Appendix A

Overview

A.1 Direct methods of solving the Schrodinger equa-
tion

A.1.1 Numerical integration

We may choose to use a variety of standard or specialised techniques for solv-
ing the time-independent Schrodinger equation, considering it as an ordinary
differential equation.

Runge-Kutta method

The advantage of this method is that it is a single-step method which has
the advantage of being self-starting and of coping with discontinuities in the
potential. It can also be simply used in a variable step-size manner, where
the step-size is automatically adjusted to keep some measure of the numerical
error in the solution within some prescribed limit. The disadvantage of this
method is that it requires many function evaluations per step - the most
commonly used fourth-order Runge-Kutta requires four function evaluations
per step.

Numerov method

The advantage of this method is that it is of higher-order than the standard
fourth-order Runge-Kutta method and yet only requires two function eval-
uations per step. The disadvantage of this method is that it is a multi-step
method which means that it cannot be self-starting, and so another method
has to be used for the first step. This also makes it much less stable when
there are discontinuities in the potential.
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A.1.2 Grid-based methods

If we consider the time-dependent Schrédinger equation as an initial-value
partial differential equation, then there are many standard techniques that
at first sight appear applicable to its solution. However, an error analysis
shows that many of these methods are unstable for the Schrédinger equation,
and do not preserve the normalisation of the wavefunction.

Crank-Nicholson method

This is the method of choice for a direct solution of the time-dependent
Schrédinger equation, as it is unconditionally stable and is also guaranteed
to preserve the normalisation of the wavefunction.

A.1.3 Boundary conditions

Most often, the boundary conditions are specified as initial-value conditions,
in which case the above methods are best. However, boundary conditions can
also be boundary-value type, in which case a different approach is required.
In the finite-difference approach, we apply a spatial grid to the problem and
replace differentials by lattice sums and iterate around all grid points to self-
consistency. Various types of grid may be used giving rise to a hierachy of
methods.

A.2 Indirect methods of solving the Schrodinger
equation

A.2.1 Variational principle

We can also exploit the eigenvalue properties of the Schrédinger equation to
derive a variational principle, which can be used to derive the ground state
wavefunction and energy without directly solving the equation.

Rayleigh-Ritz method

In this method, an analytic approximation to the wavefunction is derived
from minimising the energy according to the variational principle. It can
give good insight into the true behaviour of the system, but is limited by the
quality of the guessed functional form.

Linear Variational method

This is a very powerful, general-purpose method that can be used to derive
approximate energies and wavefunctions for much more complex systems
without requiring a good initial guess.
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A.2.2 Many-Electron methods

Most methods of solving the many-electron problem rely on the variational
principle rather than a direct solution approach. The three major approaches
considered in this course were Hartree-Fock, Density Functional Theory and
Quantum Monte Carlo method.

Hartree-Fock theory

This is a variational method based upon a wavefunction approach. It is as-
sumed that the many-electron wavefunction can be written as a Slater deter-
minant of single-electron functions, whereupon the Hartree-Fock equations
can be derived. This method is capable of treating both ground state, and
excited states if the theory is appropriately extended and multiple determi-
nants containing excited single-electron states are included. Such extensions
are very expensive. This method has the advantage of treating the electrons
as fermions and has an exact treatment of the effects of exchanging electrons
as required by the Pauli exclusion principle. However, any further effect of
electron correlation is ignored except in the multi-determinant extensions.

Density Functional Theory

This is a variational method based upon a charge density approach. The
charge density is a much simpler quantity than the many-electron wave-
function. As such, this method is capable of treating much larger systems
than Hartree-Fock methods. However, whilst in principle an exact theory,
in practice there is an unknown component to the equation which has to be
approximated. This unknown term is known as the exchange-correlation po-
tential, and the quality of the results is dependent upon the accuracy of the
approximation used here. This approximation includes treating the effects
of the Pauli princple and also dynamical electron correlation, and can some-
times perform significantly better than the Hartree-Fock method. However,
there is no way of systematically improving this approximation, unlike the
(considerably more computational expensive) Hartree-Fock extensions.

A.2.3 Quantum Monte Carlo

The only computational technique that can accurately treat all the subtle
features of electron correlation at the moment is Quantum Monte Carlo.
This comes in various flavours, of which the two most popular are:

Variational Monte Carlo

In the variational Monte Carlo approach, an attempt is made to improve
the single-particle wavefunction input (which must come from a previous
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Hartree-Fock or Density Functional Theory calculation) by adding a Jastrow
factor to incorporate the effects of electron correlation. This is the key
difference between a single-particle and a many-body wavefunction. The
variational technique is then used to optimise the coefficients of the Jastrow
factor, and Monte Carlo integration is used to evaluate the many-dimensional
integrals that result.

Diffusion Monte Carlo

This takes a totally different viewpoint to the time-dependent Schrodinger
equation. By writing it in imaginary time, it is transformed into a diffusion
equation. This is then solved by randomly moving walkers around an energy
landscape to build up a Monte Carlo sampling picture of the true wave-
function. However, electrons are fermions and so there is a problem with
interpreting the sign change in wavefunction upon crossing a node. There-
fore, the nodes of the wavefunction are fixed in space (they must come from
a previous Hartree-Fock or Density Functional Theory or variational Monte
Carlo calculation) and the rest of the wavefunction is allowed to evolve. In
this way, a true many-body wavefunction is derived, with a full treatment
of electron correlation. This improves upon the variational Monte Carlo cal-
culation with its prescribed form for correlation and is the most accurate
method for solving the Schrodinger equation. The only approximation left
in this method is that the nodes of the input wavefunction are correct - hence
the use of a variational Monte Carlo wavefunction as input.



