
Appendix AOverviewA.1 Dire
t methods of solving the S
hrödinger equa-tionA.1.1 Numeri
al integrationWe may 
hoose to use a variety of standard or spe
ialised te
hniques for solv-ing the time-independent S
hrödinger equation, 
onsidering it as an ordinarydi�erential equation.Runge-Kutta methodThe advantage of this method is that it is a single-step method whi
h hasthe advantage of being self-starting and of 
oping with dis
ontinuities in thepotential. It 
an also be simply used in a variable step-size manner, wherethe step-size is automati
ally adjusted to keep some measure of the numeri
alerror in the solution within some pres
ribed limit. The disadvantage of thismethod is that it requires many fun
tion evaluations per step - the most
ommonly used fourth-order Runge-Kutta requires four fun
tion evaluationsper step.Numerov methodThe advantage of this method is that it is of higher-order than the standardfourth-order Runge-Kutta method and yet only requires two fun
tion eval-uations per step. The disadvantage of this method is that it is a multi-stepmethod whi
h means that it 
annot be self-starting, and so another methodhas to be used for the �rst step. This also makes it mu
h less stable whenthere are dis
ontinuities in the potential.95



96 APPENDIX A. OVERVIEWA.1.2 Grid-based methodsIf we 
onsider the time-dependent S
hrödinger equation as an initial-valuepartial di�erential equation, then there are many standard te
hniques thatat �rst sight appear appli
able to its solution. However, an error analysisshows that many of these methods are unstable for the S
hrödinger equation,and do not preserve the normalisation of the wavefun
tion.Crank-Ni
holson methodThis is the method of 
hoi
e for a dire
t solution of the time-dependentS
hrödinger equation, as it is un
onditionally stable and is also guaranteedto preserve the normalisation of the wavefun
tion.A.1.3 Boundary 
onditionsMost often, the boundary 
onditions are spe
i�ed as initial-value 
onditions,in whi
h 
ase the above methods are best. However, boundary 
onditions 
analso be boundary-value type, in whi
h 
ase a di�erent approa
h is required.In the �nite-di�eren
e approa
h, we apply a spatial grid to the problem andrepla
e di�erentials by latti
e sums and iterate around all grid points to self-
onsisten
y. Various types of grid may be used giving rise to a hiera
hy ofmethods.A.2 Indire
t methods of solving the S
hrödingerequationA.2.1 Variational prin
ipleWe 
an also exploit the eigenvalue properties of the S
hrödinger equation toderive a variational prin
iple, whi
h 
an be used to derive the ground statewavefun
tion and energy without dire
tly solving the equation.Rayleigh-Ritz methodIn this method, an analyti
 approximation to the wavefun
tion is derivedfrom minimising the energy a

ording to the variational prin
iple. It 
angive good insight into the true behaviour of the system, but is limited by thequality of the guessed fun
tional form.Linear Variational methodThis is a very powerful, general-purpose method that 
an be used to deriveapproximate energies and wavefun
tions for mu
h more 
omplex systemswithout requiring a good initial guess.
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tron methodsMost methods of solving the many-ele
tron problem rely on the variationalprin
iple rather than a dire
t solution approa
h. The three major approa
hes
onsidered in this 
ourse were Hartree-Fo
k, Density Fun
tional Theory andQuantum Monte Carlo method.Hartree-Fo
k theoryThis is a variational method based upon a wavefun
tion approa
h. It is as-sumed that the many-ele
tron wavefun
tion 
an be written as a Slater deter-minant of single-ele
tron fun
tions, whereupon the Hartree-Fo
k equations
an be derived. This method is 
apable of treating both ground state, andex
ited states if the theory is appropriately extended and multiple determi-nants 
ontaining ex
ited single-ele
tron states are in
luded. Su
h extensionsare very expensive. This method has the advantage of treating the ele
tronsas fermions and has an exa
t treatment of the e�e
ts of ex
hanging ele
tronsas required by the Pauli ex
lusion prin
iple. However, any further e�e
t ofele
tron 
orrelation is ignored ex
ept in the multi-determinant extensions.Density Fun
tional TheoryThis is a variational method based upon a 
harge density approa
h. The
harge density is a mu
h simpler quantity than the many-ele
tron wave-fun
tion. As su
h, this method is 
apable of treating mu
h larger systemsthan Hartree-Fo
k methods. However, whilst in prin
iple an exa
t theory,in pra
ti
e there is an unknown 
omponent to the equation whi
h has to beapproximated. This unknown term is known as the ex
hange-
orrelation po-tential, and the quality of the results is dependent upon the a

ura
y of theapproximation used here. This approximation in
ludes treating the e�e
tsof the Pauli prin
ple and also dynami
al ele
tron 
orrelation, and 
an some-times perform signi�
antly better than the Hartree-Fo
k method. However,there is no way of systemati
ally improving this approximation, unlike the(
onsiderably more 
omputational expensive) Hartree-Fo
k extensions.A.2.3 Quantum Monte CarloThe only 
omputational te
hnique that 
an a

urately treat all the subtlefeatures of ele
tron 
orrelation at the moment is Quantum Monte Carlo.This 
omes in various �avours, of whi
h the two most popular are:Variational Monte CarloIn the variational Monte Carlo approa
h, an attempt is made to improvethe single-parti
le wavefun
tion input (whi
h must 
ome from a previous
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k or Density Fun
tional Theory 
al
ulation) by adding a Jastrowfa
tor to in
orporate the e�e
ts of ele
tron 
orrelation. This is the keydi�eren
e between a single-parti
le and a many-body wavefun
tion. Thevariational te
hnique is then used to optimise the 
oe�
ients of the Jastrowfa
tor, and Monte Carlo integration is used to evaluate the many-dimensionalintegrals that result.Di�usion Monte CarloThis takes a totally di�erent viewpoint to the time-dependent S
hrödingerequation. By writing it in imaginary time, it is transformed into a di�usionequation. This is then solved by randomly moving walkers around an energylands
ape to build up a Monte Carlo sampling pi
ture of the true wave-fun
tion. However, ele
trons are fermions and so there is a problem withinterpreting the sign 
hange in wavefun
tion upon 
rossing a node. There-fore, the nodes of the wavefun
tion are �xed in spa
e (they must 
ome froma previous Hartree-Fo
k or Density Fun
tional Theory or variational MonteCarlo 
al
ulation) and the rest of the wavefun
tion is allowed to evolve. Inthis way, a true many-body wavefun
tion is derived, with a full treatmentof ele
tron 
orrelation. This improves upon the variational Monte Carlo 
al-
ulation with its pres
ribed form for 
orrelation and is the most a

uratemethod for solving the S
hrödinger equation. The only approximation leftin this method is that the nodes of the input wavefun
tion are 
orre
t - hen
ethe use of a variational Monte Carlo wavefun
tion as input.


