
Appendix AOverviewA.1 Diret methods of solving the Shrödinger equa-tionA.1.1 Numerial integrationWe may hoose to use a variety of standard or speialised tehniques for solv-ing the time-independent Shrödinger equation, onsidering it as an ordinarydi�erential equation.Runge-Kutta methodThe advantage of this method is that it is a single-step method whih hasthe advantage of being self-starting and of oping with disontinuities in thepotential. It an also be simply used in a variable step-size manner, wherethe step-size is automatially adjusted to keep some measure of the numerialerror in the solution within some presribed limit. The disadvantage of thismethod is that it requires many funtion evaluations per step - the mostommonly used fourth-order Runge-Kutta requires four funtion evaluationsper step.Numerov methodThe advantage of this method is that it is of higher-order than the standardfourth-order Runge-Kutta method and yet only requires two funtion eval-uations per step. The disadvantage of this method is that it is a multi-stepmethod whih means that it annot be self-starting, and so another methodhas to be used for the �rst step. This also makes it muh less stable whenthere are disontinuities in the potential.95



96 APPENDIX A. OVERVIEWA.1.2 Grid-based methodsIf we onsider the time-dependent Shrödinger equation as an initial-valuepartial di�erential equation, then there are many standard tehniques thatat �rst sight appear appliable to its solution. However, an error analysisshows that many of these methods are unstable for the Shrödinger equation,and do not preserve the normalisation of the wavefuntion.Crank-Niholson methodThis is the method of hoie for a diret solution of the time-dependentShrödinger equation, as it is unonditionally stable and is also guaranteedto preserve the normalisation of the wavefuntion.A.1.3 Boundary onditionsMost often, the boundary onditions are spei�ed as initial-value onditions,in whih ase the above methods are best. However, boundary onditions analso be boundary-value type, in whih ase a di�erent approah is required.In the �nite-di�erene approah, we apply a spatial grid to the problem andreplae di�erentials by lattie sums and iterate around all grid points to self-onsisteny. Various types of grid may be used giving rise to a hierahy ofmethods.A.2 Indiret methods of solving the ShrödingerequationA.2.1 Variational prinipleWe an also exploit the eigenvalue properties of the Shrödinger equation toderive a variational priniple, whih an be used to derive the ground statewavefuntion and energy without diretly solving the equation.Rayleigh-Ritz methodIn this method, an analyti approximation to the wavefuntion is derivedfrom minimising the energy aording to the variational priniple. It angive good insight into the true behaviour of the system, but is limited by thequality of the guessed funtional form.Linear Variational methodThis is a very powerful, general-purpose method that an be used to deriveapproximate energies and wavefuntions for muh more omplex systemswithout requiring a good initial guess.



A.2. INDIRECTMETHODS OF SOLVING THE SCHRÖDINGER EQUATION97A.2.2 Many-Eletron methodsMost methods of solving the many-eletron problem rely on the variationalpriniple rather than a diret solution approah. The three major approahesonsidered in this ourse were Hartree-Fok, Density Funtional Theory andQuantum Monte Carlo method.Hartree-Fok theoryThis is a variational method based upon a wavefuntion approah. It is as-sumed that the many-eletron wavefuntion an be written as a Slater deter-minant of single-eletron funtions, whereupon the Hartree-Fok equationsan be derived. This method is apable of treating both ground state, andexited states if the theory is appropriately extended and multiple determi-nants ontaining exited single-eletron states are inluded. Suh extensionsare very expensive. This method has the advantage of treating the eletronsas fermions and has an exat treatment of the e�ets of exhanging eletronsas required by the Pauli exlusion priniple. However, any further e�et ofeletron orrelation is ignored exept in the multi-determinant extensions.Density Funtional TheoryThis is a variational method based upon a harge density approah. Theharge density is a muh simpler quantity than the many-eletron wave-funtion. As suh, this method is apable of treating muh larger systemsthan Hartree-Fok methods. However, whilst in priniple an exat theory,in pratie there is an unknown omponent to the equation whih has to beapproximated. This unknown term is known as the exhange-orrelation po-tential, and the quality of the results is dependent upon the auray of theapproximation used here. This approximation inludes treating the e�etsof the Pauli prinple and also dynamial eletron orrelation, and an some-times perform signi�antly better than the Hartree-Fok method. However,there is no way of systematially improving this approximation, unlike the(onsiderably more omputational expensive) Hartree-Fok extensions.A.2.3 Quantum Monte CarloThe only omputational tehnique that an aurately treat all the subtlefeatures of eletron orrelation at the moment is Quantum Monte Carlo.This omes in various �avours, of whih the two most popular are:Variational Monte CarloIn the variational Monte Carlo approah, an attempt is made to improvethe single-partile wavefuntion input (whih must ome from a previous



98 APPENDIX A. OVERVIEWHartree-Fok or Density Funtional Theory alulation) by adding a Jastrowfator to inorporate the e�ets of eletron orrelation. This is the keydi�erene between a single-partile and a many-body wavefuntion. Thevariational tehnique is then used to optimise the oe�ients of the Jastrowfator, and Monte Carlo integration is used to evaluate the many-dimensionalintegrals that result.Di�usion Monte CarloThis takes a totally di�erent viewpoint to the time-dependent Shrödingerequation. By writing it in imaginary time, it is transformed into a di�usionequation. This is then solved by randomly moving walkers around an energylandsape to build up a Monte Carlo sampling piture of the true wave-funtion. However, eletrons are fermions and so there is a problem withinterpreting the sign hange in wavefuntion upon rossing a node. There-fore, the nodes of the wavefuntion are �xed in spae (they must ome froma previous Hartree-Fok or Density Funtional Theory or variational MonteCarlo alulation) and the rest of the wavefuntion is allowed to evolve. Inthis way, a true many-body wavefuntion is derived, with a full treatmentof eletron orrelation. This improves upon the variational Monte Carlo al-ulation with its presribed form for orrelation and is the most auratemethod for solving the Shrödinger equation. The only approximation leftin this method is that the nodes of the input wavefuntion are orret - henethe use of a variational Monte Carlo wavefuntion as input.


