
Chapter 5Total Energies5.1 Why study total energies?For the remainder of this le
ture 
ourse, we will be 
onsidering various te
h-niques for 
al
ulating the total energy of a system of intera
ting quantumparti
les. Why is this of interest? The simple answer is that many quantitiesof interest 
an be derived from a knowledge of the total energy, or di�eren
esin total energy, and how it varies under various perturbations. In 
ondensedmatter physi
s, we are interested primarily in a system of ele
trons and ions.This is the 
lass of system we shall 
onsider for the rest of this le
ture 
ourse.For instan
e, the equilibrium latti
e 
onstant of a 
rystal is that whi
hminimises the total energy. Similarly, the equilibrium bond lengths of atomsin mole
ules, and the stru
ture of surfa
es and defe
ts, will all be those whi
hminimise the total energy. For example, if a series of total energy 
al
ulationsare performed as a fun
tion of the latti
e parameter, then when plotted as in�gure 5.1, the predi
ted theoreti
al equilibrium latti
e parameter 
an be seenas the minimum of this 
urve. This 
an also be repeated for di�erent 
rystalstru
tures, e.g. fa
e-
entred 
ubi
, body-
entred 
ubi
, et
. to 
reate afamily of su
h 
urves, from whi
h the most stable 
rystal stru
ture at a givenapplied pressure 
an be dedu
ed. In this way, phase-transition pressures 
anbe 
al
ulated. Similarly, various elasti
 
onstants of the 
rystal, phononmodes, piezoele
tri
 
onstants, et
. 
an also be 
al
ulated.Whilst su
h quantities 
an often be simply measured in a laboratory, thisis not always the 
ase. For example, there is a lot of interest in knowing thestru
ture and elasti
 properties of iron at temperatures in the range 4000 Kto 8000 K and pressures of 500,000 to 3,500,000 atmospheres! Why? Be
ausethis is believed to be the 
onditions that exist in the Earth's 
ore and theproperties of iron in su
h 
onditions are largely unknown, yet hugely impor-tant for determining the stru
ture and dynami
s of the planet! There aremany other 
ases, where it is preferred to 
al
ulate rather than measure su
hquantities, for example, when designing 
andidate new ultra-hard materials45
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Figure 5.1: Sket
h of variation in total energy with latti
e 
onstant, showinghow the equilibrium value 
an be predi
ted.to know if it is worth bothering to try to make them!5.1.1 For
esWe 
an also go beyond simply 
al
ulating the total energy. For example, weknow that in 
lassi
al me
hani
s, that the for
e on a parti
le 
an be derivedfrom the potential:
F = −∇V (r) (5.1)and the 
orresponding expression in quantum me
hani
s is
F = −∇〈E〉 (5.2)where 〈E〉 is the expe
tation value of the total energy

〈E〉 =

∫
φ⋆ (r) Ĥφ (r) d3r∫
φ⋆ (r)φ (r) d3r

= N

∫
φ⋆ (r) Ĥφ (r) d3r (5.3)where φ (r) is the wavefun
tion of the system (not ne
essarily an eigenfun
-tion of the Hamiltonian) and N is an appropriate normalisation 
onstant.Therefore the for
e on the ions is
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F = −N

{∫
∇φ⋆ (r) Ĥφ (r) d3r +

∫
φ⋆ (r)∇Ĥφ (r) d3r +

∫
φ⋆ (r) Ĥ∇φ (r) d3r

}(5.4)by the 
hain rule.That is, we 
an use the 
hange in the expe
tation value of the totalenergy of the system upon moving the ioni
 
oordinates {R} to derive thefor
es upon the ions. Note that if we expand the wavefun
tion of the systemin some position-independent basis-set, su
h as plane-waves:
φ (r) =

∑

k

cke
ik.r (5.5)then we 
an use the Hellmann-Feynman theorem to rewrite equation 5.4 as

