Chapter 5

Total Energies

5.1 Why study total energies?

For the remainder of this lecture course, we will be considering various tech-
niques for calculating the total energy of a system of interacting quantum
particles. Why is this of interest? The simple answer is that many quantities
of interest can be derived from a knowledge of the total energy, or differences
in total energy, and how it varies under various perturbations. In condensed
matter physics, we are interested primarily in a system of electrons and ions.
This is the class of system we shall consider for the rest of this lecture course.

For instance, the equilibrium lattice constant of a crystal is that which
minimises the total energy. Similarly, the equilibrium bond lengths of atoms
in molecules, and the structure of surfaces and defects, will all be those which
minimise the total energy. For example, if a series of total energy calculations
are performed as a function of the lattice parameter, then when plotted as in
figure 5.1, the predicted theoretical equilibrium lattice parameter can be seen
as the minimum of this curve. This can also be repeated for different crystal
structures, e.g. face-centred cubic, body-centred cubic, etc. to create a
family of such curves, from which the most stable crystal structure at a given
applied pressure can be deduced. In this way, phase-transition pressures can
be calculated. Similarly, various elastic constants of the crystal, phonon
modes, piezoelectric constants, etc. can also be calculated.

Whilst such quantities can often be simply measured in a laboratory, this
is not always the case. For example, there is a lot of interest in knowing the
structure and elastic properties of iron at temperatures in the range 4000 K
to 8000 K and pressures of 500,000 to 3,500,000 atmospheres! Why? Because
this is believed to be the conditions that exist in the Earth’s core and the
properties of iron in such conditions are largely unknown, yet hugely impor-
tant for determining the structure and dynamics of the planet! There are
many other cases, where it is preferred to calculate rather than measure such
quantities, for example, when designing candidate new ultra-hard materials
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Figure 5.1: Sketch of variation in total energy with lattice constant, showing
how the equilibrium value can be predicted.

to know if it is worth bothering to try to make them!

5.1.1 Forces

We can also go beyond simply calculating the total energy. For example, we
know that in classical mechanics, that the force on a particle can be derived
from the potential:

F=-VV(r) (5.1)
and the corresponding expression in quantum mechanics is

F=_V(E) (5.2)

where (E) is the expectation value of the total energy

J o (v) Ho (r) d*r
[ (x) ¢ (r) d®r

= N/¢* (r) Hp (r) dr (5.3)

(E)

where ¢ (r) is the wavefunction of the system (not necessarily an eigenfunc-
tion of the Hamiltonian) and N is an appropriate normalisation constant.
Therefore the force on the ions is
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P —N{/Vé* (x) g¢(r)d3r+/¢* (r) vﬁ¢(r)d3r+/¢* (r) ﬁv¢(r)d37’}

(5.4)
by the chain rule.

That is, we can use the change in the expectation value of the total
energy of the system upon moving the ionic coordinates {R} to derive the
forces upon the ions. Note that if we expand the wavefunction of the system
in some position-independent basis-set, such as plane-waves:

¢(r) =) cpe’™” (5.5)
k

then we can use the Hellmann-Feynman theorem to rewrite equation 5.4 as

F o= _Nv{/¢* (v) B (r) d?w}
= —NV {/Zcz,e_ik/'rﬁcheik'rd?’r}
k' k
= —NV{Z cz,ck/e_ikl‘rﬁeik‘rd?’r}

k'k
= _NZ Czlckv {/ e—ik’.rﬁeik.rd3r}
k'k
= —NZcz/ck/e_ik,'rVﬁeik'rdgr (5.6)
k'k

where the last line follows from the fact that we are applying the V operator
to the positions of the ions {R} not to the electrons {r}.

So, instead of having to apply the V operator to the wavefunctions and
the Hamiltonian, we only need apply it to the Hamiltonian and we can then
calculate the forces using the same expansion coefficients ¢ etc as used to
calculate the total energy. This is an immense saving in computational effort.
If, for some reason, we have to use a position dependent basis-set, then we
have an extra contribution to the forces, known as the Pulay force, from the
effect of applying V to the basis functions.

