Chapter 4

The Variational Method

4.1 Introduction

In previous lectures, we have discussed methods of solving the Schrodinger
equation based upon integrating a (partial) differential equation. However, it
is well known that the Schrédinger equation is an example of an eigenvalue
problem, and so in this lecture we will explore an alternative method of
solution, based upon a wariational inequality that can be derived from the
eigenvalue problem.

This new method, known as the variational method, will allow us to
find an approximate value for the ground state energy without knowing the
exact ground state wavefunction! It can also, in certain cases, be extended
to finding the energy of excited states. We will also show how the estimate
of the energy can be systematically improved.

4.2 The eigenvalue problem

We start by expressing the time-independent one-dimensional Schrédinger
equation in terms of the Hamiltonian operator H :

Hg; (x) = Ei¢; (x) (4.1)

where E; is the energy eigenvalue associated with the eigenfunction ¢; (x) of
the Hamiltonian H. Typically, we know H and want to solve this equation
to find the associated eigenvalues and eigenfunctions. In principle, we can
always solve this equation by diagonalizing H which therefore gives all the
eigenvalues and eigenfunctions. However, this is often computationally very
expensive, and we are often only interested in finding the ground state so-
lution, i.e. the lowest energy state corresponding to the smallest eigenvalue.
We therefore seek a method for finding just the lowest eigenvalue, or at least,
a reasonable approximation.
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Let us consider an arbitrary wavefunction 1 (x). Using the complete set
of eigenfunctions {¢; (x)} as a basis, we may expand the arbitrary function
as follows:

b (z) =) cidi(z) (4.2)
i
where the {c;} are the complex expansion coefficients. Note that v (z) may

not be properly normalized.
We can now calculate the expectation value of the energy for this state:
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as the basis functions {¢; ()} form an ortho-normal set.

Finally, we are now ready to turn to the problem of estimating the ground
state energy, Ey (lowest eigenvalue) without solving the full eigenvalue prob-
lem. By definition, all excited states have E; > Ey and therefore we have

STl B> Ey Y el (4.7)

and so we have the following wvariational inequality:

(B) = Zz‘cfc‘f > B, (49)

which shows that any trial wavefunction can be used to give an upper bound
on the ground state energy. Obviously, the closer the trial wavefunction is
to the true ground state wavefunction, the lower this upper bound becomes.

So given a trial wavefunction we can find an approximate value for the
energy, and if we can then vary this trial wavefunction in some manner, we
can generate a better estimate by seeking to minimize this energy.

4.2.1 Aside - a different view of the Schrédinger equation

In fact, equation 4.3 can actually be recast as a functional:
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_ [ (2) HY () da
J o (@) ¥ (x) da

that is, as a “function of a function”. We may then ask what function ¢ (z)
minimizes this integral? If this sounds a bit unusual, consider asking the
question: what function minimizes the distance between two points on a
plane? We can express the distance between two points as an integral which
gives the length of a curve that passes through both points, and what we
want to find is the functional form of the curve which has the shortest length.
Another example, is that starting from the principle of least action in me-
chanics, we can derive the Euler-Lagrange equations which can be reduced to
Newton’s Second Law. These are all examples of the calculus of variations.

E Y] (4.9)

If we now define

P = /w*(x)ﬁw(az)dx (4.10)
@ = [vr@i@ (4.11)

we can write the change in energy 6 F due to a first-order change in the trial
wavefunction §i as:
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If we now consider the stationary states of this energy functional, we
require 0 = 0 which, when substituted into equation 4.13, leads to:

. P
Hy = @?ﬁ
= Ey (4.14)

i.e. the Schrédinger equation!

So, this is saying that we can derive the Schrodinger equation as being
the necessary condition on a function for it to minimize the expectation value
of the energy. That is, the variational principle is just as good a starting
place for QM as the Schrédinger equation!
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4.3 Rayleigh-Ritz method

How then do we use this variational inequality? One way is to guess a
function 1, (x) which contains some free parameter o and which satisfies
the appropriate boundary conditions. We then substitute this function into
equation 4.3 which then gives the energy as a function of « for all values of
a . We want the value of o which minimizes the energy, and so can use this
to solve for a. We can then improve the functional form of the trial guess,
incorporating more free parameters, and so successively reduce the upper
bound on the ground state energy.

4.3.1 Simple Harmonic Oscillator example

Here we write the Hamiltonian as:

~ |
H=——— + -muwz?
2mdz? 2
As a simple trial wavefunction that satisfies the appropriate boundary

conditions (¢ (z) — 0 as z — £o00) we choose:

222 if |z «
%(z)z{ (0 —a%) if Ja| < (4.16)

(4.15)

0 otherwise

With this trial form the integrals in equation 4.3 can now be done simply,
resulting in:

5(h 1 2
E(a) = 1 <E? + gmuﬂoﬂ) (4.17)

which when minimized w.r.t. « gives:

Ey < 0.598hw (4.18)
which is quite remarkable given that this problem can, of course, be solved
analytically to give an exact ground state energy of

E&*t = 0.5hw (4.19)

If desired, our estimate of the ground state could be further improved by
changing the trial wavefunction, e.g.

