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This document is intended as revision of the first year Fortran course, it
covers the most basic program operations needed to be able to write simple
programs. It is no way intended as a complete description of the language;
resources for this will be provided at the end. It must be stressed that there is
always more than one way to solve a problem with programming; developing
a style that you are comfortable with can be as important as good coding
practices.

NB: In Fortran there is no difference between CAPITALS and lowercase; the
compiler will read them equivalently. Some consider only using lowercase to be
more ’1337’, others find it hard to hit the shift key on their laptops.

1 Basic Program

All programs need a beginning and an end. Remember to always include IM-
PLICIT NONE, as this ensures strong typing, and will help to make sure that
your program does what you think it is doing. IMPLICIT NONE must also
included in subroutines, functions and modules.

PROGRAM progname
IMPLICIT NONE

! NB: this line is not ’seen’ by the compiler
! Anything following ! is commented out.
! Use comments _often_ and your marks and understanding will increase.

END PROGRAM progname

This is your most basic, complete program; it accomplishes nothing but to
exist, however, all puzzles must be solved starting with the first piece, so if you
can’t think of where to begin, then make sure you have at least this. Remember
that when executing your program the computer looks at what is in between
PROGRAM and END PROGRAM and executes as it goes down, in that order.
You may only have one “PROGRAM”, though you may have as many
subprograms (subroutines, functions) as you like
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2 Binary Operations

To do calculations in a program you will need to know what syntax corresponds
to an equivalent mathematical operator:

+ : add e.g. a+b
- : subtract e.g. a-b
* : multiply e.g. a*b
/ : divide e.g. a/b
**: raise to a power e.g. a**b (a.k.a. exponentiation)

Ordering is also very important; this is like when entering long sums into a
calculator. In order of what will be evaluated first we have: Powers, multipli-
cation, division, additions and subtraction. For example:

4.0**2*3.0/4.0+1.0 = 160.*3.0/4.0+1.0 = 48.0/4.0+1.0 = 12.0+1.0 = 13.0

To avoid confusion one may use brackets, in which case anything within
the brackets will be evaluated before anything else.

3 Variables

3.1 Types and Declarations

Manipulating variables is the bread and butter of programming (understanding
variables requires knowledge of algebra, a = b + c, for example). The types
of variables we will be concerned with over this course may be split into three
branches: integer, real and boolean/logical. NB: Fortran can also handle
complex numbers (kind=16) as well as derived types (see resources).

Declaring of all variables is done before any operations (e.g. a = b is
an assignment operation and 1.0*2.0 is a multiplication operation), and after
IMPLICIT NONE:

real :: a, var1, a_var
integer :: b
logical :: c

Note the syntax. TYPE followed by :: and then the variable name/s. To
declare more than one variable of the same type, simply separate the variable
names with a comma. Variable names must start with a letter, after which they
can contain numbers and a few select special characters, e.g. underscores.

Integers and reals are handled differently by the machine. Integers take the
form −1, 0, 1, 2, 3 etc, they are purely whole numbers. Their main use comes in
as: loop counters; declaring array sizes; assigning unit numbers to external files;
indices algebra etc.

Real numbers are of the form: 1.89769876, 7896.3423400, 1.12e10 and so on,
anything with a decimal place; they are predominantly used for calculations.
The last example (1.12 e10) is scientific notation... Fortran is predominantly
used for high-performance science simulations!

Boolean or logical variables work as polar opposites: true/false; 1 or 0,
on/off, etc. They are used to test if a condition is true or false and then to act
upon the result.

2



To assign a value to a variable, after it has been declared, is done by stating
the variable you wish to change, then an ’=’ sign and then the assignment, for
instance:

a = 1.903
var1 = 14. ! note the single ’.’ to indicate as var1 is real
b = 2 ! no dot as b is integer
a_var = 2.0**2 ! This is 2 squared: note the decimal point is absent on the power term.
c = .true. ! logical declaration, alt: .false.

