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Survival, failure time, or time-to-event
data:

» time from some event to death,

» time to metastasis or to local recurrence of a
tumour,

time to readmission to hospital,
age at which breast-feeding ceased,

time from infertility treatment to conception,
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time to healing of a wound.

The terminal event, death, conception, etc., is the
endpoint.

Often we do not know the exact survival times of all
cases.

Some will still be surviving when we want to analyse the
data.

When cases have entered the study at different times,
some of the recent entrants may be surviving, but only
have been observed for a short time. Their observed
survival time may be less than those cases admitted early
in the study and who have since died.

When we know some of the observations exactly, and
only that others are greater than some value, we say that
the data are censored or withdrawn from follow-up.




Recruitment, time to event, time to censoring:
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Some censored times may be shorter than some times to
events.

We overcome this difficulty by the construction of a life table.

Example

VenUS I: a randomised trial of two types of bandage for
treating venous leg ulcers.

Treatments:

four layer bandage (4LB), elastic compression,
short-stretch bandage (SSB), inelastic compression.

Qutcome:

time to healing (days).

VenUS I: SSB group, time to healing (days)

7H 24 H 36 H 49 H 59 H 73 H 104 H 134 H

8 C 25 H 36 H 49 H 60 H 77 H 106 H 135 H
10 H 25 H 41 H 50 H 62 H 81 C 112 H 142 C
12 H 26 H 41 H 50 H 63 H 85 H 112 H 146 H
13 H 28 H 41 H 50 H 63 H 86 H 113 H 147 H
14 H 28 H 42 H 50 H 63 H 86 H 114 H 148 H
15 H 28 H 42 H 53 C 63 H 90 C 115 H 151 H
20 H 28 H 42 H 53 H 63 H 90 C 117 H 154 C
20 H 28 H 42 H 56 H 63 H 90 H 117 H 154 H
21 H 30 C 43 H 56 H 68 C 91 H 118 H 158 H
21 H 30 H 45 H 56 H 68 H 92 H 119 H 174 H
21 H 31 C 45 H 57 C 70 H 94 H 124 H 179 H
21 H 34 H 47 H 58 H 70 H 97 H 125 H 182 H
22 H 35 H 48 C 58 H 73 C 99 H 126 H 183 H
24 H 35 H 48 H 59 H 73 H 101 H 127 H 189 H

H = Healed C = Censored




VenUS I: SSB group, time to healing (days)

189
189
191
195
195
199
201
202
210
212
212
214
216
218
224

H =
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232 H 364 H 483 H 671 H
235 H 369 C 493 C 672 C
241 H 369 C 504 C 691 C
242 C 370 C 517 H 742 C
242 H 377 C 525 H 746 C
244 H 378 C 549 H 790 C
273 C 391 C 579 H 791 C
284 H 392 H 585 C 858 ¢C
286 H 398 H 602 H 869 C
309 C 399 H 612 C 886 C
322 H 413 H 648 H 924 C
332 H 417 C 651 C 955 C
334 C 428 C 654 C

336 H 461 H 658 C

343 H 465 H 667 C

Healed C = Censored

VenUS I: SSB group, time to healing (days), tabulated
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t CH t CH t CH t CH t
3110 58 0 2 94 01 126 0 1 189
3401 59 0 2 97 01 127 01 191
35 02 60 01 99 01 13401 195
36 0 2 62 01 101 01 13501 199
41 0 3 63 06 104 01 1421 0 201
42 0 4 68 1 1 106 0 1 146 0 1 202
43 0 1 70 0 2 112 0 2 147 01 210
45 0 2 7312 113 01 148 01 212
47 01 77 01 11401 151 01 214
48 1 1 8110 11501 154 11 216
49 0 2 85 01 117 0 2 158 0 1 218
50 0 4 86 0 2 118 01 174 01 224
5311 9021 11901 179 01 232
56 0 3 91 01 124 01 182 01 235
5710 92 01 12501 183 01 241
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242
244
273
284
286
309
322
332
334
336
343
364
369
370
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VenUS I: SSB group, time to healing (days), tabulated

t CH t CH t CH

378 10 549 01 790 10

39110 579 01 791 10

392 01 58510 858 10

398 01 60201 869 10

399 01 61210 88610
413 01 648 01 924 1 0
417 10 65110 95510
4281 0 654 10

461 01 658 1 0

465 01 667 10

483 01 671 0 1

49310 67210

504 1 0 691 10

517 01 742 10

525 01 746 1 0
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The Kaplan Meier Survival Curve
t CH n d s P

