
Chapter 3Time Dependent S
hrödingerEquation3.1 Revision of solution of partial di�erential equa-tionsOur basi
 approa
h depends on whether we are solving an boundary value orinitial value problem. As an example of a boundary value problem, 
onsidersolving Poisson's equation with a �xed array of 
harges, or for a potentialspe
i�ed on the bounding surfa
e. Su
h problems are usually solved usingvarious iterative grid-based methods, and are not relevant here. The timedependent S
hrödinger equation is most usually 
ast into an initial valueform, and so we shall �rst revise the basi
 approa
h to solving su
h problems.As 
lassi
 examples of initial value problems, we shall 
onsider both thedi�usion equation with 
onstant di�usivity D :
∇2u (x, t) =

1

D

∂u (x, t)

∂t
(3.1)and the wave equation with 
onstant velo
ity v :

∇2u (x, t) =
1

v2

∂2u (x, t)

∂t2
(3.2)Both 
an in general be written as one or more 
oupled �rst-order equa-tions in terms of some 
onserved �ux F (u):

∂F (u)

∂x
= −

∂u (x, t)

∂t
(3.3)so for the wave equation we have

F (u) =

(
0 −v
−v 0

)
.u (3.4)25



26 CHAPTER 3. TIME DEPENDENT SCHRÖDINGER EQUATION3.1.1 Forward-Time Centred-Spa
e algorithmWe start by 
onstru
ting a �nite di�eren
e approximation to equation 3.3by 
hoosing equally spa
ed points in t- and x- axes:
xj = x0 + j△x, j = 0, 1, . . . J (3.5)
tn = t0 + n△t, n = 0, 1, . . . Nand we introdu
e the following 
ompa
t notation whi
h will be used fromhereon:

u (xj, tn) → un
j (3.6)We know how to solve the spatial part of the di�erential equation bydis
retizing the derivatives, as seen in the earlier part of this 
ourse. Wetherefore 
hoose a se
ond-order �
entred-spa
e� representation for the �rst-order spatial derivative, using only quantities known at the 
urrent time-stepn:

∂u

∂x

∣∣∣∣
j,n

=
un

j+1 − un
j−1

2△x
+O

(
△x2

) (3.7)whi
h is appropriate given the boundary 
onditions on the spatial part ofthe solution.However, with the time part of the solution, we often have the boundary
onditions expressed as initial value 
onditions. We 
annot therefore usea 
entred-spa
e algorithm in a straightforwards manner. The obvious wayto propagate forwards in time then is to use the expli
it �rst-order forwardEuler di�eren
ing s
heme:
∂u

∂t

∣∣∣∣
j,n

=
un+1

j − un
j

△t
+O (△t) (3.8)These two derivatives 
an then be 
ombined to yield the Forwards-TimeCentred-Spa
e (FTCS) �nite di�eren
e approximation to equation 3.3:

un+1
j ≈ un

j −
△t

△x

un
j+1 − un

j−1

2

∂F

∂u
(3.9)We represent this s
hemati
ally in �gure 3.9. Does this s
heme work?As always, we need to do both a stability analysis and an error analysis . . .
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space

time

Figure 3.1: S
hemati
 representation of the Forward-Time Centred-Spa
e(FTCS) di�eren
ing method. The �lled 
ir
les represent known points at the
urrent time-step, and open 
ir
les represent new points at the next time-step. Solid lines are used to 
onne
t points used in the spatial derivatives,and dashed lines 
onne
t points used in time derivatives.3.1.2 von Neumann stability analysisThe von Neumann stability analysis examines the behaviour of the eigen-mode solutions in the �nite di�eren
e equation. We assume all 
oe�
ientsto be slowly varying in time and lo
ally 
onstant in spa
e. So for the dis-
retized wave equation we have the following general form for an eigenmode:
un

j (k) = ξ (k)n eikj△x (3.10)at some parti
ular wavenumber k, at time n△t and spatial grid point j△x.In general, if |ξ (k)| > 1 then at that wavenumber k we have ampli�
ationof the 
orresponding eigenmode at su

essive times n△t and the solution willbe unstable. This will then give an amplitude error. For stability thereforewe must have:
|ξ (k)| ≤ 1 (3.11)and for a

ura
y in the solution at wavenumber k we desire |ξ (k)| = 1.What then is the e�e
t of |ξ (k)| < 1 ? This 
orresponds to damping ofpart of the solution, whi
h will lead to a loss of a

ura
y. However, we areonly interested in solutions that 
over many gridpoints (otherwise the gridis too 
oarse) i.e. in wavenumbers k s.t. k△x≪ 1 , and so damping of othermodes will not (in general) be a problem.