3.2 Parameters

When you have a number that doesn’t vary, e.g. π, you may declare it as
a parameter. It will be unchangeable throughout the programs course. The
declaration is the same as any variable but with an addition after the type.

real, parameter :: pi = 3.14159265
integer, parameter :: MaxNumOfPlayers = 100

3.3 Precision

So far we have been using what is known as single precision variables; these
have well defined limits dependent on machine architecture and OS. But what
happens when you want to represent (as we will) much bigger numbers, with
much more precision? The answer is to use double precision variables. My
preffered way of using double precisions is as follows: Declare a double precision
parameter (dp - one point zero ’d’ zero) and then use this in all other declarations
by putting the variable name in brackets after variable type:

integer, parameter :: dp=kind(1.0d0) ! Do this before ANY others
real(dp) :: a, b ! a and b are now double precision

NB: There is a rounding error pitfall to watch out for here. If variable ’a’
is double precision, one must be careful when using it to make use of it being
double. That is:

a = 0.0

May give a to be 0.0000000248192746. The extra precision contains whatever
was previously in memory. Therefore we can make sure it is double precision
zero (0.0000000000000000) by appending a dp tag to the end:

a = 0.0_dp

Note the underscore and then the dp. For clarity, you may call your DP variable
anything, for example:

integer, parameter :: example = kind(1.0d0)
real(example) :: aVariable
aVariable = 0.0_example

Is equivalent to before.

See: SELECTED_REAL_KIND and SELECTED_INT_KIND for even more precisional control.
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3.4 Conversion

To convert between real and integer you may use a number of operations.

REAL to INTEGER:

integer, parameter :: dp=kind(1.0d0)
real(dp) :: a
integer :: b

b = NINT(a) ! Nearest Integer
b = INT(a) ! Standard conversion; rounds DOWN.
b = CEILING(a) ! if a=1.9; b=2
b = FLOOR(a) ! if a=1.9; b=1; same as INT

INTEGER to REAL

real :: a
integer :: b

integer, parameter :: dp=kind(1.0d0)

a = REAL(b) ! If b = 2; a = 2.00000000
a = REAL(b,dp) ! for double precision, use this!

NB: Be careful with integer and real division! Often by default, mixed real
and integer operations will be converted to purely real by the compiler, but
this cannot be assumed. Always convert to real and never do integer/integer
division. Why?

In summary to this section: ALWAYS USE DOUBLE PRECISION
REALS and ALWAYS CONVERT TO REAL when doing mixed, in-
teger/real operations.

4 Subroutines

Subroutines and functions are known collectively as ’subprograms’ but behave
in slightly different ways. Subroutines are perfect for separating a program into
its component parts. By analogy, if I were to build a [simple] car I would need:
a body; wheels; steering/control and an engine/power. Therefore I would break
my program ’car’ up into those self-contained, sub-parts; this makes it easier to
take on each component individually.

Subroutines are extremely versatile and can generally do anything a program
can do (including calling subroutines), but you can have more than one. Sub-
routines can have information passed to and from them, in what are known as
dummy arguments. Here is a simple subroutine called by the main program,
all it does is take two numbers, add them, and give the main program back the
answer.

PROGRAM progone
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IMPLICIT NONE
! declare variables
integer, parameter :: dp=kind(1.0d0)
real(dp) :: a,b,c,d,e,f
a = 1.0
b = 2.0
d = 1.0
e = 3.0

! Call subroutine and pass a,b,c
call addsubber(a,b,c)

! c now equals 3.0
! Note I can reuse the same subroutine with different numbers
call addsubber(d,e,f)

! f now equals 4.0
END PROGRAM

! After program has ended I can declare my subroutine.
SUBROUTINE addsubber(x,y,z)
IMPLICIT NONE

! Local variable declarations
integer, parameter :: dp=kind(1.0d0)

! Declare Dummy variables
real(dp), INTENT(IN) :: x,y
real(dp), INTENT(OUT) :: z

z=x+y
END SUBROUTINE

Some very important things must be noted here:

• CALL is used when accessing subroutines.

• ARGUMENTS passed into the subroutine are in brackets after the name
of the subroutine called, they must be of the same type and in the same
order as where you declare the subroutine.

• INTENTS are essential. They decide how a variable passed into the
subroutine is to be used. You only need to declare intents INSIDE
subroutines. - Not programs OR functions! They can be of 3 types:
IN, OUT or INOUT. Use IN if the variables are used but don’t change
inside the subroutine; use OUT for anything you purely wish to RETURN
and use INOUT if you are passing something into a subroutine AND it
will change whilst there.

• DUMMY VARIABLES. You may be asking how in the program I
declared a,b and c; yet in the subroutine there was only x,y,z. This is
allowed because the subroutine is CLOSED and doesn’t ’know’ about the
a,b and c of the main program. It only knows there will be 3 numbers all
reals, it will take the first two number, add them, assign this as the third
and then return the third number. This is why they are knowm as dummy
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variables; I could have called them a,b and c in BOTH the subroutine and
the program.

