Summary Sheet 0 Mathematical Preliminaries

1 Solid Angle

Let S be a closed surface surrounding the origin; let dS be an element of area of the surface at a point \mathbf{r} ; let \mathbf{n} be a unit normal vector to dS, and let dA be the projection of dS onto a sphere of radius r centred on the origin as in the figure:

then the solid angle subtended by dS is

$$d\Omega = \frac{1}{r^2}dA$$

and the unit of solid angle is the *steradian*. Note that if we integrate over the complete surface, then we see that the total solid angle for any point, for any closed surface, is $\Omega = 4\pi$. Solid angle is a very useful concept in evaluating surface and volume integrals.

2 Div, Grad and Curl

2.1 Divergence

The divergence of a vector field \mathbf{F} , written as $\mathbf{div} \mathbf{F}$ or $\nabla . \mathbf{F}$, represents the outwards flux of \mathbf{F} per unit volume at the point \mathbf{r} :

The outwards flux of **F** from the volume element $\delta \tau = \int_S \mathbf{F} . d\mathbf{S}$, where $d\mathbf{S}$ is directed out of the volume $\delta \tau$. Therefore,

$$\nabla . \mathbf{F} = \lim_{\delta \tau \to 0} \frac{\int_{S} \mathbf{F} . d\mathbf{S}}{\delta \tau}$$

In the definition of ∇ .**F**, the limit of $\delta \tau \to 0$ is taken to define the outwards flux at a single point **r**.

2.2 Gradient

The gradient of a scalar field ϕ , produces a vector field $\nabla \phi$, which acts in the direction which ϕ is most rapidly increasing. It's magnitude is given by the slope in that direction:

If $\hat{\mathbf{e}}$ is a unit vector along a line between two points P and Q, with position vectors \mathbf{r} and $\mathbf{r} + \delta \mathbf{r}$, the component of $\nabla \phi$ along PQ is

$$\widehat{\mathbf{e}}.\nabla\phi = \lim_{\delta\mathbf{r}\to0} \frac{\phi(\mathbf{r}+\delta\mathbf{r}) - \phi(\mathbf{r})}{\delta\mathbf{r}}$$

2.3 Curl

The curl of a vector field \mathbf{F} , $\nabla \times \mathbf{F}$, generates another vector field which is a measure of its vorticity:

If $\hat{\mathbf{e}}$ is a unit vector perpendicular to a small surface area δS located at \mathbf{r} , $\nabla \times \mathbf{F}$ along $\hat{\mathbf{e}}$ is defined by

$$\widehat{\mathbf{e}}.\nabla \times \mathbf{F} = \lim_{\delta S \to 0} \frac{\oint \mathbf{F}.d\mathbf{l}}{\delta S}$$

where the line integral is evaluated around the perimeter of δS in a right handed sense (right hand screw rule: $\hat{\mathbf{e}}$ points in the direction a right handed screw goes when turned along the path $d\mathbf{l}$).

3 Identities

3.1 The Divergence Theorem

The total flux (= flow) of a vector field \mathbf{F} out of a closed surface S equals the volume integral of $\nabla \cdot \mathbf{F}$ over the volume enclosed by S:

$$\int_{S} \mathbf{F}.d\mathbf{S} = \int_{V} (\nabla . \mathbf{F}) d\tau$$

which follows from the definition of $\nabla . \mathbf{F}$.

3.2 Stokes Theorem

The line integral of a vector field **F** around a circuit l equals the flux of $\nabla \times \mathbf{F}$ through any surface S which spans l:

$$\oint_{l} \mathbf{F}.d\mathbf{l} = \int_{S} (\nabla \times \mathbf{F}).d\mathbf{S}$$

where the line integral is taken in a right-handed sense with respect to the direction of the field. This theorem follows from the definition of $\nabla \times \mathbf{F}$. (See Appendix B of Grant and Phillips for more details).

4 Div, Grad and Curl in Different Co-ordinate Systems

The form of div, grad and curl can be defined in various co-ordinate systems. The forms below are taken from the Physics departments booklet "Tables of constants and mathematical formulae" provided for use in physics examinations.

4.1 Cartesian Co-ordinates

Gradient

$$\nabla V = \hat{\mathbf{x}} \frac{\partial V}{\partial x} + \hat{\mathbf{y}} \frac{\partial V}{\partial y} + \hat{\mathbf{z}} \frac{\partial V}{\partial z}$$

Divergence

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

Curl

$$abla imes \mathbf{A} = \left| egin{array}{ccc} \widehat{\mathbf{x}} & \widehat{\mathbf{y}} & \widehat{\mathbf{z}} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ A_x & A_y & A_z \end{array}
ight|$$

Laplacian

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

$$\nabla^2 \mathbf{A} = \widehat{\mathbf{x}} \nabla^2 A_x + \widehat{\mathbf{y}} \nabla^2 A_y + \widehat{\mathbf{z}} \nabla^2 A_z$$

4.2 Cylindrical Polar Co-ordinates

$$x = r \cos \theta$$
 $y = r \sin \theta$ $z = z$

Gradient

$$\nabla V = \widehat{\mathbf{r}} \frac{\partial V}{\partial r} + \widehat{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial V}{\partial \theta} + \widehat{\mathbf{z}} \frac{\partial V}{\partial z}$$

Divergence

$$\nabla . \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (r A_r) + \frac{1}{r} \frac{\partial}{\partial \theta} A_{\theta} + \frac{\partial}{\partial z} A_z$$

Curl

$$abla imes \mathbf{A} = rac{1}{r} egin{array}{cccc} \widehat{\mathbf{r}} & r\widehat{ heta} & \widehat{\mathbf{z}} \ rac{\partial}{\partial r} & rac{\partial}{\partial heta} & rac{\partial}{\partial z} \ A_r & rA_{ heta} & A_z \ \end{array}$$

Laplacian

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2}$$

4.3 Spherical Polar Co-ordinates

$$x = r \sin \theta \cos \phi$$
 $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

Gradient

$$\nabla V = \widehat{\mathbf{r}} \frac{\partial V}{\partial r} + \widehat{\theta} \frac{1}{r} \frac{\partial V}{\partial \theta} + \widehat{\phi} \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi}$$

Divergence

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} A_\phi$$

Curl

$$\nabla \times \mathbf{A} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \widehat{\mathbf{r}} & r \widehat{\theta} & r \sin \theta \widehat{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_r & r A_{\theta} & r \sin \theta A_{\phi} \end{vmatrix}$$

Laplacian

$$\nabla^2 V = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$$