28 CHAPTER 3. TIME DEPENDENT SCHRÖDINGER EQUATIONExampleLet us perform the von Neumann stability analysis for the FTCS dis
retiza-tion of the wave equation. Equation 3.9 now be
omes:
un+1

j ≈ un
j −

v△t

△x

un
j+1 − un

j−1

2
(3.12)We therefore substitute the general form of an eigenmode (equation 3.10)into this equation and divide by ξn to get:

ξ (k) ≈ 1 − i
v△t

△x
sin (k△x) (3.13)and so we see that |ξ (k)| > 1∀k . Therefore we have shown that the FTCSs
heme is un
onditionally unstable when applied to the wave equation.This instability 
an be 
ured by modifying equation 3.9 using :

un
j →

1

2

(
un

j+1 + un
j−1

) (3.14)and the resulting s
heme is known as the Lax method.3.1.3 Courant 
onditionWhy does the Lax modi�
ation make the FTCS s
heme stable? The answeris that the original equation required information from un
j−1 to propagate to

un+1
j in every time time-step △t, regardless of the velo
ity v of the wave inthe medium! The Lax s
heme however now satis�es the Courant 
ondition:

|v|△t

△x
≤ 1 (3.15)whi
h ensures 
ausality, and is therefore another requirement for stability.The Lax modi�
ation is numeri
ally equivalent to adding dissipation intothe 
ontinuum equation 3.3 unless |v|△t

△x
= 1.3.1.4 Other errorsNote that there are other sour
es of error as well as the amplitude errorshighlighted by the von Neumann analysis. One example is that of phaseerrors. For example, even if we set |v|△t

△x
= 1 in the equation 3.1 we get

ξ = e−ik△x (3.16)and so at ea
h time-step, the eigenmode solution is multiplied by an arbitraryphase fa
tor. Therefore, an initial wave pa
ket whi
h was a superposition ofmodes with di�erent k will rapidly disperse and loose its 
oheren
e.There are other possible sour
es of error in general, e.g. due to non-linearfeatures, sho
k formation et
. but we shall not 
onsider these here as ourprimary goal is the study of the (linear) S
hrödinger equation!
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t or n

x or jFigure 3.2: S
hemati
 representation of the staggered-leapfrog method. The
he
kerboard pattern shows that there are two un
oupled meshes in thiss
heme, whi
h might therefore result in a mesh-drift instability.3.1.5 Higher order methodsThe FTCS method is se
ond-order in spa
e but only �rst-order in time. Itis possible to improve upon this, by going to a method su
h as staggered-leapfrog, whi
h is se
ond-order in time:
un+1

j = un−1
j −

v△t

△x

(
un

j+1 − un
j−1

) (3.17)as illustrated in �gure 3.2.In this 
ase, repeating the von Neumann analysis shows that this methodhas no amplitude dissipation (|ξ (k)| = 1) as long as the Courant 
onditionis satis�ed, and so is to be preferred. However, we 
an see from the 
he
ker-board pattern in �gure 3.2 that only alternate points are 
oupled in thiss
heme, resulting in two distin
t meshes. This method may then result inmesh-drifting, whi
h 
an be 
ured in a similar manner to the Lax method.The result is the Two-Step Lax-Wendro� s
heme.3.1.6 Impli
it s
hemesAll the s
hemes dis
ussed so far are expli
it s
hemes, where all the infor-mation required to derive the next point is known at the beginning of thenext time-step. This is not the only possibility! There also exist impli
it(also known as ba
kward time) s
hemes whi
h are sometimes useful. Forexample, in solving the di�usion equation 3.1 we often have a 
ompetition
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time

spaceFigure 3.3: S
hemati
 representation of the Ba
kward-Time Centred-Spa
e(BTCS) di�eren
ing method.between behaviour on small and large s
ales. Using an expli
it s
heme, thetime-step would be dominated by the need to ensure stability of the solutionfor these small s
ale features, whi
h are often of se
ondary importan
e w.r.t.the large s
ale features. Therefore, we want a s
heme that 
orre
tly evolvesthe large-s
ale features of interest using as large a time-step as possible, andleaves the small s
ale features �frozen in�. Then at the end of the 
al
ulationwe 
an swit
h to another s
heme to �nish o� the small s
ale features.An example of a fully impli
it s
heme (applied to equation 3.1) is theBa
kward-Time Centred-Spa
e (BTCS) s
heme :
un+1

j − un
j

△t
= D

un+1
j+1 − 2un+1

j + un+1
j−1

(△x)2
(3.18)Note that with equation 3.1 we have the se
ond-order spatial derivative,whi
h results in the 
entred term appearing in the spatial derivative. Thisterm is absent in equation 3.7 as we were only 
onsidering an e�e
tive �rst-order equation at that time. Both s
hemes are se
ond-order in spa
e and�rst-order in time. The BTCS s
heme is illustrated in �gure 3.3.Applying the von Neumann stability analysis to the BTCS s
heme showsthat this is now un
onditionally stable for any size time-step. This stabil-ity is a 
hara
teristi
 of impli
it methods. To solve equation 3.18 requiressolving a set of linear simultaneous equations at ea
h time-step for the un+1

jwhi
h therefore in
reases the 
omputational workload. However, this is a
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