000 192 0 192 192/192
701 192 1 191 191/192 n = number remaining
810 191 0 191 191/191
10 01 190 1 189 189/190 d = number of events
12 01 189 1 188 188/189 _ .
13 01 188 1 187 187/188 § = number surviving
14 01 187 1 186 186/187 _ -
15 01 186 1 185 185/186 p = proportion .
2002 185 2 183 183/185 surviving
21 04 183 4 179 179/183 p=s/n
22 01 179 1 178 178/179
24 02 178 2 176 176/178
25 02 176 2 174 174/176
26 01 174 1 173 173/174
28 05 173 5 168 168/173
3011 168 0 168 168/168
The Kaplan Meier Survival Curve
t CH n d s P
000 192 0 192 192/192 = 1.0000000
701 192 1 191 191/192 = 0.9947644
8 10 191 0 191 191/191 = 1.0000000
10 01 190 1 189 189/190 = 0.9947368
12 01 189 1 188 188/189 = 0.9947090
13 01 188 1 187 187/188 = 0.9946809
14 01 187 1 186 186/187 = 0.9946524
15 01 186 1 185 185/186 = 0.9946237
20 0 2 185 2 183 183/185 = 0.9891892
21 0 4 183 4 179 179/183 = 0.9781421
22 01 179 1 178 178/179 = 0.9944134
24 02 178 2 176 176/178 = 0.9887640
25 02 176 2 174 174/176 = 0.9886364
26 01 174 1 173 173/174 = 0.9942529
28 05 173 5 168 168/173 = 0.9710983
3011 168 0 168 168/168 = 1.0000000
The Kaplan Meier Survival Curve
t CH n d s )4 P Proportion
000 192 0 192 1.0000000 1.0000000 surviving to
701 192 1 191 0.9947644 0.9947644  time x:
810 191 0 191 1.0000000 0.9947644
10 01 190 1 189 0.9947368 0.9895288 P, =p,P, ,
12 01 189 1 188 0.9947090
13 01 188 1 187 0.9946809
14 01 187 1 186 0.9946524
15 01 186 1 185 0.9946237
20 0 2 185 2 183 0.9891892
21 04 183 4 179 0.9781421
22 01 179 1 178 0.9944134
24 02 178 2 176 0.9887640
25 02 176 2 174 0.9886364
26 01 174 1 173 0.9942529
28 05 173 5 168 0.9710983
3011 0168 1

168 .0000000




The Kaplan Meier Survival Curve

t CHE =n d s P P Proportion

000 192 0 192 1.0000000 1.0000000 surviving to
701 192 1 191 0.9947644 0.9947644  time x:
810 191 0 191 1.0000000 0.9947644

10 01 190 1 189 0.9947368 0.9895288 P, =p,P, ;
12 01 189 1 188 0.9947090 0.9842932

13 01 188 1 187 0.9946809 0.9790577

14 01 187 1 186 0.9946524 0.9738221

15 01 186 1 185 0.9946237 0.9685865

20 0 2 185 2 183 0.9891892 0.9581153

21 0 4 183 4 179 0.9781421 0.9371729

22 01 179 1 178 0.9944134 0.9319373

24 02 178 2 176 0.9887640 0.9214661

25 02 176 2 174 0.9886364 0.9109949

26 01 174 1 173 0.9942529 0.9057593

28 05 173 5 168 0.9710983 0.8795813

3011 0 1 0.8795813

168 168 .0000000

The Kaplan Meier Survival Curve

Kaplan-Meier survival estimate
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We usually present this graphically.

