Chapter 1

Time Independent Schrodinger
Equation

1.1 Revision of the Schrodinger equation

The Schrédinger equation is a time-dependent partial differential equation.
In this introductory lecture, we will not consider the time dependence (that
will come in lecture 3), and so we will instead consider the simpler case of
the time independent version. We can sometimes restrict things even more
by considering just one spatial dimension, in which case, we only have a
reasonably straightforwards ordinary differential equation to solve, subject
to some set of boundary conditions. This is exactly the type of problem that
you have solved analytically in the past.
We start by rewriting the time independent Schrédinger equation

2

PV (1) + V(1) (1) = B (1) (1.1)

in atomic units, that is h = me = e = 4mgp = 1 [so from now on we shall
always work in energy units of Hartrees (27.2eV') and in length units of Bohr
radii (ag = 0.529 A)] and so

1
—§v2¢+v¢:Ew (1.2)
or in terms of the Hamiltonian operator ﬁ,

Hy = Ey (1.3)

We know that this is an example of an eigenvalue equation, and that for
a given potential V' (r) and boundary conditions, there will in general be a
number of different possible solutions, corresponding to different eigenener-
gies F; with corresponding eigenfunctions ; .

7
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The first term in equation 1.1 corresponds to the kinetic energy of the
state, and so we see that a smoothly varying wavefunction (small V?21)) will
generally be a lower energy state than a rapidly varying one. This can also
be related to the number of nodes (zero crossings) in the wavefunction - a
smooth wavefunction will have less nodes than a rapidly varying one.

Example 1 - particle in infinite square well

As an example, we can consider the simple case of a quantum particle moving
in one dimension in an infinitely deep square well:

Vi) = 0 —a<z<a
: (1.4)
— o0 otherwise
which then gives the general solution of equation 4.1 as
Y (z) = Acos (kz) + Bsin (kx) (1.5)

with A and B being constants given by the boundary conditions and

k=V2E (1.6)

If we now apply the boundary conditions that ¢ (—a) = ¢ (a) = 0 then

k= nm/2a (1.7)

where n is an integer. For odd n we get cos (ka) = 0 and hence A = 0 whilst
for even n we get sin (ka) = 0 and hence B = 0. As the well is infinitely deep,
then all solutions are bound states. As usual, bound states have quantized
energies, given in this case by

m2n?

"7 Ra?
Note that as the potential has a definite parity then so do the eigenfunctions.
Note also that the ground state wavefunction has no nodes, whilst the first
excited state has one node, and successive excited states have more nodes.
See figure 1.1 for a simple sketch of the three lowest energy solutions.

(1.8)

We can also solve analytically problems such as the finite square well, or
the harmonic oscillator, or the spherical well, etc. Remember that these can
be used to demonstrate the existence of zero-point motion, tunnelling into
classically forbidden regions and the Heisenberg Uncertainty Principle.

Example 2 - the hydrogen atom

In order to solve the Schrodinger equation for the hydrogen atom, we need
to deal with a 3D equation in spherical polar coordinates. However, because
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Figure 1.1: Sketch of infinite square well, showing lowest three eigenvalues
and corresponding eigenfunctions.
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of the spherical symmetry of the Coulomb potential, we can separate the
solution into a radial and an angular part:

(0 (I‘) = (Tv 0, ¢) = Ry (T) Yim (97 @) (19)

where {n,l,m} are quantum numbers (integers) which characterise the solu-
tion. If we substitute equation 1.9 into equation 4.1 and apply the method of
separation of variables, we get two equations - a 2D angular equation, whose
solution is given in terms of spherical harmonics and a 1D radial equation:

1d%xp (1) L(1+1)
5 a2 T [V (r) + 52 ] Xnt (1) = Ex (1) (1.10)
where the substitution
Xnl (T) = TRnl (T) (111)

is used both to simplify the equation and ease its interpretation. Remember
that the probability of finding the particle in a small volume d3r is

Pr—r+dr) = Y (r)[* d®r
[ (r) [ r2dr - sin (0) dOde (1.12)
X (r)? dr - Y2, (6, ¢) sin (6) dBdgp

and so we see that the normalisation of y,; and Y}, can be chosen such that
o
/ lx(r)Ier: 1 (1.13)
0

i.e. |x (r)|? is the radial probability density.