• REUSING the subroutine with different numbers is allowed as with d,e
and f above.

A few further things about subroutines: you can pass arrays into them, they
don’t even need to have arguments if you use modules (be careful with global
declarations!)

5 Functions

Functions, as mentioned, are also subprograms. They differ from subroutines
in how they are used and they need to be declared anywhere you wish to use
them. It is best to consider them mathematically: for instance if I wanted a
function f(x) = cos(x) + sin(x). I will give the function a name (myFunc), I
want to assign the variables y=f(x=2) and z=f(x=3) in a program. I do so as
follows.

PROGRAM myProg
IMPLICIT NONE

! Function Declarations:
real, external :: myFunc ! Real as myFunc returns REAL number.

! Variable declarations:
real :: y,z, j

! Use function:
y = myFunc(2.)

! Alternatively:
j = 3.0
z = myFunc(j)

END PROGRAM

REAL FUNCTION myFunc(x)
IMPLICIT NONE

real :: x

! Note the VALUE of the FUNCTION uses the FUNCTION NAME
myFunc = COS(x) + SIN(x)

END FUNCTION

This bears repeating: Note the VALUE of the FUNCTION uses the
FUNCTION NAME. Inside the myFunc function I give what the function is
equal to by using the function name: myFunc = f(x). Inside the main program
I use the function as though IT IS A NUMBER, making sure to declare it at
the top. You can pass more than one argument into a function.
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5.1 Intrinsic Functions

There are many functions which are included in Fortran (compiler dependent
for extras) these include, in a non-exhaustive manner:

SIN(x) Returns sine of x
COS(x) Returns cosine of x
EXP(x) Returns e**x
SQRT(x) Returns sqrt(x)
ABS(x) Returns absolute value of x e.g. abs(-29)=29

You can see they work much as their mathematical equivalents; most trigono-
metric functions (ATAN = arctan) are included. See reference books for further
information.

6 Modules

Modules become increasingly important with larger programs or bigger software
(i.e. group) projects. You may declare variables, arrays, functions, subroutines
etc... in a module and then any program or subprogram you wish to
’share’ the variables just has to ’use’ the module containing them.

For small level programs, modules are useful if you are certain that there
will be no multiple instances of the same variable declared, and don’t wish to
keep re-declaring the same variables. Modules must be declared BEFORE
program. A often reuse modules for common constants:

MODULE uni
IMPLICIT NONE
SAVE

! Universal constants, eg pi, double precision=dp etc...
! Other than dp and sp, all parameters have uni_ as prefix to signify universal constant
integer, parameter :: dp=kind(1.0d0), sp=kind(1.0)
REAL(DP), PARAMETER :: uni_PI=3.141592653589793238462643383279502884197_dp
REAL(DP), PARAMETER :: uni_TWOPI=6.283185307179586476925286766559005768394_dp
real(dp), parameter :: uni_DegreeConverter=uni_Pi/180.0_dp
real(dp) :: uni_1overroot2pi
real(dp) :: uni_emass=9.1093826*10e-31, uni_echarge=1.60217653*10e-19

END MODULE

MODULE progmod
use uni
IMPLICIT NONE
SAVE

real(dp) :: CommonVar

END MODULE

PROGRAM myProg
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use uni
use progmod
IMPLICIT NONE

! This is a local declaration
real(dp) :: a

a = 0.5*uni_emass

call mySubRout

! CommonVar now equals 2.0
END PROGRAM

SUBROUTINE mySubRout
use uni
use progmod
IMPLICIT NONE

CommonVar = 2.0_dp

END SUBROUTINE

Note the only declarations outside of modules are for LOCAL variables only,
for instance, above, the subroutine mySubRout does not ’see’ or ’know about’
the variable ’a’, however, after the subroutine is called, BOTH the program and
SUBROUTINE (and anywhere else that uses ’progmod’) see the ’CommonVar’
has changed to 2.0.

To summarise:

• MODULES must be written before anything else.

• You utilise a module with the use command followed by the module name.

• ’USE modname’ is done BEFORE IMPLICIT NONE

• Modules may ’use’ other modules. NB: in above, as ’progmod’ uses ’uni’
anything using ’progmod’ will also be using ’uni’.

• See reference material for the more information on modules.