The Kaplan Meier Survival Curve

Kaplan-Meier survival estimate
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There is a step at each event. Steps get bigger at the
number followed up gets smaller.




The Kaplan Meier Survival Curve

Kaplan-Meier survival estimate
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We often add ticks to indicate the censored observations.

The Kaplan Meier Survival Curve

Kaplan-Meier survival estimate
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We can add the number remaining at risk along the bottom
of the graph.

The Kaplan Meier Survival Curve

Kaplan-Meier survival estimate
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We can add a 95% confidence interval for the survival
estimate. This is called the Greenwood interval.




The Kaplan Meier Survival Curve

Time to heal, by treatment arm
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We can compare the two arms of the trial.

The Kaplan Meier Survival Curve

Time to heal, by wound area
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We can compare levels of a prognostic variable.

The Kaplan Meier Survival Curve

Time to heal, by wound area
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We can invert the graph and plot the proportion healed,
called the failure function (opposite of survival).




The Kaplan Meier Survival Curve
Assumptions

The risk of an event is the same for censored subjects as for
non-censored subjects.

This means:
1. those lost to follow- 104 o—e
: i A
up are not different ol swn o " A
from those followed- g 7jofsudy| o—————° | pont
uptotheanalysis 3 %) —
date, 34
3
- ] .
2. no change in risk ! ;

0 20 40 60 80 100 120
from start of Time

recruitment to end. o Recruited © Censored
® Event

The Kaplan Meier Survival Curve
Assumptions

The risk of an event is the same for censored subjects as for
non-censored subjects.

This means:
1. those lost to follow- Healing by early or late recruitment
up are not different 5190
from those followed- g 0.801
up to the analysis 50,601
date, £ 0.40-
L. £0.20
2. no change in risk < 0004
from Start Of 6 260 460 660 860 10‘00
recruitment to end. Time since recruitment (days)

Early Late

The logrank test

Greenwood standard errors and confidence intervals for the
survival probabilities can be found, useful for estimates such
as five year survival rate.

Not a good method for comparing survival curves. They do
not include all the data and the comparison would depend on
the time chosen.

Survival by group

Eventually, the curves 1.00
h ’ o
will meet if we follow £ 0804
everyone to the event S 060l
(e.g. death). § 040
E‘, 020
o
0.00 .

T T
0 20 40 60 80 100
analysis time

group =1 - group =2




The logrank test

Survival curves can be compared by several significance
tests, of which the best known is the logrank test.

This is a non-parametric test which makes use of the full
survival data without making any assumption about the
shape of the survival curve.

The logrank test

SSB 4B
Time n;, c; d; n, ¢, d, Consider only times at
0 192 0 0 195 1 O which there is an event
7 192 0 1 194 0 3 or a censoring.
8 191 1 0 191 0 O
10 190 0 1 191 0 0O n4, N, = numbers at risk
11 189 0 0 191 1 0
12 189 0 1 190 0 O C4, C, = numbers of
13 188 0 1 190 0 1 censorings
14 187 0 1 189 0 3
15 186 0 1 186 0 1 dy, d, = numbers of
17 185 0 0 185 0 1 events
20 185 0 2 184 0 2
21 183 0 4 182 1 4
The logrank test
SSB 4LB proportion with events
Time n, ¢, d; n, c, d, gy = (d; + d;)/(n; + ny)
0 192 0 0 195 1 0 0/(192+195)
7 192 0 1 194 0 3  4/(192+194)
8 191 1 0 191 0 O 0/(191+191)
10 190 0 1 191 0 O 1/(190+191)
11 189 0 0 191 1 O 0/(189+191)
12 189 0 1 190 0 O 1/(189+190)
13 188 0 1 190 0 1  2/(188+190)
14 187 0 1 189 0 3  4/(187+189)
15 186 0 1 186 0 1 2/(186+186)
17 185 0 0 185 0 1 1/(185+185)
20 185 0 2 184 0 2  4/(187+184)
21 183 0 4 182 1 4 8/(183+182)