Note that the second term in equation 1.10 looks very like a potential
energy term in the standard time independent Schrodinger equation, and so
is known as the effective potential:

1(I+1)

Vs () =V (1) + =55

(1.14)
and the % term is known as the centrifugal barrier.
What can we deduce about the general form of x (r)? Well, we know the

form of the Coulomb potential and so as long as V (r) — —oo as 7 — 0 no
1

more quickly than 7= we get

> 1(+1)

W — 77’2 (].].5)
which gives a non-divergent solution as

x(r—0) ~ ¢t (1.16)

=R (r—0) ~ r
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Figure 1.2: Sketch of first three radial eigenfunctions for the hydrogen atom.

Similarly, as r — oo we get

d?>y

el

which gives two classes of solution:

= —2Ex () (1.17)

x(r) ~ e V2Er B <0 (bound states)

. 1.18
x(r) ~ eFVZET E >0 (continuum) (1.18)

For intermediate values of r we can either use more elaborate mathe-
matics (which is possible for hydrogen but not for more complex atoms) or
turn to numerical solutions. We can therefore use this known asymptotic
behaviour to test our numerical solutions - every bound state solution, cor-
responding to an eigenenergy E,, should tend to zero as r — oo, and for
r — 0 should either tend to zero (for non-zero [) or tend to a cusp (for [ = 0).
See figure 1.2 for a sketch of the three lowest eigenenergy solutions which
demonstrates this behaviour. We now turn to the problem of how to solve
differential equations numerically.
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1.2 Revision of solving ordinary differential equa-
tions numerically

Unfortunately, the number of cases where we can solve the Schrodinger equa-
tion exactly are rather small. More usually, we are faced with the problem
of trying to find numerical solutions. As the Schrodinger equation is a linear
second-order differential equation, this should not pose too much difficulty.
We therefore begin by revising what we already know about solving ordinary
differential equations, before going on to explore particular techniques that
are suitable for the Schrodinger equation.

Most methods are designed for first-order differential equations of the
general form

d

= =fly).) (1.19)
Second-order equations of the general form

d?y

v fy(z),2) (1.20)

can be transformed into a pair of coupled first-order equations using

dy

o = z ()

dz

= @) (1.21)

and then solved using the same techniques.
Most methods then proceed to use an approximation to the derivative,
such as the forward difference:

dy _yla+da)—y ()

= 1.22
dx ox ( )
the backwards difference:
dy  y(x) —y(x—ox)
=~ 1.23
dx ox ( )
or the centred difference:
dy _y(x+dz)—y(z—dx) (124)

dr 20x

A straightforwards implementation of this approach results in the Fuler
method:

Ynt1 ~ Yn + f (yn, xn) h (125)
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Figure 1.3: Ilustration of Euler’s method - the derivative at each point x,
is extrapolated over the whole step length h to form the next point.

where the solution advances from z,, to z,41 = x, +h = z, +Jdx and h is the
step size. See figure 1.3 for an illustration of the method. Comparison to the
Taylor series shows that this method has an error O (h2) and hence is called
a first-order method (an n'’-order method has an error term O (h"“)).
Whilst the Euler method is the theoretical basis of most schemes, and as
such is important, it should not be used as it stands as it suffers from large
errors and is unstable. However, it can be improved upon to form the schemes
we shall discuss below.

1.2.1 The Runge-Kutta method

The Runge-Kutta method is a common class of methods used for solving
many differential equations. The simplest version improves upon the Euler
method by doing it twice: we evaluate y, using a single Euler step of length
h and also using a midpoint step as follows:

kl = f(xmyn)h

h 2
by = f(xn+§,yn+§)h (1.26)
Yni1 = Yn+ko+O(RP)

which is known as the second-order Runge-Kutta or midpoint method. 1t has
the advantage of being more stable than the Euler method, and so can be
used with a larger step size, and so requires less steps to span a given interval.
Unfortunately, the cost for this higher order method is that it requires two
function evaluations of f (x) per step. Often, this is the most time consuming
part of the calculation. See figure 1.4 for an illustration of this method.
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y(X) =

L
X, X Xg X X

Figure 1.4: Second-order Runga-Kutta method - the derivative at the start
of the step is used to find a point half-way across the interval h and this
midpoint value is then used to improve the calculation of the final point at
the end of the step. The filled circles represent final values which are of
interest, whilst open circles are intermediate values k; which are discarded
at the end of each step.

