
Chapter 1Time Independent S
hrödingerEquation1.1 Revision of the S
hrödinger equationThe S
hrödinger equation is a time-dependent partial di�erential equation.In this introdu
tory le
ture, we will not 
onsider the time dependen
e (thatwill 
ome in le
ture 3), and so we will instead 
onsider the simpler 
ase ofthe time independent version. We 
an sometimes restri
t things even moreby 
onsidering just one spatial dimension, in whi
h 
ase, we only have areasonably straightforwards ordinary di�erential equation to solve, subje
tto some set of boundary 
onditions. This is exa
tly the type of problem thatyou have solved analyti
ally in the past.We start by rewriting the time independent S
hrödinger equation
− ~

2

2me

∇2ψ (r) + V (r)ψ (r) = Eψ (r) (1.1)in atomi
 units, that is ~ = me = e = 4πε0 = 1 [so from now on we shallalways work in energy units of Hartrees (27.2eV ) and in length units of Bohrradii (a0 = 0.529 Å)℄ and so :
−1

2
∇2ψ + V ψ = Eψ (1.2)or in terms of the Hamiltonian operator Ĥ,
Ĥψ = Eψ (1.3)We know that this is an example of an eigenvalue equation, and that fora given potential V (r) and boundary 
onditions, there will in general be anumber of di�erent possible solutions, 
orresponding to di�erent eigenener-gies Ei with 
orresponding eigenfun
tions ψi .7



8 CHAPTER 1. TIME INDEPENDENT SCHRÖDINGER EQUATIONThe �rst term in equation 1.1 
orresponds to the kineti
 energy of thestate, and so we see that a smoothly varying wavefun
tion (small ∇2ψ) willgenerally be a lower energy state than a rapidly varying one. This 
an alsobe related to the number of nodes (zero 
rossings) in the wavefun
tion - asmooth wavefun
tion will have less nodes than a rapidly varying one.Example 1 - parti
le in in�nite square wellAs an example, we 
an 
onsider the simple 
ase of a quantum parti
le movingin one dimension in an in�nitely deep square well:
V (x) = 0 −a ≤ x ≤ a

→ ∞ otherwise
(1.4)whi
h then gives the general solution of equation 4.1 as

ψ (x) = A cos (kx) +B sin (kx) (1.5)with A and B being 
onstants given by the boundary 
onditions and
k =

√
2E (1.6)If we now apply the boundary 
onditions that ψ (−a) = ψ (a) = 0 then

k = nπ/2a (1.7)where n is an integer. For odd n we get cos (ka) = 0 and hen
e A = 0 whilstfor even n we get sin (ka) = 0 and hen
e B = 0. As the well is in�nitely deep,then all solutions are bound states. As usual, bound states have quantizedenergies, given in this 
ase by
En =

π2n2

8a2
(1.8)Note that as the potential has a de�nite parity then so do the eigenfun
tions.Note also that the ground state wavefun
tion has no nodes, whilst the �rstex
ited state has one node, and su

essive ex
ited states have more nodes.See �gure 1.1 for a simple sket
h of the three lowest energy solutions.We 
an also solve analyti
ally problems su
h as the �nite square well, orthe harmoni
 os
illator, or the spheri
al well, et
. Remember that these 
anbe used to demonstrate the existen
e of zero-point motion, tunnelling into
lassi
ally forbidden regions and the Heisenberg Un
ertainty Prin
iple.Example 2 - the hydrogen atomIn order to solve the S
hrödinger equation for the hydrogen atom, we needto deal with a 3D equation in spheri
al polar 
oordinates. However, be
ause
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10 CHAPTER 1. TIME INDEPENDENT SCHRÖDINGER EQUATIONof the spheri
al symmetry of the Coulomb potential, we 
an separate thesolution into a radial and an angular part:
ψ (r) = ψ (r, θ, φ) = Rnl (r)Ylm (θ, φ) (1.9)where {n, l,m} are quantum numbers (integers) whi
h 
hara
terise the solu-tion. If we substitute equation 1.9 into equation 4.1 and apply the method ofseparation of variables, we get two equations - a 2D angular equation, whosesolution is given in terms of spheri
al harmoni
s and a 1D radial equation:

