
Chapter 4The Variational Method4.1 Introdu
tionIn previous le
tures, we have dis
ussed methods of solving the S
hrödingerequation based upon integrating a (partial) di�erential equation. However, itis well known that the S
hrödinger equation is an example of an eigenvalueproblem, and so in this le
ture we will explore an alternative method ofsolution, based upon a variational inequality that 
an be derived from theeigenvalue problem.This new method, known as the variational method, will allow us to�nd an approximate value for the ground state energy without knowing theexa
t ground state wavefun
tion! It 
an also, in 
ertain 
ases, be extendedto �nding the energy of ex
ited states. We will also show how the estimateof the energy 
an be systemati
ally improved.4.2 The eigenvalue problemWe start by expressing the time-independent one-dimensional S
hrödingerequation in terms of the Hamiltonian operator Ĥ :
Ĥφi (x) = Eiφi (x) (4.1)where Ei is the energy eigenvalue asso
iated with the eigenfun
tion φi (x) ofthe Hamiltonian Ĥ. Typi
ally, we know Ĥ and want to solve this equationto �nd the asso
iated eigenvalues and eigenfun
tions. In prin
iple, we 
analways solve this equation by diagonalizing Ĥ whi
h therefore gives all theeigenvalues and eigenfun
tions. However, this is often 
omputationally veryexpensive, and we are often only interested in �nding the ground state so-lution, i.e. the lowest energy state 
orresponding to the smallest eigenvalue.We therefore seek a method for �nding just the lowest eigenvalue, or at least,a reasonable approximation. 35



36 CHAPTER 4. THE VARIATIONAL METHODLet us 
onsider an arbitrary wavefun
tion ψ (x). Using the 
omplete setof eigenfun
tions {φi (x)} as a basis, we may expand the arbitrary fun
tionas follows:
ψ (x) =

∑

i

ciφi (x) (4.2)where the {ci} are the 
omplex expansion 
oe�
ients. Note that ψ (x) maynot be properly normalized.We 
an now 
al
ulate the expe
tation value of the energy for this state:
〈E〉 =

∫
ψ⋆ (x) Ĥψ (x) dx∫
ψ⋆ (x)ψ (x) dx

(4.3)
=

∑
i,j c

⋆
i cj
∫
φ⋆

i (x) Ĥφj (x) dx
∑

i,j c
⋆
i cj
∫
φ⋆

i (x)φj (x) dx
(4.4)

=

∑
i,j c

⋆
i cjEj

∫
φ⋆

i (x)φj (x) dx
∑

i,j c
⋆
i cj
∫
φ⋆

i (x)φj (x) dx
(4.5)

=

∑
i |ci|

2
Ei∑

i |ci|
2

(4.6)as the basis fun
tions {φi (x)} form an ortho-normal set.Finally, we are now ready to turn to the problem of estimating the groundstate energy, E0 (lowest eigenvalue) without solving the full eigenvalue prob-lem. By de�nition, all ex
ited states have Ei ≥ E0 and therefore we have
∑

i

|ci|
2Ei ≥ E0

∑

i

|ci|
2 (4.7)and so we have the following variational inequality :

〈E〉 =

∑
i |ci|

2
Ei∑

i |ci|
2

≥ E0 (4.8)whi
h shows that any trial wavefun
tion 
an be used to give an upper boundon the ground state energy. Obviously, the 
loser the trial wavefun
tion isto the true ground state wavefun
tion, the lower this upper bound be
omes.So given a trial wavefun
tion we 
an �nd an approximate value for theenergy, and if we 
an then vary this trial wavefun
tion in some manner, we
an generate a better estimate by seeking to minimize this energy.4.2.1 Aside - a di�erent view of the S
hrödinger equationIn fa
t, equation 4.3 
an a
tually be re
ast as a fun
tional :
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E [ψ] =

∫
ψ⋆ (x) Ĥψ (x) dx∫
ψ⋆ (x)ψ (x) dx

(4.9)that is, as a �fun
tion of a fun
tion�. We may then ask what fun
tion ψ (x)minimizes this integral? If this sounds a bit unusual, 
onsider asking thequestion: what fun
tion minimizes the distan
e between two points on aplane? We 
an express the distan
e between two points as an integral whi
hgives the length of a 
urve that passes through both points, and what wewant to �nd is the fun
tional form of the 
urve whi
h has the shortest length.Another example, is that starting from the prin
iple of least a
tion in me-
hani
s, we 
an derive the Euler-Lagrange equations whi
h 
an be redu
ed toNewton's Se
ond Law. These are all examples of the 
al
ulus of variations.If we now de�ne
P =