BC0 0 0 0 0 · · · 0
−α 1 + 2α −α 0 0 · · · 0
0 −α 1 + 2α −α 0 · · · 0

0 0
. . . . . . . . . ...... ... −α 1 + 2α −α 0

0 0 · · · 0 −α 1 + 2α −α
0 0 · · · 0 0 0 BCJ









un+1
0

un+1
1...
un+1

J−1

un+1
J





=





un
0

un
1...

un
J−1

un
J



(3.19)where α = D△t

(△x)2
and BC0 and BCJ refer to appropriate boundary 
ondi-tions. This is a sparse matrix equation whi
h 
an be solved very e�
ientlyusing spe
ial methods.Finally, to 
ombine the a

ura
y of a fully se
ond-order s
heme with thestability of an impli
it method, we average the FTCS and BTCS s
hemes,resulting in the Crank-Ni
holson s
heme.3.2 Appli
ation to the S
hrödinger equationWe start by writing the time dependent S
hrödinger equation, in one dimen-sion with atomi
 units:

−
1

2

∂2ψ

∂x2
+ V (x)ψ = i

∂ψ

∂t
(3.20)or in terms of the Hamiltonian operator Ĥ,

Ĥψ = i
∂ψ

∂t
(3.21)and the formal solution to equation 3.21 is:

ψ (x, t) = e−i bHtψ (x, 0) (3.22)where e−i bHt is known as the time evolution operator. We may understandsu
h an operator in terms of its power-series expansion:
e−i bH△t = 1 − iĤ△t+O

(
△t2

)The FTCS algorithm results in
ψn+1

j =
(
1 − iĤ△t

)
ψn

j (3.23)and as expe
ted, the von Neumann analysis with eigenmode solutions as inequation 3.10 shows this to be always unstable for all k at all time-steps.We therefore 
onsider the impli
it BTCS algorithm:
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ψn+1

j =
(
1 + iĤ△t

)−1
ψn

j (3.24)whi
h as expe
ted is un
onditionally stable. We 
an then extend this tohigher order s
hemes as before.So is that it? Do we now have everything we need to solve the timedependent S
hrödinger equation? NO!3.2.1 ConstraintsThere is an fundamental additional 
onstraint upon solutions to the S
hrödingerequation, whi
h is that the solutions must stay normalised at all times, i.e.
∫ ∞

−∞
|ψ|2 dx = 1 (3.25)whi
h none of the methods dis
ussed satisfy. The reason for the failure isthat the approximation we have made to the time evolution operator e−i bHtis not unitary, although the operator is unitary.Remember that in matri
es, a unitary matrix U is one that satis�es

U †U = 1, i.e.. the 
omplex generalization of an orthogonal matrix. As su
h,it 
an be used as a rotation matrix as it does not 
hange the norm of thematrix it is applied to. Similarly, in quantum me
hani
s, a unitary operatordoes not 
hange the normalisation of the wavefun
tion. The problem isthat the time evolution operator is unitary, but our simple �rst-order Taylorexpansion of the operator is not.The solution is to use Cayley's form for the �nite-di�eren
e representa-tion of the time evolution operator:
e−i bH△t =

1 − 1
2 iĤ△t

1 + 1
2 iĤ△t

+O
(
△t3

) (3.26)whi
h is both unitary and also has the additional advantage of being exa
tto se
ond-order in time.We 
an now use this approximation for the time evolution operator inequation 3.24 whi
h results in an un
onditionally stable, se
ond-order, uni-tary algorithm. This is the preferred �nite di�eren
e method for solvingthe time dependent S
hrödinger equation, and is a
tually equivalent to theCrank-Ni
holson method! Note that the presen
e of the denominator inequation 3.26 means that a matrix inversion is required at every time step,whi
h therefore dominates the overall 
omputational time s
aling of this al-gorithm. We dis
retize Ĥ using standard spatial derivatives, whi
h resultsin a tridiagonal matrix for Ĥ whi
h is similar to equation 3.19. Again, usingspe
ial sparse matrix methods, we 
an e�
iently invert this matrix in O (J)operations and hen
e solve the time dependent S
hrödinger equation.



3.3. FINAL COMMENTS 333.3 Final 
ommentsA few �nal points to highlight:Remember that a higher-order algorithm is not ne
essarily better.Remember the di�eren
e between stability and a

ura
y, and the di�er-ent sorts of errors that 
an be introdu
ed by your 
hoi
e of algorithm (aswell as round-o� and trun
ation errors in the 
omputer implementation).Remember that you may have additional 
onstraints (su
h as normalisa-tion) whi
h a �standard� algorithm may not handle.3.4 Further reading
• �Computational Physi
s� by J.M. Thijssen, Chapter 3
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