Summary Sheet 3
Dielectrics, Magnetic Materials, and Maxwell’s
Equations.

Lecture 14.

Dielectrics have no free charges, and all their electrons are bound to their atoms. In response to
an externally applied E-field, the centroids of the positive and negative charge distributions in
the atoms of the dielectric are displaced so that the material acquires an electric polarization.
Electric polarization P represents the dielectric’s electric dipole moment per unit volume, so
that

P = Np,

where N is the number of atoms per unit volume. As a result of this polarization, the dielectric
can develop polarization surface charge densities o, given by

Op = P.n

where 1 is the unit normal to the dielectric surface. If the dielectric is non-uniform, then
polarization can generate a finite net volume polarization charge density p, given by

P — —V.P.

so if P is uniform, V.P = 0 and hence pp = 0.

E-fields are generated by charges, so that in dielectrics E may be generated by both free (p;)
and bound (i.e., polarization, p,) charge densities. Hence, in Gauss’s law, p must be represented
by p = ps + pp. If we define an electric displacement vector as

D=¢E+P,
then Gauss’s law for D can be in terms of p; only. In this case it becomes

V.D = ,Of
JsD.dS = [, psdr

and so only free charges are sources of D.

Most dielectrics we will consider are Linear (the polarization is proportional to E), Isotropic
(polarization independent of the direction of E), and Homogeneous (polarization independent
of position) - these are called LIH dielectrics. We can define the electric susceptibility xg in
terms of

P = xgsoE

where xg is dimensionless and is independent of both position, and the orientation and mag-
nitude of E in an LIH dielectric. Since D = ¢gE + P, then we can write

D = SoE =+ P = SoE(l + XE)



If we define a relative permittivity &, to be

e =14+ %xg
then
D =¢.5E

with &, > 1, and it describes the total permittivity € in units of g (i.e., € = go&;).

If a capacitor is filled with dielectric of relative permittivity ¢,, the field between the plates
is reduced by a factor ,, whilst the capacitance is increased by a factor of ¢,, as compared to
their values in a vacuum.

Lecture 15.

At the interface between different media, boundary conditions for ¢, D and E can be derived.
¢ must be continuous across the boundary, whilst the normal components of D at the interface
are related by the free charge density on the boundary

Dy, — Dy, = oy.

This means that D, the normal component of D, is continuous unless the interface carries free
charge. Similarly, the tangential components of E are continuous across a boundary.

In the presence of dielectrics, free charges are sources of D, and in this case a Poisson
equation for ¢ can be derived

V2¢= _Pr
Eolr

so if p; = 0, we have Laplace’s equation VZ¢ = 0.
When dielectrics are present, the electrostatic energy density stored in the fields increases
by a factor of €,, so that the energy density can be written as

1 1
“eoe,BEE = -DE
9°0¢ 2

and so the total stored potential energy in the fields in the presence of dielectrics is

U:l/DEm
2Jv

Lecture 16.

In an external magnetic field By, a magnetic material can acquire a macroscale magnetization.
Magnetization is defined to be the magnetic dipole moment per unit volume, so that

M= Nm

where m is the dipole moment of an atom, and there are N atoms per unit volume. Magneti-
zation can generate additional magnetic fields so that the total magnetic field is

B =B, + By,



M can result from the orbital motions of electrons, or occur because of the intrinsic spins
of electrons or nuclear particles. B can be increased or decreased depending on the type of
magnetic material present.

Diamagnets: In the absence of By, the net dipole moment of each atom in a diamagnetic
material is zero. However, By can change the orbital motion of the electrons through the action
of the Lorentz force, and the resulting changes in dipole moments reduce B.

Paramagnets: In the absence of By, each atom in a paramagnetic material has a non-zero
net dipole moment, however they are randomly oriented so that macroscopically M = 0. In
the presence of By, these tend to align parallel to By, so paramagnetic materials increase B.

Ferromagnets: Macroscale domains within ferromagnetic materials have their dipole mo-
ments oriented parallel to each other, however the domains themselves are randomly oriented
in the absence of By. When By is applied, the domains become aligned parallel to By which
can produce a very large magnetization and consequent large increase in B.

The current elements making up the dipole moments in a magnetized material can com-
bine to produce a macroscale magnetization current on the materials surface. The surface
magnetization current density Js which is produced is given by

J;,=Mxn

where 1 is the unit normal at the surface. If M is non-uniform, internal magnetization current
densities Jj; can be produced, given by

Ju =V x M.

In a medium which is both electrically conducting and magnetizable, we must take account
of both the conduction (J;) and magnetization (J,s) currents so that the total current density
is given by

J=Js+Jum.
If we define the magnetic H-field as
1
H - _BO - M
Ho

then we can write Ampéres law in the presence of magnetized materials as

where I; represents the free current, such as that due to moving conduction electrons.
For isotropic, homogeneous, non-ferromagnetic materials, we can define the magnetic sus-

ceptibility xp as B
M= xp—
Ho

where xp is dimensionless and can be > 0 (paramagnetic) or < 0 (diamagnetic).



Since H = ul_oBO — M, we can define the relative permittivity of a magnetic material p, as

Hr = 1/(1 - XB)'
Hence
_ 1 _ 1
or B = prpoH

In the presence of magnetic materials B is increased by a factor of p, (note that p, can be
greater or less than 1).

Lecture 17.

Since V.B = 0, taking the divergence of H gives

V.H = iV.B - V.M=-V.M

Ho

and so V.H is non-zero when V.M is non-zero. This will occur where M is discontinuous, such
as at the edges of magnetic materials. This means that there can be sources and sinks of H,
and that lines of H do not have to be continuous.

Boundary conditions can be derived which govern the behaviour of B and H at interfaces.
The normal component of B is continuous across an interface so that

BIJ_ - BQJ.a

where B is the component of B normal to the interface. Similarly, the component of H parallel
to the interface is also continuous so that

Hy = Hy

In the presence of magnetized material, the total potential energy density stored in the fields
is given by %B.H per unit volume. Hence the total potential energy stored is

U:E/BHM
2Jv



Lecture 18.

Ampéres law V x B = pugJ can be shown to be incomplete for time varying currents. To satisfy
conservation of charge, an additional term poeoOE/0t called the displacement current must be
added so that Ampéres law becomes

OE
B = J — .
V x /J()l +808t]

Electromagnetism can then be described by four field equations, known as Maxwell’s equations,
which n vacuo are

vVE = 2
€0
0B
E = ——
V x oy
VB =0
OE
B = —
V x Ho |:] + €0 at‘|

In matter, the macroscopic fields obey Maxwell’s equations in the following form

VD = pf
0B
VXE = _E
VB =0
oD
H = it
V x Jf + BN

Maxwell’s equations describe all electromagnetic phenomena, including electromagnetic
waves. In free space, where p = 0 and J = 0, the following wave equations for E and B
can be derived

0’E
2
VE = Mo%w

0°B
V’B = —.
Hogo 12
These equations describe waves which propagate with a speed ¢ = 1/,/10€0. This is the speed of
light (in vacuo), so that Maxwell’s equations can describe light in the form of an electromagnetic

wave.