Having derived the forces on the ions, we can now use this to move them
around, either to find directly the geometrical arrangement which minimises
the energy (i.e. has zero net force everywhere) or to do molecular dynamics.
In this way, we can do study dynamical effects as well, including the effect
of finite temperatures. Note that the simplest molecular dynamics ensem-
ble is NVE, that is constant number of particles (N), constant volume (V)
and constant energy (E). An experimentally more realistic scenario is NVT
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dynamics, where an appropriate thermostat is used to hold the temperature
(T) constant and consequently allow some fluctuations in the energy.

5.1.2 Stresses

Just as we can derive the forces from the change in total energy upon varying
the ionic positions, we can also derive the stress on the unit cell from the
change in total energy upon varying the cell vectors. The details are a bit
more complex, as the cell stress is a 3x3 tensor whereas the ionic force is a
3x1 vector, and the cell strain is a 3x3 tensor whereas the ionic displacement
is a 3x1 vector.

However, once we have the stress, we can either use it to find directly
the cell size and shape which minimises the energy (i.e. has zero stress), or
to combine it with the forces to do molecular dynamics with a dynamically
varying cell shape. This then enables us to do NPT dynamics, i.e. with
constant pressure (P), which is the most common experimental situation.

5.1.3 Charge Density

In a single particle system, we are used to calculating the wavefunction and
associating the probability of finding the particle in a small volume dV at a
point r with the wavefunction as

P(r—r+dV) =y @)*dV (5.7)

and
1= /P(r) d3r (5.8)

This is not so useful when we have multiple particles, particularly in a
condensed matter system where there may be a very large number in a macro-
scopic sample (say ~ 10?3 in a mole of substance). A more useful quantity,
which is experimentally measurable and closely related to the probability
density, is the charge density n (r) where

N = %/n(r) dr (5.9)

and N is the number of particles in the volume V' (for example, in the unit
cell of a crystal).

The charge density can be calculated from the wavefunction of the sys-
tem, but as we shall see in later lectures, it is also a fundamental quantity in
its own right. In fact, specifying the charge density uniquely determines the
state of the system, and there is a unique charge density that corresponds to
the ground state of the system and therefore which minimises the total en-
ergy of the system. It is experimentally measurable using various scattering
techniques.
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5.2 Applications

In the handout there are many examples of different theoretical calculations
of experimentally verifiable quantities which will be discussed in the lecture.
A variety of different theoretical techniques are used to calculate the total
energy which is the basis for all these calculations - primarily, the Hartree-
Fock method (which we shall discuss in more detail in a later lecture) and
Density Functional Theory (in the lecture following Hartree-Fock). As such,
the calculations presented all represent properties of the ground state of the
system.

It should be noted that there are many other quantities of interest that
can be calculated, such as optical properties, but that in general these are
properties of excited states of the system. As such, they can sometimes be
calculated using modifications to the above techniques, but there are some
technical difficulties associated with the (often) lack of a variational principle
for excited states.

5.3 Final comments
A few final points to highlight:

e Many quantities of interest are properties of the ground state of the
system and as such are accessible through calculation of the total en-

ergy.

e If the calculation is a first-principles, parameter-free calculation (apart
from specifying the types of atom and their masses) then it is often
known as an ab initio calculation.

e It is often possible to calculate the forces on the ions from the total
energy and hence both relax structures to equilibrium, and also do
molecular dynamics. Similarly, for periodic systems, the stress on the
unit cell can be calculated which enables the shape of the unit cell to
be determined and for molecular dynamics with pressure control.

5.4 Further reading

e Hellmann-Feynman Theorem in “Methods of Electronic Structure Cal-
culations” by M. Springborg, Chapter 20

e Example applications in many chapters of “Methods of Electronic Struc-
ture Calculations” by M. Springborg
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