∫
ψ⋆ (x) Ĥψ (x) dx (4.10)

Q =

∫
ψ⋆ (x)ψ (x) dx (4.11)we 
an write the 
hange in energy δE due to a �rst-order 
hange in the trialwavefun
tion δψ as:

δE =

∫
(ψ + δψ)⋆

Ĥ (ψ + δψ) dx∫
(ψ + δψ)⋆ (ψ + δψ) dx

−

∫
ψ⋆Ĥψdx∫
ψ⋆ψdx

(4.12)
≈

∫
δψ⋆Ĥψdx− P

Q

∫
δψ⋆ψdx

Q
+

∫
ψ⋆Ĥδψdx− P

Q

∫
ψ⋆δψdx

Q
(4.13)If we now 
onsider the stationary states of this energy fun
tional, werequire δE = 0 whi
h, when substituted into equation 4.13, leads to:

Ĥψ =
P

Q
ψ

= Eψ (4.14)i.e. the S
hrödinger equation!So, this is saying that we 
an derive the S
hrödinger equation as beingthe ne
essary 
ondition on a fun
tion for it to minimize the expe
tation valueof the energy. That is, the variational prin
iple is just as good a startingpla
e for QM as the S
hrödinger equation!



38 CHAPTER 4. THE VARIATIONAL METHOD4.3 Rayleigh-Ritz methodHow then do we use this variational inequality? One way is to guess afun
tion ψα (x) whi
h 
ontains some free parameter α and whi
h satis�esthe appropriate boundary 
onditions. We then substitute this fun
tion intoequation 4.3 whi
h then gives the energy as a fun
tion of α for all values of
α . We want the value of α whi
h minimizes the energy, and so 
an use thisto solve for α. We 
an then improve the fun
tional form of the trial guess,in
orporating more free parameters, and so su

essively redu
e the upperbound on the ground state energy.4.3.1 Simple Harmoni
 Os
illator exampleHere we write the Hamiltonian as:

Ĥ = −
~

2

2m

d2

dx2
+

1

2
mω2x2 (4.15)As a simple trial wavefun
tion that satis�es the appropriate boundary
onditions (φ (x) → 0 as x→ ±∞) we 
hoose:

ψα (x) =

{ (
α2 − x2

)
if |x| < α

0 otherwise
(4.16)With this trial form the integrals in equation 4.3 
an now be done simply,resulting in:

E (α) =
5

4

(
~

2

m

1

α2
+

2

35
mω2α2

) (4.17)whi
h when minimized w.r.t. α gives:
E0 ≤ 0.598~ω (4.18)whi
h is quite remarkable given that this problem 
an, of 
ourse, be solvedanalyti
ally to give an exa
t ground state energy of
Eexact

0
= 0.5~ω (4.19)If desired, our estimate of the ground state 
ould be further improved by
hanging the trial wavefun
tion, e.g.

ψα,β (x) =

{ (
α2 − x2

)β
if |x| < α

0 otherwise
(4.20)However, given the simpli
ity of the initial trial wavefun
tion, the estimatewe have obtained is already remarkably good. Why is this method so a

u-rate? The answer is that as we are looking for an energy whi
h minimizes



4.4. LINEAR (MATRIX) METHOD 39equation 4.3, we have a stationary state w.r.t. �rst-order variations in ψ (x)and so the answer is a

urate to se
ond-order!Note that this method only �nds an upper bound on the lowest state.It may also in 
ertain 
ir
umstan
es be extended to ex
ited states, e.g. ifthere is a symmetry that 
an be exploited. For example, with the simpleharmoni
 os
illator, we know that the potential V (x) has a de�nite parity,and so therefore the solutions have a de�nite symmetry. The ground statesolution has even symmetry (as does our su

essful trial wavefun
tion), the�rst ex
ited state has odd symmetry, et
. So if we 
hoose an odd fun
tionas our trial wavefun
tion it 
annot 
onverge to the ground state, and so willinstead 
onverge to the �rst ex
ited state. In general, this method will workfor an ex
ited state as long as our trial fun
tion is orthogonal to all lowerstates. Be aware, however, that ex
ited states 
an have stationary pointsthat are not minima!4.4 Linear (Matrix) methodWhilst the Rayleigh-Ritz method is very useful for deriving an analyti
 ap-proximation to the exa
t ground state wavefun
tion, its a

ura
y is depen-dent upon making a good guess for the fun
tional form, whi
h 
an be verydi�
ult for more 
omplex problems. Therefore, we now 
onsider a morepowerful method, whi
h exploits te
hniques from matrix algebra, and whi
h
an be used su

essfully in general-purpose 
omputer 
odes.We again expand our unknown wavefun
tion ψ (x) in terms of some basisset, but unlike equation 4.2 where we used the set of eigenfun
tions as ourbasis, this time we use a general set of known fun
tions {χi (x)} as a basis:
ψ (x) =