The logrank test

SSB 4LB expected events in group 1
Time n; ¢; d; n, ¢, d, e; = n;xqy
0 192 0 0 195 1 O 192 x 0/(192+195)
7 192 0 1 194 0 3 192 x 4/(192+194)
8 191 1 0 191 0 O 191 x 0/(191+191)
10 190 0 1 191 0 O 190 x 1/(190+191)
11 189 0 0 191 1 O 189 x 0/(189+191)
12 189 0 1 19 0 O 189 x 1/(189+190)
13 188 0 1 19 0 1 188 x 2/(188+190)
14 187 0 1 189 0 3 187 x 4/(187+189)
15 186 0 1 186 0 1 186 x 2/(186+186)
17 185 0 0 185 0 1 185 x 1/(185+185)
20 185 0 2 184 0 2 185 x 4/(187+184)
21 183 0 4 182 1 4 183 x 8/(183+182)

Sum e, to get expected events in group 1, SSB, = 160.57.

The logrank test

SSB 4LB expected events in group 2

Time n, c¢; d; n, c, d, e, = nyXxqgy
0 192 0 0 195 1 O 195 x 0/(192+195)
7 192 0 1 194 0 3 194 x 4/(192+194)
8 191 1 0 191 0 O 191 x 0/(191+191)
10 190 0 1 191 0 O 191 x 1/(190+191)
11 189 0 0 191 1 O 191 x 0/(189+191)
12 189 0 1 190 0 O 190 x 1/(189+190)
13 188 0 1 190 0 1 190 x 2/(188+190)
14 187 0 1 189 0 3 189 x 4/(187+189)
15 186 0 1 186 0 1 186 x 2/(186+186)
17 185 0 0 185 0 1 185 x 1/(185+185)
20 185 0 2 184 0 2 184 x 4/(187+184)
21 183 0 4 182 1 4 182 x 8/(183+182)

Sum e, to get expected events in group 2, 4LD, = 143.43.

The logrank test

| Events Events
Arm | observed expected
______ A m
4LB | 157 143.43
SSB | 147 160.57
______ e
Total | 304 304.00

Apply the usual observed minus expected squared over
expected formula:
3 (O-E)* _(147-16057) . (157-143.43)*
E 16057 14343

=2.46

This is from a chi-squared distribution with degrees of freedom
= number of groups minus 1 =2-1=1, P=0.1.
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The logrank test

Can have more than two groups:

| Events Events
Area | observed expected
___________ e
<4 sq cm | 176 122.24
4-8 sq cm | 65 70.45
8+ sq cm | 63 111.32
___________ e
Total | 304 304.00

chi2(2) = 46.84
P < 0.0001

Three groups, 2 df.

The logrank test
Assumptions
As for Kaplan-Meier.

1. the risk of an event is the same for censored subjects as for
non-censored subjects,

2. survival is the same for early and late recruitment.

Test of significance only.

Misses complex differences where risk is higher in one group
at beginning and higher in the other group at the end, e.g. the
curves cross.

Cox regression
Also known as proportional hazards regression.

Sometimes we want to fit a regression type model to survival
data.

We often have no suitable mathematical model of the way
survival is related to time, i.e. the survival curve.

Solution: Cox regression using the proportional hazards model.

The hazard at a given time is the rate at which events (e.g.
healing) happen. Hence the proportion of those people
surviving who experience an eventin a small time interval is
the hazard at that time multiplied by the time in the interval.

The hazard depends on time in an unknown and usually
complex way.
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Cox regression

Assume that anything which affects the hazard does so by the
same ratio at all times. Thus, something which doubles the risk
of an endpoint on day one will also double the risk of an
endpoint on day two, day three and so on. This is the
proportional hazards model.

We define the hazard ratio for subjects with any chosen values
for the predictor variables to be the hazard for those subjects
divided by the hazard for subjects with all the predictor
variables equal to zero.

Although the hazard depends on time we will assume that the
hazard ratio does not. It depends only on the predictor
variables, not on time.

The hazard ratio is the relative risk of an endpoint occurring at
any given time.