−1

2

d2χnl (r)

dr2
+

[
V (r) +

l (l + 1)

2r2

]
χnl (r) = Eχnl (r) (1.10)where the substitution

χnl (r) = rRnl (r) (1.11)is used both to simplify the equation and ease its interpretation. Rememberthat the probability of �nding the parti
le in a small volume d3r is
P

(
r → r + d3r

)
= |ψ (r)|2 d3r

= |ψ (r)|2 r2dr · sin (θ) dθdφ

= |χ (r)|2 dr · Y 2
lm (θ, φ) sin (θ)dθdφ

(1.12)and so we see that the normalisation of χnl and Ylm 
an be 
hosen su
h that
∫ ∞

0
|χ (r)|2 dr = 1 (1.13)i.e. |χ (r)|2 is the radial probability density.Note that the se
ond term in equation 1.10 looks very like a potentialenergy term in the standard time independent S
hrödinger equation, and sois known as the e�e
tive potential:

Veff (r) = V (r) +
l (l + 1)

2r2
(1.14)and the l(l+1)

2r2 term is known as the 
entrifugal barrier.What 
an we dedu
e about the general form of χ (r)? Well, we know theform of the Coulomb potential and so as long as V (r) → −∞ as r → 0 nomore qui
kly than r−1 we get
d2χ

dr2
=
l (l + 1)

r2
χ (1.15)whi
h gives a non-divergent solution as

χ (r → 0) ∼ rl+1 (1.16)
⇒ Rl (r → 0) ∼ rl
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Figure 1.2: Sket
h of �rst three radial eigenfun
tions for the hydrogen atom.Similarly, as r → ∞ we get
d2χ

dr2
= −2Eχ (r) (1.17)whi
h gives two 
lasses of solution:

χ (r) ∼ e−
√

2|E|r E < 0 (bound states)

χ (r) ∼ e±i
√

2Er E > 0 (continuum)
(1.18)For intermediate values of r we 
an either use more elaborate mathe-mati
s (whi
h is possible for hydrogen but not for more 
omplex atoms) orturn to numeri
al solutions. We 
an therefore use this known asymptoti
behaviour to test our numeri
al solutions - every bound state solution, 
or-responding to an eigenenergy En, should tend to zero as r → ∞, and for

r → 0 should either tend to zero (for non-zero l) or tend to a 
usp (for l = 0).See �gure 1.2 for a sket
h of the three lowest eigenenergy solutions whi
hdemonstrates this behaviour. We now turn to the problem of how to solvedi�erential equations numeri
ally.



12 CHAPTER 1. TIME INDEPENDENT SCHRÖDINGER EQUATION1.2 Revision of solving ordinary di�erential equa-tions numeri
allyUnfortunately, the number of 
ases where we 
an solve the S
hrödinger equa-tion exa
tly are rather small. More usually, we are fa
ed with the problemof trying to �nd numeri
al solutions. As the S
hrödinger equation is a linearse
ond-order di�erential equation, this should not pose too mu
h di�
ulty.We therefore begin by revising what we already know about solving ordinarydi�erential equations, before going on to explore parti
ular te
hniques thatare suitable for the S
hrödinger equation.Most methods are designed for �rst-order di�erential equations of thegeneral form
dy

dx
= f (y (x) , x) (1.19)Se
ond-order equations of the general form

d2y

dx2
= f (y (x) , x) (1.20)
an be transformed into a pair of 
oupled �rst-order equations using

dy

dx
= z (x)

dz

dx
= f (y (x) , x) (1.21)and then solved using the same te
hniques.Most methods then pro
eed to use an approximation to the derivative,su
h as the forward di�eren
e:

dy

dx
≈ y (x+ δx) − y (x)