N∑

i=1

ciχi (x) (4.21)where the {ci} are the new 
omplex expansion 
oe�
ients. Note that ingeneral the set {χi (x)} must be linearly independent in order to form a basisset, but they do not need to be 
omplete, nor orthogonal, nor normalized!We now pro
eed in a similar manner to equation 4.3 but this time:
〈E〉 =

∫
ψ⋆ (x) Ĥψ (x) dx∫
ψ⋆ (x)ψ (x) dx

(4.22)
=

∑N
i,j=1

c⋆i cj
∫
χ⋆

i (x) Ĥχj (x) dx
∑N

i,j=1
c⋆i cj

∫
χ⋆

i (x)χj (x) dx
(4.23)

=

∑N
i,j=1

c⋆i cjHi,j
∑N

i,j=1
c⋆i cjSi,j

(4.24)



40 CHAPTER 4. THE VARIATIONAL METHODwhere Hi,j are the matrix elements of the Hamiltonian, and Si,j are thematrix elements of the overlap matrix. Note that if the χi basis fun
tions areorthogonal, then the overlap matrix redu
es to (a s
alar times) the identitymatrix and life is a bit simpler.Minimizing equation 4.24 w.r.t. any parti
ular expansion 
oe�
ient ckgives:
δE =




N∑

i,j=1

c⋆i cjSi,j




(

N∑

i=1

c⋆iHi,k

)
−




N∑

i,j=1

c⋆i cjHi,j




(

N∑

i=1

c⋆iSi,k

)
= 0(4.25)whi
h 
an then be re-arranged and substituted into equation 4.24 to give allthe eigenenergies {E} of the Hamiltonian:

N∑

i=1

c⋆i (Hi,k − ESi,k) = 0 (4.26)This is just a set of N simultaneous linear equations for the {c⋆i } values,whi
h 
an be written in matrix form as:
HC = ESC (4.27)where C is the ve
tor of expansion 
oe�
ients. Non-trivial solutions tothis matrix equation are only possible if the equation is singular, i.e. thedeterminant:
|H −ES| = 0 (4.28)whi
h 
an then be solved for the eigenenergies {E} in the usual way.4.4.1 In
omplete basis setsFor many pra
ti
al appli
ations of equation 4.27 we shall not be using a
omplete basis set - this may be in�nitely large! For example, 
ommon basissets that are used in 
al
ulations of atoms in mole
ules and solids in
ludeplane-waves, Gaussians and atomi
 orbitals - these will be dis
ussed in moredetail in a later le
ture. Obviously, we 
annot 
ope with an in�nite basisset in any �nite 
omputer, and so we must trun
ate the basis in some way,resulting in an in
omplete basis set.What is the e�e
t of using an in
omplete basis set? We will be restri
tingour sear
h for the lowest eigenvalue to a subspa
e of the full spa
e we shouldbe using. Therefore, the minimum value we �nd must always be equal to,or greater than, the �true� value. This is the same as in the Rayleigh-Ritzmethod, where we tried to minimize the upper bound on the target expe
ta-tion value. If we in
rease the size of the basis set we use, then the subspa
e
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Eigenvalue

Basis
Set
SizeSmall Large ExactFigure 4.1: S
hemati
 showing the 
onvergen
e of the eigenvalue spe
trumwith basis set size. It 
an be seen that the lower eigenvalues 
onverge morerapidly towards the exa
t limit as the basis set size is in
reased than thehigher eigenvalues.be
omes larger, and the minimum value we �nd will de
rease until we rea
h
onvergen
e. At 
onvergen
e, we have a su�
iently large basis set su
h thatadding any more basis states will not 
hange the answer. Obviously, wemust use larger basis sets to 
al
ulate ex
ited states. In general, we will geta spe
trum of eigenvalues as the solutions to equation 4.28, with the highereigenvalues 
onverging more slowly than the lower ones with basis set size.This is shown s
hemati
ally in �gure 4.1 and illustrated quantitatively in thefollowing example.Example - in�nitely deep potential wellThis has a potential given by (in 1D):

V (x) =

{
∞ for |x| > |a|
0 for |x| < |a|

(4.29)whi
h for
es the wavefun
tion to vanish on the boundaries, i.e. ψ (x) → 0 at
x = ±a . Of 
ourse, this is a problem that 
an be solved analyti
ally. Here,we demonstrate how to solve this problem using the variational method. We
hoose units su
h that a = ~