7 Arrays

An array can be seen as an ordered set of values stored contiguously (i.e. all
connected in memory); if it helps you can think of arrays as vectors or matrices,
or pictorially as a co-ordinate system on a map:

If I take a 2x2 box. I can refer to to any element of the box using an (x,y)
cartesian coordinate system; the first element corresponding to (x=1,y=1) and
the last to (x,y)=(2,2)
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(1, 1)

(1, 2)

(2, 1)

(2, 2)

Using the diagram above, if I asked you which element of the diagram below
corresponds to the smaller black circle, you would reply with..........? And the
small white cirle...........?

f

vmv

}

In this second diagram we have assigned VALUES to array elements. Okay,
so it is only in pictorial form, however, we could still refer to the VALUES the
array element contained using the (x,y) system. So if I said box(1,2) it would
be the same as saying ’nested circles’. This is how we use arrays in fortran, only
the box can be one dimensional or more.

PROGRAM myProg
IMPLICIT NONE

! Variable Declarations
integer, parameter :: dp = kind(1.0d0)

! Array Declarations:
integer, dimension(2,2) :: intray
real(dp), dimension(-10:10) :: realray

! Advantages of arrays are you can do WHOLE ARRAY OPERATIONS:
! Without specifying a ’coordinate’, EVERY element will be addressed
intray = 0 ! This sets ALL elements to 0
realray = 0.0_dp ! As does this but 0.00000000...

END PROGRAM

Here I have declared a two-dimensional INTEGER ARRAY (therefore it can
contain values which are integers: -2874, 34, 1, 2 etc) and a one-dimensional,
double precision, REAL ARRAY. Lets now look at the declarations themselves.
We can see that the declaration is vey similar to variable declarations with the
added DIMENSION(from:to,from:to) statement, where ’from’ and ’to’ are
integers. By default Fotran starts arrays from 1: so that ’intray’, from above,
has dimension(1:2,1:2), but as we can see, it is possible to declare arrays to
start from virtually anywhere. The dimensions themselves are separated by a
comma; a 3-D array would have DIMENSION(x,y,z).
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To access an array element we use its ’coordinates’ as was discussed above:

intray(1,1) = 1
intray(1,2) = 2
realray(-4) = 292387.23232323
realray(0) = real(intray(1,1),dp)*16.0_dp + realray(7)

7.1 Allocatable Arrays

There are different types of arrays, even boolean, but what about if I don’t
yet know how big I want my array? I know I need to have an array but am
not sure how big it is. In these cases it is possible to use ALLOCATABLE
ARRAYS. There are a couple of fundamental differences in both the behavious
and declarations of these arrays.

real(dp), allocatable, dimension(:,:) :: myArray

The declarations require the additional ’allocatable’ statement, but when it
comes to dimension we need to use colons and commas to indicate how many
dimensions it is to have, that is its shape. As you can see from the previous
example, a 2-D array has been declared. At some later time, I find out that I
wish to have the dimensions of length n and m respectively, where n and m are
integers we have discovered (or a user inputted). Now I use the allocate()
statement:

allocate(myArray(n,m))

I am now free to use myArray like any other array; care must be taken to
deallocate the array once its use has completed, to prevent memory leaks. I
can de/allocate more than one array at a time, separating using commas.

deallocate(myArray)

Allocatable arrays have advantages in both the size of array allowed can be
bigger, and in some instances they are quicker. But by far the greatest strength
lies in their flexibility.

7.2 Intrinsic Array Operations

There are many intrinsic functions to act on arrays, a select few which may be
of use are:

SUM ! Sets ’a’ to be the sum of all element values in array
MAXVAL ! Returns the minimum value in an array
MINVAL ! Returns the maximum value in an array
MAXLOC ! Returns location(element number) of maximum value
MINLOC ! Returns location of minimum value
ALLOCATED ! Returns allocation status of an array
TRANSPOSE ! Transpose an array onto another array with switched dimensions

! NB: array must be of rank 2
CSHIFT ! Circular shift all elements (to left or right)
EOSHIFT ! End of shift all elements (but loses one end and other end is 0.0)

There are many more intrinsic functions to arrays (See pg. 464 of Lahey)
and each function above is able to take additional arguments.
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8 IF and SELECT CASE statements

IF statements (and later SELECT CASE) provide the basis for logical program
control. An IF statement must always have a corresponding END IF. They
work as follows:

IF (statement to be true) THEN
!ACTIONS IF STATEMENT TRUE

ELSE IF (other condition) THEN
!ACTIONS IF FURTHER CONDITION MET BUT FIRST CONDITION NOT

ELSE
!ACTIONS IF STATEMENTS ARE FALSE

END IF

or

IF (statement to be true) THEN
!ACTIONS IF STATEMENT TRUE

ELSE
!ACTIONS IF STATEMENTS ARE FALSE

END IF

or

IF (statement to be true) THEN
!ACTIONS IF STATEMENT TRUE

END IF

There are a couple of ways to give the ’(statement to be true)’ bit: if using
BOOLEAN/LOGICALS we can just use the variable name.

