Summary Sheet 2.
Magnetostatics and Electromagnetic Induction.

Lecture 7.

The current density J is defined to be the charge flowing normally through a surface dS, so
that dI = J.dS. Hence the total current flowing through a surface S is given by

I= / 1.ds
S

If a current flows into/out of a volume V, then the total charge contained within V' must
increase/decrease, since charge is conserved. This can be written as

d
L[ o :—/J.dS,
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which can be converted into differential form using the divergence theorem so that

op
V.J—i—a—o

which is known as the continuity equation (or conservation of charge equation).
A metal conductor in an E-field will have a current flowing such that

J=0E

where o is the conductivity. The conductivity is related to resistivity p by o = 1/p. In a wire
of length [ and cross-sectional area A, the total resistance R in terms of p is given by R = pl/A.
Charges moving with a velocity v in a magnetic field B feel a Lorentz force F given by
F = ¢gv x B. This equation defines the magnetic field B, with B in Teslas (T) when F, ¢
and v have units of N, C, and m s ! respectively. In the presence of both E and B fields, the
total force felt by the particle is

F=q(E+vxB).

When charges flow in a conductor to form a current they still experience the Lorentz force. An
element of wire dl carrying a current I experiences a force

dF =1dl x B

in a magnetic field B.

Lecture 8.

A current element Idl produces a magnetic field dB at a point P at r given by

_/,Lollei‘\

dB =
47 r?

For an entire circuit, the total field at P is given by



B_ u_()_f ?{ dl xr
4T r2
which is known as the Biot-Savart law. For a distributed current this can be written as
o [ IXT
B = i /V 3 dr.
Since a current element I;1dl; will generate a field dB;, then a current carrying element Idl,
in it’s vicinity will experience a force

dF2 _ @11[2 (de X (d11 X I'))
4 r3

Lecture 9.

Magnetic flux ® is defined by
o= [ Bads
s

and has units of T m® (or Webers). The total magnetic flux crossing any closed surface S
bounding a volume V is zero so that

/SB.dS —0.

This is Gauss’s law for B. This can also be written in differential form using the divergence
theorem so that

V.B=0.

This is one of Maxwell’s equations. Physically V.B = 0 means that magnetic field lines are
continuous, and hence that there are no magnetic charges (i.e., the are no magnetic monopoles).

The line integral of B around a closed loop C' is determined by the current flowing through
the surface S bounded by C. This is Ampere’s law which states that

7{B.dl - uo/ 3.dS = pol.
S
This can be transformed into differential form using Stoke’s theorem so that
VxB= ,l,l,()J

for steady (non-time varying) currents.

Lecture 10.

Magnetic vector potential A is defined in terms of B so that

B=VxA.

For magnetostatics, a Poisson equation relating A and J can be derived so that
VA = —pd

which has the formal solution

Ar) = @/V T@) g

T Arx T



Lecture 11.

A closed current loop in a magnetic field will experience the Lorentz force dF = Idl x B on each
element of current in the loop. In a uniform field the loop experiences no net force, however it
does experience a torque

I' =1dS x B,

where dS represents the area of the loop. We can define the magnetic dipole moment of a loop
carrying current I with area dS as
m = IS (: / Ids)
S

Hence the torque experienced by a magnetic dipole in a field B is [' = m x B, and the magnetic
potential energy which can exist due to work done against this torque is

UM =-m.B

A magnetic dipole moment m generates a magnetic field given by

_@2mcos9 B _@mSin@

B, = ) =
" 4n 37 A 73

, By =0.

This can be compared to the E-field due to an electric dipole E, = 2pcosf/(4negr3), Ey =
psin@/(4megr?), Ey = 0.

Since the current generating a magnetic dipole can be considered to represent the circular
motion of (massed) charge carriers around a loop, magnetic dipoles have associated angular
momentum L. For electron charge carriers

e
m= —

2m,

As magnetic dipoles experience a torque in a field B, there must be a change in their angular
momentum in the presence of this torque (Torque = rate of change of angular momentum). This
causes the magnetic dipoles to precess around the external field B with the Larmor (angular)
frequency wy, = mB/L.

Lecture 12.

An induced electromotive force (e.m.f.) can be generated in a circuit by changes in the magnetic
flux linking the circuit. Motional electromotance occurs when a circuit moves in a static B-field,
whilst transformer electromotance occurs when the B cutting a stationary circuit changes in
time. In both cases, the resulting electromotance is given by the rate of change of magnetic
flux cutting the circuit so that

dd
V=¢$Bd=-""
dt
This is Faraday’s law of electromagnetic induction. This induced e.m.f. may generate an
induced current which will itself generate a magnetic field. The flux created by the induced
currents is in a sense which opposes the original change of flux (Lenz’s law).
Faraday’s law



fE.dl: —i/ B.dS
dt Js

can be transformed into differential form using Stoke’s theorem to give

0B

E=—.
V x pr

This is one of Maxwell’s equations. When B varies in time, E can be generated by both charges
and magnetic field changes so that

0A

If B is constant in time, then V x E = 0 as expected for electrostatic fields, and E is given by
E=-Vo¢.

Lecture 13.

A current loop (1) carrying current I; generates a magnetic field B; which may link an adjacent
current loop (2). The flux linking (2) due to I; in (1) is

(b21 = Mlel

where My, is the mutual inductance. A similar argument applies to the flux linking (1) due to
a current I in (2), so that @15 = Misl,. In fact My = My = M, where M represents the
mutual inductance of the two circuits. Changes in either current will generate changes in the
flux cutting the other so that, for example,

d dI,
= Py = — ML
& dt 2 dt

M can be calculated using Neumann’s formula
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A current loop also generates flux linking itself. The flux linkage is proportional to I, so

®=1LI

where L is the self-inductance of the loop. If the current in the loop changes, an e.m.f. V' will
be induced which acts to oppose the change in ®

e dl

Ve-—=-Lo.

An inductor (a set of current loops such as a solenoid, for example) carrying a current I will
have generated a magnetic field B. Work is done to generate this field, and this energy is stored
in the magnetic field itself. For an isolated inductor, the stored potential energy is

1

UP = 5[/[2



If there are two circuits with self-inductances L; and L, and a mutual inductance M, the total
potential energy stored is

1 1
U= §L1]12 + ML+ 5LQIQQ.
The potential energy stored in any magnetic field (such as that created by an inductor) has an

energy density 1oB.B/2. Hence the total potential energy stored in a magnetic field is

1
U=— [ B.Bdr

2/,[,() 1%

(c.f., the electrostatic energy stored in an E-field, U = 3¢ [, E.Edr).