2

2m
= 1 and for basis fun
tions we 
hoose simplepolynomials that vanish at the well boundary:

χn (x) = xn (x− a) (x+ a) , n = 1, 2, . . . (4.30)



42 CHAPTER 4. THE VARIATIONAL METHODEigenvalue N=5 N=8 N=12 N=16 Exa
t1 2.4674 2.4674 2.4674 2.4674 2.46742 9.8754 9.8696 9.8696 9.8696 9.86963 22.2934 22.2074 22.2066 22.2066 22.20664 50.1246 39.4892 39.4784 39.4784 39.47845 87.7392 63.6045 61.6862 61.6850 61.6850Table 4.1: Lowest part of the eigenvalue spe
trum of the in�nite squarewell. The e�e
t of in
reasing the basis set size N 
an be 
learly seen, in the
onvergen
e (from left to right) of the eigenvalue towards the exa
t value.where this simple form is 
hosen so that the matrix elements of the overlapmatrix (also known as the overlap integrals) 
an be 
al
ulated simply andanalyti
ally. The matrix elements of the Hamiltonian 
an also be foundanalyti
ally, and so all the elements in equation 4.28 are known and theeigenvalue spe
trum 
an be simply 
al
ulated. The results are given in table4.1 and the resulting spe
trum is similar to that shown in �gure 4.1 asa fun
tion of basis set size. We see that the lowest eigenvalue 
onvergesmost rapidly with basis set size, whilst 
onsiderably more basis fun
tions arerequired to 
onverge the ex
ited states.4.4.2 E�
ien
yWith an orthonormal basis the overlap matrix be
omes the identity matrix,and equation 4.27 be
omes the standard eigenvalue problem, and may besimply solved using standard linear algebra te
hniques. This is 
ommonlyreferred to as diagonalizing the Hamiltonian: we seek to �nd the set ofeigenvalues and eigenve
tors of the Hamiltonian matrix. To do this, weexploit the Hermitian properties of H. If we write the eigenve
tors of Has the 
olumns of a new matrix U, then this forms a unitary matrix, i.e.
U

†
U = I. The diagonal form of H then follows:

Hdiag = U
†
HU (4.31)There exist many high quality library pa
kages (su
h as BLAS or LAPACK)to perform this task, often with variants to exploit parti
ular propertiesof the problem where these exist (su
h as sparseness of the matrix to bediagonalized).In the general 
ase, we have to deal with a non-orthogonal basis, withnon-trivial overlap integrals, and the more 
ompli
ated generalized eigen-value problem must be solved. This requires some sophisti
ated matrix ma-nipulations and will be 
overed in a later le
ture.The pra
ti
al 
omputational limitations on the e�e
tiveness of this method,are the storage requirements of these matri
es whi
h is O (N2

) and the 
om-



4.5. FINAL COMMENTS 43puter time required to diagonalize ea
h matrix, whi
h is O (N3
) (where N isthe size of the basis set). For this reason, the basis set should be kept as smallas possible, whilst giving 
onverged results for the quantities of interest. Notethat diagonalizing the Hamiltonian will give all the eigenvalues, whereas it isoften only a small number of the lowest eigenvalues, 
orresponding to o

u-pied states, that are of interest. For this reason, various te
hniques su
h asthe Lan
zos algorithm have been developed to only return a limited numberof eigenvalues, with 
orresponding in
reases in e�
ien
y.For most problems, the linear variational method is more e�
ient thanthe dire
t-solution methods dis
ussed in earlier le
tures. In general, the basisset sizes 
an be 
hosen to be far smaller than the number of integration pointsrequired to a
hieve 
omparable a

ura
y. For an integration grid 
ontaining

M points however, the �nite di�eren
e equations 
an often be formulated assparse matri
es whi
h 
an then be solved using spe
ialised O (M) methods.As the problem size in
reases therefore, grid based methods be
ome moree�
ient and so are starting to be
ome more widely used in resear
h.4.5 Final 
ommentsA few �nal points to highlight:
• We 
an express a wavefun
tion in terms of basis fun
tions, whi
h thenturns the S
hrödinger equation into an eigenvalue equation.
• An approximate analyti
 form for the ground state solution 
an befound from the Rayleigh-Ritz variational method.
• A numeri
al solution 
an be found using the linear variational method.
• If the basis set is in
omplete, then the eigenvalues obtained will beupper bounds on the true eigenvalues.
• If the basis set is non-orthogonal, then the generalized eigenvalue prob-lem has to be solved.4.6 Further Reading
• �Computational Physi
s� by J.M. Thijssen, Chapter 3
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