0 otherwise

Yaop () = { (a* =) if lal <a (4.20)

However, given the simplicity of the initial trial wavefunction, the estimate
we have obtained is already remarkably good. Why is this method so accu-
rate? The answer is that as we are looking for an energy which minimizes
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equation 4.3, we have a stationary state w.r.t. first-order variations in ¢ (z)
and so the answer is accurate to second-order!

Note that this method only finds an upper bound on the lowest state.
It may also in certain circumstances be extended to excited states, e.g. if
there is a symmetry that can be exploited. For example, with the simple
harmonic oscillator, we know that the potential V (z) has a definite parity,
and so therefore the solutions have a definite symmetry. The ground state
solution has even symmetry (as does our successful trial wavefunction), the
first excited state has odd symmetry, etc. So if we choose an odd function
as our trial wavefunction it cannot converge to the ground state, and so will
instead converge to the first excited state. In general, this method will work
for an excited state as long as our trial function is orthogonal to all lower
states. Be aware, however, that excited states can have stationary points
that are not minimal

4.4 Linear (Matrix) method

Whilst the Rayleigh-Ritz method is very useful for deriving an analytic ap-
proximation to the exact ground state wavefunction, its accuracy is depen-
dent upon making a good guess for the functional form, which can be very
difficult for more complex problems. Therefore, we now consider a more
powerful method, which exploits techniques from matrix algebra, and which
can be used successfully in general-purpose computer codes.

We again expand our unknown wavefunction 9 (x) in terms of some basis
set, but unlike equation 4.2 where we used the set of eigenfunctions as our
basis, this time we use a general set of known functions {x; (z)} as a basis:

Y (x) = Z cixi (x) (4.21)
i=1
where the {¢;} are the new complex expansion coefficients. Note that in
general the set {x; ()} must be linearly independent in order to form a basis
set, but they do not need to be complete, nor orthogonal, nor normalized!
We now proceed in a similar manner to equation 4.3 but this time:

J v (2) Hy (x) da
S e (422)
N oo [y (z) Hy; (z) dz
_ Zz‘,gvzlcicani( ) Hx; (z)d (4.23)
Zi,j:l ciej [ x5 () x; (2) d
_ Dij=16 ¢ (4.24)

N * . Q.
Zi,j:l i ¢S
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where H;; are the matriz elements of the Hamiltonian, and S;; are the
matrix elements of the overlap matriz. Note that if the y; basis functions are
orthogonal, then the overlap matrix reduces to (a scalar times) the identity
matrix and life is a bit simpler.

Minimizing equation 4.24 w.r.t. any particular expansion coefficient ¢
gives:

N N N N
0F = Z C:CjSiJ (Z C: i,k‘) - Z C:CjHZ'J (Z C: i,k‘) =0
ij=1 i=1 ij=1 i=1

(4.25)

which can then be re-arranged and substituted into equation 4.24 to give all

the eigenenergies {E'} of the Hamiltonian:

N
> ¢ (Hip— ESix) =0 (4.26)
i=1
This is just a set of N simultaneous linear equations for the {c}} values,
which can be written in matrix form as:

HC = ESC (4.27)

where C is the vector of expansion coefficients. Non-trivial solutions to
this matrix equation are only possible if the equation is singular, i.e. the
determinant:

H—ES| =0 (4.28)

which can then be solved for the eigenenergies {E} in the usual way.

4.4.1 Incomplete basis sets

For many practical applications of equation 4.27 we shall not be using a
complete basis set - this may be infinitely large! For example, common basis
sets that are used in calculations of atoms in molecules and solids include
plane-waves, Gaussians and atomic orbitals - these will be discussed in more
detail in a later lecture. Obviously, we cannot cope with an infinite basis
set in any finite computer, and so we must truncate the basis in some way,
resulting in an incomplete basis set.

What is the effect of using an incomplete basis set? We will be restricting
our search for the lowest eigenvalue to a subspace of the full space we should
be using. Therefore, the minimum value we find must always be equal to,
or greater than, the “true” value. This is the same as in the Rayleigh-Ritz
method, where we tried to minimize the upper bound on the target expecta-
tion value. If we increase the size of the basis set we use, then the subspace
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Figure 4.1: Schematic showing the convergence of the eigenvalue spectrum
with basis set size. It can be seen that the lower eigenvalues converge more
rapidly towards the exact limit as the basis set size is increased than the
higher eigenvalues.

becomes larger, and the minimum value we find will decrease until we reach
convergence. At convergence, we have a sufficiently large basis set such that
adding any more basis states will not change the answer. Obviously, we
must use larger basis sets to calculate excited states. In general, we will get
a spectrum of eigenvalues as the solutions to equation 4.28, with the higher
eigenvalues converging more slowly than the lower ones with basis set size.
This is shown schematically in figure 4.1 and illustrated quantitatively in the
following example.