δx
(1.22)the ba
kwards di�eren
e:

dy

dx
≈ y (x) − y (x− δx)

δx
(1.23)or the 
entred di�eren
e:

dy

dx
≈ y (x+ δx) − y (x− δx)

2δx
(1.24)A straightforwards implementation of this approa
h results in the Eulermethod :

yn+1 ≈ yn + f (yn, xn)h (1.25)
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xx x xx1 2 3Figure 1.3: Illustration of Euler's method - the derivative at ea
h point xnis extrapolated over the whole step length h to form the next point.where the solution advan
es from xn to xn+1 = xn +h = xn +δx and h is thestep size. See �gure 1.3 for an illustration of the method. Comparison to theTaylor series shows that this method has an error O (
h2

) and hen
e is 
alleda �rst-order method (an nth-order method has an error term O
(
hn+1

)).Whilst the Euler method is the theoreti
al basis of most s
hemes, and assu
h is important, it should not be used as it stands as it su�ers from largeerrors and is unstable. However, it 
an be improved upon to form the s
hemeswe shall dis
uss below.1.2.1 The Runge-Kutta methodThe Runge-Kutta method is a 
ommon 
lass of methods used for solvingmany di�erential equations. The simplest version improves upon the Eulermethod by doing it twi
e: we evaluate yn using a single Euler step of length
h and also using a midpoint step as follows:

k1 = f (xn, yn)h

k2 = f

(
xn +

h

2
, yn +

k1

2

)
h (1.26)

yn+1 = yn + k2 +O
(
h3

)whi
h is known as the se
ond-order Runge-Kutta or midpoint method. It hasthe advantage of being more stable than the Euler method, and so 
an beused with a larger step size, and so requires less steps to span a given interval.Unfortunately, the 
ost for this higher order method is that it requires twofun
tion evaluations of f (x) per step. Often, this is the most time 
onsumingpart of the 
al
ulation. See �gure 1.4 for an illustration of this method.
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4
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xx x xx1 2 3Figure 1.4: Se
ond-order Runga-Kutta method - the derivative at the startof the step is used to �nd a point half-way a
ross the interval h and thismidpoint value is then used to improve the 
al
ulation of the �nal point atthe end of the step. The �lled 
ir
les represent �nal values whi
h are ofinterest, whilst open 
ir
les are intermediate values ki whi
h are dis
ardedat the end of ea
h step.This method 
an be extended to arbitrarily high orders. In pra
ti
e, it isoften found that the fourth-order method is the most e�
ient, in that higherorder methods require many more fun
tion evaluations without bringing sig-ni�
ant improvements in stability or step size. Note that a higher-ordermethod does not always have higher a

ura
y! The fourth-order Runge-Kutta method is:
k1 = f (xn, yn)h

k2 = f

(
xn +

h

2
, yn +

k1

2

)
h

k3 = f

(
xn +

h

2
, yn +

k2

2

)
h (1.27)

k4 = f (xn + h, yn + k3)h

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O

(
h5

)A signi�
ant advantage of the Runge-Kutta method is that it 
an beused with a variable step size: at ea
h step, an estimate of the error inthe solution 
an be made, and the step size redu
ed if the error is largerthan some pres
ribed toleran
e, or the step size may be in
reased if a largererror 
an be a

epted. In this way, more attention is paid to those regionswhere the solution is rapidly varying, whilst not paying an unne
essarily highpri
e of using an unne
essarily small step size where the fun
tion is slowly
hanging. This variable step size is a
hieved by evaluating yn+1 twi
e, on
e