Cox regression

In statistics, it is convenient to work with differences rather
than ratios, so we take the logarithm of the ratio. This gives
us the difference between the log hazard for the given levels
of the predictor variables and the log hazard for the
baseline, the hazard when all the predictor variables are
zero.

We then set up a regression-like equation, where the log
hazard ratio is predicted by the sum of each predictor
variable multiplied by a coefficient.

This is Cox's proportional hazards model.

Unlike multiple regression, there is no constant term in this
model, its place being taken by the baseline hazard.

Cox regression

In particular, we can estimate the hazard ratio for any given
predictor variable.

This is the hazard ratio for the given level of the predictor
variable, all the other predictors being at the baseline level.

12



Cox regression
Example: area of ulcer, a continuous measurement.

Coefficient (log hazard ratio) —0.0276
Standard error = 0.0064

Significance: z = —4.31, P < 0.001

95% confidence interval = —0.0402 to —0.0151
Hazard ratio = 0.973

95% confidence interval = 0.961 to 0.985.

These are found by antilog of the estimates on the log scale.

This is the hazard ratio per sq cm increase in baseline ulcer
area.

Bigger ulcers have lower risk, i.e. less chance, of healing.

Cox regression

Hazard ratio = 0.973, < 1.00. Bigger ulcers have lower risk, i.e.
less chance, of healing.

Time to heal, by wound area

3 1.00
3 0.801
€

5 0.60
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S 0.40
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a 0.00

T T T T T
0 200 400 600 800 1000
Time since recruitment (days)

<4sqom —--——-- 4-8 sq.cm
e 84 50 oM

Cox regression
Example: treatment arm.

Hazard ratio = 1.196
z=1.56,P=0.119
95% confidence interval = 0.955to 1.498.

In this analysis SSB is the baseline treatment, so the risk of
healing in the 4LB arm is between 0.955 and 1.498 times that
in the SSB arm.

Compare logrank test: chi-squared = 2.46,d.f. =1, P=0.117.

The logrank test does not give quite the same P value as Cox
regression.

13



Cox regression
Example: treatment arm.

Hazard ratio = 1.196
z=1.56,P=0.119
95% confidence interval = 0.955to 1.498.

We can improve the estimate by including prognostic variables
in the regression. Area is an obvious one:

| Haz. Ratio z P>|z]  95% Conf. Interval
————t

area| 0.9723258 -4.35 0.000 0.960 0.985
arm| 1.269221 2.07 0.038 1.013 1.590

Compare one factor hazard ratio = 1.196, P = 0.119,
95% confidence interval = 0.955 to 1.498.

Cox regression

Cox regression is described as semi-parametric: it is non-
parametric for the shape of the survival curve, which requires
no model, and parametric for the predicting variables, fitting
an ordinary linear model.

The model is fitted by an iterative maximum likelihood
method, like logistic regression.

Cox regression
Comparing models

We can compare nested models using a likelihood ratio
chi squared statistic.

E.g. area only, LR chi-squared = 36.84, d.f. = 1
area + arm, LR chi-squared = 41.13,d.f. = 2

Difference = 41.13 — 36.84 = 4.29 with 2 — 1 = 1 degree of
freedom, P = 0.038.

This enables us to test terms with more than one
parameter.
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Cox regression
Assumptions:

1. as for Kaplan Meier, the risk of an event is the same for
censored subjects as for non-censored subjects,

2. the proportional hazards model applies,

3. there are sufficient data for the maximum likelihood fitting
and large sample z tests and confidence intervals — rule
of thumb at least 10 events per variable, preferably 20.

Cox regression
Checking the proportional hazards assumptions
There are several ways to do this.

We can look at the Kaplan Meier plots to see whether they look
OK, e.g. do not cross.

Not very easy to see other than gross departures.

Cox regression
Checking the proportional hazards assumptions
There are several ways to do this.

We can look at the Kaplan Meier plots to see whether they look
OK, e.g. do not cross.

Not very easy to see
other than gross Time to heal, by treatment arm
departures. 1.004

0.80
0.60+
040

There are better plots,
called log cumulative

hazard plots, which we 0201
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