69-74.

Confidence intervals

The sample size calculations for ICSS were based on the 
earlier CAVATAS study, which had the 3 year rate for death or 
ipsilateral stroke lasting more than 7 days = 14%.  

This was an equivalence trial, no difference was anticipated, 
p1= p2 = 0.14.

CAVATAS investigators.  Endovascular versus surgical treatment in patients with 
carotid stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty 
study (CAVATAS): a randomised trial.  Lancet 2001; 357: 1729-37.

Confidence intervals

For two proportions, width of the 95% confidence interval for 
the difference =

±1.96√(p1(1–p1)/n + p2(1–p2)/n)

If we put p = 0.14, we can calculate this for different sample 
sizes:

Sample size Width of 95% confidence interval
250 ±0.061
500 ±0.043
750 ±0.035

1000 ±0.030

We chose 750 in each group.
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Confidence intervals

For two means, width of the 95% confidence interval for the 
difference = ±1.96σ √(2/n).

If we put n = 740, we can calculate this for the chosen sample 
size: ±1.96σ √(2/750) = ±0.10σ.

This was thought to be ample for cost data and any other 
continuous variables.