1.2. REVISION OF SOLVINGORDINARYDIFFERENTIAL EQUATIONS NUMERICALLY15using a step size of h and then again using a step size of h
2 . If the di�eren
ein yn+1 for the two di�erent step sizes is ∆, then it 
an be shown that for thefourth order method, the required step size h′ to keep the pres
ribed errorto within δ is given by

h
′

=
15

16
h

∣∣∣∣
δ

∆

∣∣∣∣

1

5 (1.28)as the error term is O (
h5

). That is, if h′

< h we must repeat the 
urrentstep with the smaller step size, whilst if h′ ≥ h we may use h′ as the newstep size for the next step. There is, of 
ourse, some freedom in how to
hoose δ depending on the type of problem being solved - this may either bean absolute error, a fra
tional error, or an a

umulated fra
tional error sin
ethe start of the 
al
ulation.The fourth-order Runge-Kutta method, with variable step size, is perhapsthe most widely used and trusted general purpose method for integratingordinary di�erential equations. It has the advantage of being a self-startingmethod, that is, does not require knowledge of previous values to 
ompleteea
h step. However, it does not exploit any parti
ular properties of theS
hrödinger equation, and so in this instan
e there may be more spe
ialisedintegration methods that 
an outperform it. We shall now 
onsider one su
hmethod.1.2.2 The Numerov methodThe Numerov method is a spe
ialised method for solving a restri
ted set ofdi�erential equations - those that 
an be written in the form:
d2y

dx2
= f (x) y (x) (1.29)whi
h in
ludes the time independent S
hrödinger equation. The methodexploits the spe
ial stru
ture of this equation to produ
e a method that has�fth-order a

ura
y but only requires two fun
tion evaluations per step!We 
an derive the method by expanding both y (x± h) and d2y

dx2

∣∣∣
x±h

inTaylor series up to powers of h4 and 
ombining terms. There is a perfe
t
an
ellation of all odd-powers of h due to the symmetry of equation 1.29 andso the resulting method is a

urate to order h6. The result is
z (x+ h) = 2z (x) − z (x− h) + h2f (x) y (x) +O

(
h6

) (1.30)where
z (x) =

[
1 − h2

12
f (x)

]
y (x) (1.31)



16 CHAPTER 1. TIME INDEPENDENT SCHRÖDINGER EQUATIONThe advantage of this method is that it has an error O (
h6

) whi
h isan order of magnitude better than 4th-order Runge-Kutta and only requirestwo (rather than four) fun
tion evaluations per step. Hen
e it is the pre-ferred method for solving the S
hrödinger equation. However, it does have adrawba
k in that it is not self-starting due to the z (x− h) term - that is, itrequires another method to generate the �rst step, whereupon the Numerovmethod 
an be used. This feature of the method will also give problems ifthere are any dis
ontinuities in the potential whereas the single-step Runga-Kutta method will be OK.1.2.3 SingularitiesThere is a problem as to what to do at singularities. For example, in the hy-drogen atom both the Coulomb potential and the 
entrifugal barrier divergeat the origin. However, for the hydrogen atom we have a known analyti
result for χ (r = 0) and so this 
an be substituted instead. But what aboutthe general 
ase of a singularity with non-zero l? Well, as long as the di-vergen
e is not too fast, then χ will still be well behaved, and we 
an do aTaylor series expansion for χ (r) around the singularity:
χ (r) =

∞∑

s=0

asr
s+l+1 (1.32)from whi
h it 
an be shown that

as =
2

s (s+ 2l + 1)

(
rVeffas−1 +

(
d (rVeff )

dr
− E

)
as−2

) (1.33)with a0 = 1 (unless l = 0) and a−1 = 0 . Therefore we 
an generate all theterms for χ, with an arbitrary normalisation that 
an be �xed later.1.2.4 Other methods of solutionThere are other methods that 
an be used to solve di�erential equations.For example, we might 
hoose to dis
retize spa
e and solve the equation ona grid, repla
ing di�erentials by appropriate sums over neighbouring gridpoints, and su

essively iterating to self-
onsisten
y. This is known as the�nite-di�eren
e approa
h. It 
an be in
orporated in various ways, su
h aswith a single �xed grid, or with a hierar
hy of grid sizes, or with a grid thatadapts to the solution (e.g. putting more points in the regions where thefun
tion is rapidly 
hanging). Su
h methods 
an be very su

