
Chapter 2S
attering2.1 Solving the S
hrödinger equation for unboundstatesWe saw in the previous le
ture how to solve the S
hrödinger equation forbound states, using either the Runge-Kutta or Numerov method. The boundstates were 
hara
terised by having quantised energies and wavefun
tionsthat went to zero as r → ∞. What then, of unbound states? Here we typi-
ally have a 
ontinuum of available energy levels, and a �nite wavefun
tionas r → ∞. Obviously, su
h states do not 
orrespond to ele
trons in an atom,but are still nevertheless very important. One very important role of su
hunbound quantum parti
les is in s
attering experiments, where a high energyparti
le is s
attered o� some potential barrier, and the measurement of thes
attering is used to yield important information about both the s
attererand the s
attering 
entre.The solution te
hniques are the same as for bound states, but the analysisof the s
attered wavefun
tion is di�erent. In general, s
attering may be eitherelasti
 (energy 
onserving) or inelasti
 (energy transferred from s
atteringparti
le to s
attering 
entre). In this le
ture, we shall only 
onsider elasti
s
attering, and 
ontinuing in the same vein as the last le
ture, we shallonly 
onsider spheri
ally symmetri
 s
attering potentials, whereupon theS
hrödinger equation be
omes a simple ordinary di�erential equation for theradial part.We shall assume the s
attering geometry as in �gure 2.1. An in
om-ing beam of s
attering parti
les (usually a mono-energeti
 
ollimated beamknown as a plane-wave) is in
ident upon a s
attering 
entre, resulting in anoutgoing beam that has di�erent intensities in di�erent dire
tions dependingon the spatial angle Ω = (θ, φ) as shown in the �gure. The two key exper-imental quantities that we want to 
al
ulate are the di�erential s
attering
ross se
tion dσ

dΩ
and the total s
attering 
ross se
tion σ. The di�erential
ross se
tion des
ribes how the �ux of s
attered parti
les (intensity) varies19
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Figure 2.1: Geometry of a s
attering pro
ess.with outgoing spatial angle Ω, whereas the total 
ross se
tion is the inte-grated �ux over all angles. That is,
dσ

dΩ
=
scattered flux into dΩ

total incident f lux
(2.1)It 
an be proved that, for a spheri
ally symmetri
 potential, the solutionof the S
hrödinger equation 
an always be written as

ψ (r) = ψ (r, θ, φ) =

∞
∑

l=0

l
∑

m=−l

Alm

χl (r)

r
Ylm (θ, φ) (2.2)where Alm is some normalisation 
onstant, χ (r) is the solution to the radialequation that we met last le
ture, and Ylm is a spheri
al harmoni
 fun
tionwhi
h determines the angular variation of the solution (whi
h we ignored inthe last le
ture) and will obviously be important for 
al
ulating dσ

dΩ
.If we assume that the s
attering 
entre has a �nite range, i.e.

V (r) = 0 r > rmax (2.3)then we have two regions of solution. Inside the well there will be a 
om-pli
ated spatial and angular variation, involving the sum of various kindsof spheri
al Bessel fun
tions. Outside the well, we do not need to worryabout the exa
t fun
tional form of the well, and 
an also work with theasymptoti
 expansion of these same spheri
al Bessel fun
tions, whi
h thensimpli�es things 
onsiderably. This is also the experimentally relevant regime- if we 
onsider s
attering of α-parti
les o� Au nu
lei, then the experimentalapparatus will be at a distan
e of at least 1013 times the Au nu
leus size(
entimetres vs femtometres). In whi
h 
ase, the radial solution to equation2.2 
an be written as
χl (r) ∝ sin

(

kr − l
π

2
+ δl

)

r ≫ rmax (2.4)



2.2. THE PHASE SHIFT 21where k is known as the wavenumber whi
h 
hara
terises the momentum ofthe outgoing wave (and the in
oming wave as this is elasti
 s
attering) andis given as
k =

