Chapter 2

Scattering

2.1 Solving the Schrodinger equation for unbound
states

We saw in the previous lecture how to solve the Schrédinger equation for
bound states, using either the Runge-Kutta or Numerov method. The bound
states were characterised by having quantised energies and wavefunctions
that went to zero as r — oo. What then, of unbound states? Here we typi-
cally have a continuum of available energy levels, and a finite wavefunction
as r — 00. Obviously, such states do not correspond to electrons in an atom,
but are still nevertheless very important. One very important role of such
unbound quantum particles is in scattering experiments, where a high energy
particle is scattered off some potential barrier, and the measurement of the
scattering is used to yield important information about both the scatterer
and the scattering centre.

The solution techniques are the same as for bound states, but the analysis
of the scattered wavefunction is different. In general, scattering may be either
elastic (energy conserving) or inelastic (energy transferred from scattering
particle to scattering centre). In this lecture, we shall only consider elastic
scattering, and continuing in the same vein as the last lecture, we shall
only consider spherically symmetric scattering potentials, whereupon the
Schrédinger equation becomes a simple ordinary differential equation for the
radial part.

We shall assume the scattering geometry as in figure 2.1. An incom-
ing beam of scattering particles (usually a mono-energetic collimated beam
known as a plane-wave) is incident upon a scattering centre, resulting in an
outgoing beam that has different intensities in different directions depending
on the spatial angle Q = (6, ¢) as shown in the figure. The two key exper-
imental quantities that we want to calculate are the differential scattering
cross section g—g and the total scattering cross section o. The differential
cross section describes how the flux of scattered particles (intensity) varies
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dQ

Figure 2.1: Geometry of a scattering process.
with outgoing spatial angle 2, whereas the total cross section is the inte-
grated flux over all angles. That is,

d_cr _ scattered fluz into dS)
dQ  total incident flux

(2.1)

It can be proved that, for a spherically symmetric potential, the solution
of the Schrédinger equation can always be written as

b (r) = (r,0,¢) = ZZAMXZ Yim (0, 0) (2.2)

1=0 m=-1

where Aj,,, is some normalisation constant, y (r) is the solution to the radial
equation that we met last lecture, and Y}, is a spherical harmonic function
which determines the angular variation of the solution (which we ignored in
the last lecture) and will obviously be important for calculating 3—6

If we assume that the scattering centre has a finite range, i.e.

14 (T) =07 > rpa (2.3)

then we have two regions of solution. Inside the well there will be a com-
plicated spatial and angular variation, involving the sum of various kinds
of spherical Bessel functions. Outside the well, we do not need to worry
about the exact functional form of the well, and can also work with the
asymptotic expansion of these same spherical Bessel functions, which then
simplifies things considerably. This is also the experimentally relevant regime
- if we consider scattering of a-particles off Au nuclei, then the experimental
apparatus will be at a distance of at least 10'3 times the Au nucleus size
(centimetres vs femtometres). In which case, the radial solution to equation
2.2 can be written as

Xi (r) o sin (kr — lg + 51) > Timaz (2.4)
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where k is known as the wavenumber which characterises the momentum of
the outgoing wave (and the incoming wave as this is elastic scattering) and

k=+V2E (2.5)

and ¢; is known as the phase shift.

is given as

Note that as in the case of the hydrogen atom considered in the last
lecture, for I # 0 there will be an additional contribution to the effective
potential caused by the centrifugal barrier. Hence the phase shift depends
on the angular momentum quantum number /.

2.2 The phase shift

It is the phase shift which is the key quantity in scattering. It arises from the
need to match the solutions to the Schrédinger equation at the scattering
potential boundary edge. It is called the phase shift, because as we see from
equation 2.4, the outgoing wave becomes a pure sine-wave at large distances
with a phase dependent on §;. Indeed, for [ = 0, it can be shown that xq (r)
is a sine-wave for all 7 > rp,4,. The phase shift depends on the incoming
energy E and also the angular momentum [ of the incoming particles relative
to the scattering centre and as such is a key theoretical quantity which can
be used to derive the experimentally observed quantites (cross-sections, etc).

It can be shown, for an incoming plane-wave, that the differential scat-
tering cross-section is related to the phase shift by

2

do I 5
IR Z (2l+1)e O sin (0;) Py (cos (9)) (2.6)
=0
and to the total cross-section by
do .
S QW/msm(é’)dH

7'[' o0
= k_z (20 + 1) sin (6;)? (2.7)

=0

where P, (cos (0)) is a Legendre polynomial.

These expressions, whilst theoretically precise, are not particularly useful
in a numerical calculation due to the infinite sums. However, we can use
some physical insight to convert this expression into a more useful form.
Classically, a particle with angular momentum [ and linear momentum k
must pass the origin at a distance x such that kz = [. In quantum mechanics,
we replace | with 1/l (I + 1) and so we see that only particles with angular
momentum [ < l,,,, where
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V lmaw (lmam + 1) =~ krmam (28)

will “feel” the potential. Any particles with higher angular momentum will
pass through unaffected. Therefore we may use this to truncate the infinite
sum at a reasonable value to calculate the cross-sections. As a check on the
accuracy of the calculation, we should then repeat the calculation using a
higher value of /,,4, and ensure that nothing has significantly changed. This
use of a numerical cut-off to infinite sums is a common technique in many
numerical methods. Note that equation 2.8 implies that it is possible to tune
the incoming beam for a given potential such that only [ = 0 contributes to
the scattering, which is then known as s-wave scattering.

We can also learn some interesting things directly from ¢; - for example,
equation 2.7 shows that if §; = 0 then the total scattering cross-section
is zero, which implies that there can be no scattering! This is seen, for
example in the scattering of electrons by rare-gas atoms - electrons with E ~
0.7 eV pass through helium without being scattered - which is known as the
Ramsauer-Townsend effect. A second interesting phenomena happens when
0y = § which then gives maximum scattering. This corresponds to tuning the
incoming beam energy E to cause resonant scattering whereupon the total
cross-section o is much greater than the geometrical cross section 7r2,,..
For example, when scattering neutrons off hydrogen there is a characteristic
neutron-proton interaction range r ~ 2 X 10~ %m and yet low-energy [ = 0
neutrons have an experimental total scattering cross section o ~ 20.4 x
1072m?2 ~ 162 x mr2. For [ # 0 the effective potential may contain an
additional barrier which can trap incoming particles for a short time in a
virtual energy level and enhance the amplitude of the wavefunction inside
the scattering region.

2.3 Final comments
A few final points to highlight:

e We can use the same techniques to solve the Schrodinger equation for
continuum states as for bound states.

e Any potential will cause scattering of an incoming beam of particles

— the scattering depends on both the incoming energy and angular
momentum

— in principle the outgoing beam contains an infinite spread of an-
gular momenta

— in practice only a small number of angular momenta contribute if
the potential is short ranged.
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e Analysis of the phase shift over a range of energies yields a lot of
information about the nature of the scattering potential.

2.4 Further reading

e “Computational Physics” by J.M. Thijssen, Chapter 2
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