essful and anexample will be 
onsidered in a later le
ture.There are also indire
t methods that 
an be used to produ
e informationabout the solution without dire
tly solving the equation. Su
h methodsexploit spe
ial properties of the equation, for example, that it has parti
ular
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an be expressed in terms ofa variational prin
iple, et
. This will form a very important theme to laterle
tures in this 
ourse.1.2.5 ErrorsIn general, when solving any di�erential equation numeri
ally, there will betwo dominant sour
es of error:
• trun
ation error� this is 
aused by the trun
ation of the Taylor series and representsthe fundamental limit to the a

ura
y of a given algorithm. Ingeneral the error in a solution 
aused by trun
ation error 
an beredu
ed by using a smaller step size h.
• rounding error� this is 
aused by the �nite representation of numbers within a digi-tal 
omputer. For example, when using single pre
ision arithmeti
in a typi
al modern 
omputer, all �oating point numbers will bea

urate to about 8 signi�
ant �gures, and when using doublepre
ision arithmeti
 they will be a

urate to around 16 signi�-
ant �gures. In general, the error in the �nal solution 
aused byrounding error 
an be redu
ed by using fewer integration steps sothat there is less a

umulation of error, 
orresponding to a largerstep size h.It 
an be seen then that there is a 
ompetition between these two sour
esof error. Usually trun
ation error dominates, espe
ially when using doublepre
ision arithmeti
 (whi
h is essential for any kind of s
ienti�
 
omputing).So when 
omputing any solution, it is always a good idea to repeat the
al
ulation with a smaller step size and see if there is any signi�
ant 
hangein the solution. If there is, then the 
al
ulation must be repeated again withan even smaller step size, et
. until there is no signi�
ant 
hange. However,if the step size is redu
ed too mu
h, then rounding error will start to be
omesignif
ant and a

ura
y will be lost again.1.3 Appli
ation to the S
hrödinger equationHow then shall we use either the Runge-Kutta or Numerov method to solvethe S
hrödinger equation for any parti
ular problem? If we are interested in�nding the bound states, i.e. the eigenenergies and eigenfun
tions, then wemust:
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• 
hoose a parti
ular angular momentum (value of l)
• 
hoose a trial energy (value of Etrial)
• starting from r = 0 integrate the radial equation up to some appropri-ate large value of r = rmax

• examine the behaviour of the solution - in parti
ular χ (r → ∞)

• if χ (r) → ±∞ then Etrial does not 
orrespond to a bound state soadjust Etrial and repeatThis pro
ess of tuning Etrial 
an of 
ourse be automated, resulting in avariant of the �shooting method�.Note that the ground state solution will have no nodes. A general solutionwill have integer values for {n, l,m} - but we will get no information on mfrom the radial equation and we have 
hosen l at the outset - so by 
ountingthe number of nodes we 
an dedu
e the value of n:
n = (number of nodes) + l + 11.4 Final 
ommentsA few �nal points to highlight:

• The S
hrödinger equation 
an often be written as an ordinary di�er-ential equation and solved using standard numeri
al te
hniques.
• Bound states should have a vanishing wavefun
tion in the long-rangelimit.
• The Numerov method is mu
h more e�
ient than fourth-order Runga-Kutta for solving the S
hrödinger equation.
• Di�erent algorithms have di�erent 
hara
teristi
 features, su
h as theability to handle dis
ontinuities or variable step sizes.
• A higher-order algorithm in general has a smaller trun
ation error thana lower-order one (but it depends on the unknown prefa
tor!)
• Rounding error will dominate if the step size is made too small.1.5 Further reading
• TISE in any undergraduate Quantum Me
hani
s textbook
• Numerov method dis
ussed in �Computational Physi
s� by J.M. Thi-jssen, appendix A7