logical :: testvar = .true.

if(testvar) then
print *, "It IS true"

else
print *, "It’s the LIES I can’t stand!"

end if

In this example the program will print, to the screen: “It IS true” as we
set testvar as true; continue to note there is no difference between capitals and
lowercase. Conversely, one can use the .NOT. statement to mean ’execute if
this condition is false’. Ordinarily however we may want to say: do this if x is
greater than y.

8.1 Greater/Less than, Equal to

IF(x.gt.y) THEN
! operations to do

END IF

Forgetting the THEN statement is a constant source of error. Check your
syntax! There are many ways of giving the logical arguments, including sym-
bolically. It is of personal preference to use letters as I find them easier to
remember, a few examples:
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.eq. or == - equal to

.ne. or /= - NOT equal to

.lt. or < - less than

.le. or <= - less than or equal to

.gt. or > - greater than

.ge. or >= - greater than or equal to

.AND. - To combine conditionals.

.OR.

For example, if we wish to say ’If x is in the range (0-4)’ we could use:

IF(x.ge.0.AND.x.le.4) THEN

Please see as many sources of literature as you can until you understand
logical constructs. There are many additional conditions and methods that
have been purposefully omitted for brevity.

8.2 SELECT CASE

A SELECT CASE statement (or simply CASE statement) may be crudely re-
garded as a glorified, nested, IF statement. Its benefits arise when you have a
multi-conditional operation. If opens with SELECT CASE(test variable)
and ends with END SELECT. Say if we have an integer, called ’test’: if its
value is 1 or 2 then set ’x’ to be equal to ’test’, else if test = 3 set ’x’ to equal
25, else if test = 4 set ’x’ to be 49; for all other values of ’test’ set x = 0.

SELECT CASE(test)
CASE DEFAULT

x=0
CASE(1:2) ! This means 1 to 2.

x=test
CASE(3)

x=25
CASE(4)

x=49
END SELECT

We can immediately see this becomes much clearer than using IF state-
ments. CASE statements aren’t limited to INTEGER values, we can even use
CHARACTERS (for more information, nothing beats a good book). This
next example insults people based on what day of the week it is; note how the
DEFAULT value will be a week day.

CHARACTER(LEN=256) :: day
SELECT CASE(day)

CASE DEFAULT
print *, "Enjoy work, loser!"

CASE("Wednesday")
print *, "Did you get the memo requiring all TPS reports to have covers?"

CASE("Saturday")
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print *, "Enjoy the hangover!"
CASE("Sunday")

print *, "Sunday, bloody Sunday... how’s that report for Monday coming?"
END SELECT

9 DO loops

DO loops may be seen as the ’engine’ of a program, they are used for repeating
operations, incrementing operations, acting on consecutive elements of an array
etc... You begin with DO counter=start,end,steps where steps is optional
and conclude with an END DO.

NB: Always make sure to use INTEGERS with loop counters.

program dotest
implicit none
integer :: i, a,b,c

do i=1,10,2
print *, i

end do

a=1
b=10
c=2
do i=a,b,c

print *, i
end do

end program

The output from above would be to print “1,3,5,7,9” to the screen, twice.
As stated, the ’steps’ statement is optional, it is somewhat traditional to use ’i’,
’j’ and ’k’ (in that order) for DO loops.
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DO loops may be nested inside each other, the inner loops will complete
first.

do i = 1, imax
do j=1,jmax

do k=1,kmax
print *, i,j,k

end do
end do

end do

If imax = jmax = kmax = 2 the output of the previous program would be:

i,j,k

1,1,1
1,1,2
1,2,1
1,2,2
2,1,1
2,1,2
2,2,1
2,2,2

9.1 Infinite DO loops

Sometimes you just want a program to run ’until it’s done’. You don’t know
how many timesteps are needed, or how many points you wish to go over, it may
be an unspecified domain: the point is the program must run until it has the
answer, then stop. Fortunately there are special cases of DO loops that never
stop until YOU tell it to (always remember the ultimate ’off switch’ is to
pull the power from the wall! - also NEVER do this!), these are Infinite DO
loops. The syntax is like that of an ordinary DO loop but with: no counter,
no start point, no stop point and no steps:

DO
x = x + 1 ! take value of x, add one, assign that number to x

END DO

This program will never end, it will keep adding 1 to x; even when x is as
big as it can be – in which case it will ’cycle’ over and flip to the lowest it can
be – and so on. Infinity is a long time, luckily computers are patient enough to
wait for it; unluckily they are patient enough to wait for it when we are not.