This method can be extended to arbitrarily high orders. In practice, it is
often found that the fourth-order method is the most efficient, in that higher
order methods require many more function evaluations without bringing sig-
nificant improvements in stability or step size. Note that a higher-order
method does not always have higher accuracy! The fourth-order Runge-
Kutta method is:

kl = f(xnayn)h

h k1
k = n o Yn — |h
2 f(x +2y+2>
h

k
ks = f(xn‘{'gyyn‘i';)h (1'27)

ky = f($n+hayn+k3)h
Yny1 = yn+%+%+%+%+0(h5’)

A significant advantage of the Runge-Kutta method is that it can be
used with a variable step size: at each step, an estimate of the error in
the solution can be made, and the step size reduced if the error is larger
than some prescribed tolerance, or the step size may be increased if a larger
error can be accepted. In this way, more attention is paid to those regions
where the solution is rapidly varying, whilst not paying an unnecessarily high
price of using an unnecessarily small step size where the function is slowly
changing. This variable step size is achieved by evaluating y,1 twice, once
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using a step size of h and then again using a step size of % If the difference
in Y11 for the two different step sizes is A, then it can be shown that for the
fourth order method, the required step size B to keep the prescribed error
to within 4 is given by

1
5

;15 |6
N o= Eh'Z (1.28)

as the error term is O (h5). That is, if B < h we must repeat the current
step with the smaller step size, whilst if #° > h we may use h’ as the new
step size for the next step. There is, of course, some freedom in how to
choose ¢ depending on the type of problem being solved - this may either be
an absolute error, a fractional error, or an accumulated fractional error since
the start of the calculation.

The fourth-order Runge-Kutta method, with variable step size, is perhaps
the most widely used and trusted general purpose method for integrating
ordinary differential equations. It has the advantage of being a self-starting
method, that is, does not require knowledge of previous values to complete
each step. However, it does not exploit any particular properties of the
Schrédinger equation, and so in this instance there may be more specialised
integration methods that can outperform it. We shall now consider one such
method.

1.2.2 The Numerov method

The Numerov method is a specialised method for solving a restricted set of
differential equations - those that can be written in the form:

2
= @y (1.29
which includes the time independent Schrédinger equation. The method
exploits the special structure of this equation to produce a method that has
fifth-order accuracy but only requires two function evaluations per step!

We can derive the method by expanding both y (z £+ k) and g% » in
x

Taylor series up to powers of A* and combining terms. There is a perfect
cancellation of all odd-powers of h due to the symmetry of equation 1.29 and
so the resulting method is accurate to order h%. The result is

z(x+h):2z(m)—z(m—h)+h2f(x)y(:n)+0(h6) (1.30)

where

2
2(2) = [1 - %f(w)] y(z) (131)
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The advantage of this method is that it has an error O (h6) which is
an order of magnitude better than 4th-order Runge-Kutta and only requires
two (rather than four) function evaluations per step. Hence it is the pre-
ferred method for solving the Schrodinger equation. However, it does have a
drawback in that it is not self-starting due to the z (z — h) term - that is, it
requires another method to generate the first step, whereupon the Numerov
method can be used. This feature of the method will also give problems if
there are any discontinuities in the potential whereas the single-step Runga-
Kutta method will be OK.