Example - infinitely deep potential well

This has a potential given by (in 1D):

_J oo Jfor x| >]al
Viz) = { 0 forl|z| <la] (429)

which forces the wavefunction to vanish on the boundaries, i.e. 1 (x) — 0 at
x = Fa . Of course, this is a problem that can be solved analytically. Here,
we demonstrate how to solve this problem using the variational method. We
choose units such that a = % = 1 and for basis functions we choose simple
polynomials that vanish at the well boundary:

Xn (@) =2"(x—a)(z+a),n=1,2,... (4.30)
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Eigenvalue | N=5 | N=8 | N=12 | N=16 | Exact |

1 24674 | 24674 | 24674 | 24674 | 2.4674
9.8754 | 9.8696 | 9.8696 | 9.8696 | 9.8696
22.2934 | 22.2074 | 22.2066 | 22.2066 | 22.2066
50.1246 | 39.4892 | 39.4784 | 39.4784 | 39.4784
87.7392 | 63.6045 | 61.6862 | 61.6850 | 61.6850

QY =] W N

Table 4.1: Lowest part of the eigenvalue spectrum of the infinite square
well. The effect of increasing the basis set size IV can be clearly seen, in the
convergence (from left to right) of the eigenvalue towards the exact value.

where this simple form is chosen so that the matrix elements of the overlap
matrix (also known as the overlap integrals) can be calculated simply and
analytically. The matrix elements of the Hamiltonian can also be found
analytically, and so all the elements in equation 4.28 are known and the
eigenvalue spectrum can be simply calculated. The results are given in table
4.1 and the resulting spectrum is similar to that shown in figure 4.1 as
a function of basis set size. We see that the lowest eigenvalue converges
most rapidly with basis set size, whilst considerably more basis functions are
required to converge the excited states.

4.4.2 Efficiency

With an orthonormal basis the overlap matrix becomes the identity matrix,
and equation 4.27 becomes the standard eigenvalue problem, and may be
simply solved using standard linear algebra techniques. This is commonly
referred to as diagonalizing the Hamiltonian: we seek to find the set of
eigenvalues and eigenvectors of the Hamiltonian matrix. To do this, we
exploit the Hermitian properties of H. If we write the eigenvectors of H

as the columns of a new matrix U, then this forms a wnitary matrix, i.e.
U'U = I. The diagonal form of H then follows:

Hgyi,y = U'HU (4.31)

There exist many high quality library packages (such as BLAS or LAPACK)
to perform this task, often with variants to exploit particular properties
of the problem where these exist (such as sparseness of the matrix to be
diagonalized).

In the general case, we have to deal with a non-orthogonal basis, with
non-trivial overlap integrals, and the more complicated generalized eigen-
value problem must be solved. This requires some sophisticated matrix ma-
nipulations and will be covered in a later lecture.

The practical computational limitations on the effectiveness of this method,
are the storage requirements of these matrices which is O (NQ) and the com-
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puter time required to diagonalize each matrix, which is O (N3) (where N is
the size of the basis set). For this reason, the basis set should be kept as small
as possible, whilst giving converged results for the quantities of interest. Note
that diagonalizing the Hamiltonian will give all the eigenvalues, whereas it is
often only a small number of the lowest eigenvalues, corresponding to occu-
pied states, that are of interest. For this reason, various techniques such as
the Lanczos algorithm have been developed to only return a limited number
of eigenvalues, with corresponding increases in efficiency.

For most problems, the linear variational method is more efficient than
the direct-solution methods discussed in earlier lectures. In general, the basis
set sizes can be chosen to be far smaller than the number of integration points
required to achieve comparable accuracy. For an integration grid containing
M points however, the finite difference equations can often be formulated as
sparse matrices which can then be solved using specialised O (M) methods.
As the problem size increases therefore, grid based methods become more
efficient and so are starting to become more widely used in research.

4.5 Final comments
A few final points to highlight:

e We can express a wavefunction in terms of basis functions, which then
turns the Schrodinger equation into an eigenvalue equation.

e An approximate analytic form for the ground state solution can be
found from the Rayleigh-Ritz variational method.

e A numerical solution can be found using the linear variational method.

e If the basis set is incomplete, then the eigenvalues obtained will be
upper bounds on the true eigenvalues.

o If the basis set is non-orthogonal, then the generalized eigenvalue prob-
lem has to be solved.

4.6 Further Reading

e “Computational Physics” by J.M. Thijssen, Chapter 3
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