√
2E (2.5)and δl is known as the phase shift.Note that as in the 
ase of the hydrogen atom 
onsidered in the lastle
ture, for l 6= 0 there will be an additional 
ontribution to the e�e
tivepotential 
aused by the 
entrifugal barrier. Hen
e the phase shift dependson the angular momentum quantum number l.2.2 The phase shiftIt is the phase shift whi
h is the key quantity in s
attering. It arises from theneed to mat
h the solutions to the S
hrödinger equation at the s
atteringpotential boundary edge. It is 
alled the phase shift, be
ause as we see fromequation 2.4, the outgoing wave be
omes a pure sine-wave at large distan
eswith a phase dependent on δl. Indeed, for l = 0, it 
an be shown that χ0 (r)is a sine-wave for all r > rmax. The phase shift depends on the in
omingenergy E and also the angular momentum l of the in
oming parti
les relativeto the s
attering 
entre and as su
h is a key theoreti
al quantity whi
h 
anbe used to derive the experimentally observed quantites (
ross-se
tions, et
).It 
an be shown, for an in
oming plane-wave, that the di�erential s
at-tering 
ross-se
tion is related to the phase shift by

dσ

dΩ
=

1

k2

∣

∣

∣

∣

∣

∞
∑

l=0

(2l + 1) eiδl sin (δl)Pl (cos (θ))

∣

∣

∣

∣

∣

2 (2.6)and to the total 
ross-se
tion by
σ = 2π

∫

dσ

dΩ
sin (θ) dθ

=
4π

k2

∞
∑

l=0

(2l + 1) sin (δl)
2 (2.7)where Pl (cos (θ)) is a Legendre polynomial.These expressions, whilst theoreti
ally pre
ise, are not parti
ularly usefulin a numeri
al 
al
ulation due to the in�nite sums. However, we 
an usesome physi
al insight to 
onvert this expression into a more useful form.Classi
ally, a parti
le with angular momentum l and linear momentum kmust pass the origin at a distan
e x su
h that kx = l. In quantum me
hani
s,we repla
e l with √

l (l + 1) and so we see that only parti
les with angularmomentum l < lmax where
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√

lmax (lmax + 1) ≃ krmax (2.8)will �feel� the potential. Any parti
les with higher angular momentum willpass through una�e
ted. Therefore we may use this to trun
ate the in�nitesum at a reasonable value to 
al
ulate the 
ross-se
tions. As a 
he
k on thea

ura
y of the 
al
ulation, we should then repeat the 
al
ulation using ahigher value of lmax and ensure that nothing has signi�
antly 
hanged. Thisuse of a numeri
al 
ut-o� to in�nite sums is a 
ommon te
hnique in manynumeri
al methods. Note that equation 2.8 implies that it is possible to tunethe in
oming beam for a given potential su
h that only l = 0 
ontributes tothe s
attering, whi
h is then known as s-wave s
attering.We 
an also learn some interesting things dire
tly from δl - for example,equation 2.7 shows that if δl = 0 then the total s
attering 
ross-se
tionis zero, whi
h implies that there 
an be no s
attering! This is seen, forexample in the s
attering of ele
trons by rare-gas atoms - ele
trons with E ∼
0.7 eV pass through helium without being s
attered - whi
h is known as theRamsauer-Townsend e�e
t. A se
ond interesting phenomena happens when
δl = π

2
whi
h then gives maximum s
attering. This 
orresponds to tuning thein
oming beam energy E to 
ause resonant s
attering whereupon the total
ross-se
tion σ is mu
h greater than the geometri
al 
ross se
tion πr2max.For example, when s
attering neutrons o� hydrogen there is a 
hara
teristi
neutron-proton intera
tion range r ∼ 2 × 10−15m and yet low-energy l = 0neutrons have an experimental total s
attering 
ross se
tion σ ≃ 20.4 ×

10−28m2 ∼ 162 × πr2. For l 6= 0 the e�e
tive potential may 
ontain anadditional barrier whi
h 
an trap in
oming parti
les for a short time in avirtual energy level and enhan
e the amplitude of the wavefun
tion insidethe s
attering region.2.3 Final 
ommentsA few �nal points to highlight:
• We 
an use the same te
hniques to solve the S
hrödinger equation for
ontinuum states as for bound states.
• Any potential will 
ause s
attering of an in
oming beam of parti
les� the s
attering depends on both the in
oming energy and angularmomentum� in prin
iple the outgoing beam 
ontains an in�nite spread of an-gular momenta� in pra
ti
e only a small number of angular momenta 
ontribute ifthe potential is short ranged.
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• Analysis of the phase shift over a range of energies yields a lot ofinformation about the nature of the s
attering potential.2.4 Further reading
• �Computational Physi
s� by J.M. Thijssen, Chapter 2
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