1.2.3 Singularities

There is a problem as to what to do at singularities. For example, in the hy-
drogen atom both the Coulomb potential and the centrifugal barrier diverge
at the origin. However, for the hydrogen atom we have a known analytic
result for y (r = 0) and so this can be substituted instead. But what about
the general case of a singularity with non-zero [7 Well, as long as the di-
vergence is not too fast, then x will still be well behaved, and we can do a
Taylor series expansion for y (r) around the singularity:

o
X(r) =Y anr ! (1.32)
s=0

from which it can be shown that

2 d(rVesy)
= (rVipae + (B ) g, 1.33
¢ s(s+20+1) <T s 1+< dr o2 (1:33)

with ag = 1 (unless [ = 0) and a_; = 0 . Therefore we can generate all the
terms for y, with an arbitrary normalisation that can be fixed later.

1.2.4 Other methods of solution

There are other methods that can be used to solve differential equations.
For example, we might choose to discretize space and solve the equation on
a grid, replacing differentials by appropriate sums over neighbouring grid
points, and successively iterating to self-consistency. This is known as the
finite-difference approach. It can be incorporated in various ways, such as
with a single fixed grid, or with a hierarchy of grid sizes, or with a grid that
adapts to the solution (e.g. putting more points in the regions where the
function is rapidly changing). Such methods can be very successful and an
example will be considered in a later lecture.

There are also indirect methods that can be used to produce information
about the solution without directly solving the equation. Such methods
exploit special properties of the equation, for example, that it has particular
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symmetries, or is an eigenvalue equation, or can be expressed in terms of
a variational principle, etc. This will form a very important theme to later
lectures in this course.

1.2.5 Errors

In general, when solving any differential equation numerically, there will be
two dominant sources of error:

e truncation error

— this is caused by the truncation of the Taylor series and represents
the fundamental limit to the accuracy of a given algorithm. In
general the error in a solution caused by truncation error can be
reduced by using a smaller step size h.

e rounding error

— this is caused by the finite representation of numbers within a digi-
tal computer. For example, when using single precision arithmetic
in a typical modern computer, all floating point numbers will be
accurate to about 8 significant figures, and when using double
precision arithmetic they will be accurate to around 16 signifi-
cant figures. In general, the error in the final solution caused by
rounding error can be reduced by using fewer integration steps so
that there is less accumulation of error, corresponding to a larger
step size h.

It can be seen then that there is a competition between these two sources
of error. Usually truncation error dominates, especially when using double
precision arithmetic (which is essential for any kind of scientific computing).
So when computing any solution, it is always a good idea to repeat the
calculation with a smaller step size and see if there is any significant change
in the solution. If there is, then the calculation must be repeated again with
an even smaller step size, etc. until there is no significant change. However,
if the step size is reduced too much, then rounding error will start to become
signifcant and accuracy will be lost again.

1.3 Application to the Schrodinger equation

How then shall we use either the Runge-Kutta or Numerov method to solve
the Schrodinger equation for any particular problem? If we are interested in
finding the bound states, i.e. the eigenenergies and eigenfunctions, then we
must:
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This

choose a particular angular momentum (value of [)
choose a trial energy (value of Ey.iq)

starting from r = 0 integrate the radial equation up to some appropri-
ate large value of r = 4z

examine the behaviour of the solution - in particular x (r — o)

if x(r) — +oo then Ey.;4 does not correspond to a bound state so
adjust Eljq and repeat

process of tuning Fy.;q can of course be automated, resulting in a

variant of the “shooting method”.

Note that the ground state solution will have no nodes. A general solution
will have integer values for {n,l,m} - but we will get no information on m
from the radial equation and we have chosen [ at the outset - so by counting
the number of nodes we can deduce the value of n:

1.4

n = (number of nodes) + 1+ 1

Final comments

A few final points to highlight:

1.5

The Schrodinger equation can often be written as an ordinary differ-
ential equation and solved using standard numerical techniques.

Bound states should have a vanishing wavefunction in the long-range
limit.

The Numerov method is much more efficient than fourth-order Runga-
Kutta for solving the Schrédinger equation.

Different algorithms have different characteristic features, such as the
ability to handle discontinuities or variable step sizes.

A higher-order algorithm in general has a smaller truncation error than
a lower-order one (but it depends on the unknown prefactor!)

Rounding error will dominate if the step size is made too small.

Further reading

TISE in any undergraduate Quantum Mechanics textbook

Numerov method discussed in “Computational Physics” by J.M. Thi-
jssen, appendix A7