So, how do we make these things stop? We do so by way of an EXIT
command: when a condition has been met (i.e. when the answer has been
found or some preset limit has been reached), remember we use IF statements
to check this, then you may simply type EXIT. Be careful as anything else
inside the loop you wanted to do before exiting must be written before the
EXIT command.
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DO
if(condition met) then

! Anything to do before leaving loop
! do here.
EXIT

end if
END DO

Be aware that EXIT will only quit the loop it is enclosed by.

DO
DO

if(condition met) then
exit

end if
END DO

END DO

Note that this is still an infinite DO loop since we only exited the innermost
loop. Be careful!

In Linux, if you suspect your program to be trapped in an infinite loop, type
CTRL-C to quit the program - do this from the command line where the pro-
gram was executed.

10 Input

When you want the USER to input the value of a variable during the running
of the program, use the READ statement.

program readtest
implicit none

integer :: b

print *, "Please enter a value for b:"
read *, b

print *, b

end program

The program accepts a value ’b’ from the user and prints it back to confirm,
try it for yourself. The READ statement is very useful as it means that you don’t
have to re-compile to change one variable, it is also extremely powerful when
combined with allocatable arrays; for instance, declare an allocatable array,
allocate it based on the users input and then fill every element in that array as
the REAL value of its INDEX (that is it’s corresponding, 1-D ’coordinate’).
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program readtest
implicit none

integer :: b,i, imax
real,allocatable, dimension(:) :: oneDarray

print *, "Please enter a value for b:"
read *, b

allocate(oneDarray(1:b))

do i = 1, b
oneDarray(i) = real(i)

end do

deallocate(onedarray)
end program

11 Output

We have seen, without explanation, copious use of the PRINT statement. This
merely prints whatever follows it to the screen; for multiple things, separate with
a comma. Make sure you include the *, after PRINT, this ensures standard for-
matting. Enclose strings(words) in quotation marks or apostrophes. Examples:

print *, "hello, the variable x is", x, ’which is nice’
print *, x,y,z

11.1 External Files

Perhaps you wish some data to be more permanent than just being written
to the screen; you may even wish to draw a graph in your life; computers are
very good at them. In order to WRITE to an external file you need a UNIT
number:

write(22,*) x,y,z

This will write x,y and z (separated by a standard delimmiter such as space
or tab) into the file FORT.22 (filename is compiler dependent). The UNIT in
this case was 22; certain units are reserved, as a rule of thumb: start above 20. If
you wish to do something more exotic/professional then you require an OPEN
statement with corresponding CLOSE statement when you are finished using
it.

program writetest
implicit none

integer :: i
integer :: ios ! this is a standard name for error checking
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OPEN(UNIT=22, FILE="myFile.dat", iostat=ios)
IF(ios.ne.0) STOP "Error in opening file"

do i = 1,10
WRITE(22,*) real(i), real(i)**2

end do

CLOSE(UNIT=22,iostat=ios)
IF(ios.ne.0) STOP "Error in closing file"

end program

This program will print x Vs. x**2 (this is x*x, or ’x squared’) to the file
’myFile.dat’. The iostat=ios part may be excluded and the program will still
run, but you should always include it (as well as the IF statement) to check
that your program is working as you expect it to. As with all functions, such
as WRITE, there are many other options which may be included to give more
control to the programmer; I once more state that these are available in many
good books (some of which are free online).

12 Resources

Books:

• Ellis, Lahey and Phillips, Fortran90 Programming.
This is the recommended book. For others, see below.

Internet:

• http://www-users.york.ac.uk/ hcb1/fortran.html
Paddy Barr’s online course - you should be familiar with this reference. It
is an extensive guide with many programming exercises.

• http://en.wikipedia.org/wiki/Fortran
This is a good article; however it will also point you in the direction of
many free books and online guides that can help you. Not to mention
COMPILERS, GRAPHICS LIBRARIES and even CODE REPOS-
ITORIES. See near the bottom of the page.

Do remember that there is never one Holy-Grail of resources, find
a book that works for you and increase your understanding, the syn-
tax will naturally follow. Most of all BONNE CHANCE!
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