F = −N∇

{∫
φ⋆ (r) Ĥφ (r) d3r

}

= −N∇

{∫ ∑

k′

c⋆k′e
−ik′.rĤ

∑

k

cke
ik.rd3r

}

= −N∇

{
∑

k′k

c⋆
k′ck

∫
e−ik′.rĤeik.rd3r

}

= −N
∑

k′k

c⋆k′ck∇

{∫
e−ik′.rĤeik.rd3r

}

= −N
∑

k′k

c⋆k′ck

∫
e−ik′.r∇Ĥeik.rd3r (5.6)where the last line follows from the fa
t that we are applying the ∇ operatorto the positions of the ions {R} not to the ele
trons {r}.So, instead of having to apply the ∇ operator to the wavefun
tions andthe Hamiltonian, we only need apply it to the Hamiltonian and we 
an then
al
ulate the for
es using the same expansion 
oe�
ients ck et
 as used to
al
ulate the total energy. This is an immense saving in 
omputational e�ort.If, for some reason, we have to use a position dependent basis-set, then wehave an extra 
ontribution to the for
es, known as the Pulay for
e, from thee�e
t of applying ∇ to the basis fun
tions.Having derived the for
es on the ions, we 
an now use this to move themaround, either to �nd dire
tly the geometri
al arrangement whi
h minimisesthe energy (i.e. has zero net for
e everywhere) or to do mole
ular dynami
s.In this way, we 
an do study dynami
al e�e
ts as well, in
luding the e�e
tof �nite temperatures. Note that the simplest mole
ular dynami
s ensem-ble is NVE, that is 
onstant number of parti
les (N), 
onstant volume (V)and 
onstant energy (E). An experimentally more realisti
 s
enario is NVT
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s, where an appropriate thermostat is used to hold the temperature(T) 
onstant and 
onsequently allow some �u
tuations in the energy.5.1.2 StressesJust as we 
an derive the for
es from the 
hange in total energy upon varyingthe ioni
 positions, we 
an also derive the stress on the unit 
ell from the
hange in total energy upon varying the 
ell ve
tors. The details are a bitmore 
omplex, as the 
ell stress is a 3x3 tensor whereas the ioni
 for
e is a3x1 ve
tor, and the 
ell strain is a 3x3 tensor whereas the ioni
 displa
ementis a 3x1 ve
tor.However, on
e we have the stress, we 
an either use it to �nd dire
tlythe 
ell size and shape whi
h minimises the energy (i.e. has zero stress), orto 
ombine it with the for
es to do mole
ular dynami
s with a dynami
allyvarying 
ell shape. This then enables us to do NPT dynami
s, i.e. with
onstant pressure (P), whi
h is the most 
ommon experimental situation.5.1.3 Charge DensityIn a single parti
le system, we are used to 
al
ulating the wavefun
tion andasso
iating the probability of �nding the parti
le in a small volume dV at apoint r with the wavefun
tion as
P (r → r + dV ) = |ψ (r)|2 dV (5.7)and

1 =

∫
P (r) d3r (5.8)This is not so useful when we have multiple parti
les, parti
ularly in a
ondensed matter system where there may be a very large number in a ma
ro-s
opi
 sample (say ∼ 1023 in a mole of substan
e). A more useful quantity,whi
h is experimentally measurable and 
losely related to the probabilitydensity, is the 
harge density n (r) where

N =
1

V

∫
n (r) d3r (5.9)and N is the number of parti
les in the volume V (for example, in the unit
ell of a 
rystal).The 
harge density 
an be 
al
ulated from the wavefun
tion of the sys-tem, but as we shall see in later le
tures, it is also a fundamental quantity inits own right. In fa
t, spe
ifying the 
harge density uniquely determines thestate of the system, and there is a unique 
harge density that 
orresponds tothe ground state of the system and therefore whi
h minimises the total en-ergy of the system. It is experimentally measurable using various s
atteringte
hniques.
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ationsIn the handout there are many examples of di�erent theoreti
al 
al
ulationsof experimentally veri�able quantities whi
h will be dis
ussed in the le
ture.A variety of di�erent theoreti
al te
hniques are used to 
al
ulate the totalenergy whi
h is the basis for all these 
al
ulations - primarily, the Hartree-Fo
k method (whi
h we shall dis
uss in more detail in a later le
ture) andDensity Fun
tional Theory (in the le
ture following Hartree-Fo
k). As su
h,the 
al
ulations presented all represent properties of the ground state of thesystem.It should be noted that there are many other quantities of interest that
an be 
al
ulated, su
h as opti
al properties, but that in general these areproperties of ex
ited states of the system. As su
h, they 
an sometimes be
al
ulated using modi�
ations to the above te
hniques, but there are somete
hni
al di�
ulties asso
iated with the (often) la
k of a variational prin
iplefor ex
ited states.5.3 Final 
ommentsA few �nal points to highlight:
• Many quantities of interest are properties of the ground state of thesystem and as su
h are a

essible through 
al
ulation of the total en-ergy.
• If the 
al
ulation is a �rst-prin
iples, parameter-free 
al
ulation (apartfrom spe
ifying the types of atom and their masses) then it is oftenknown as an ab initio 
al
ulation.
• It is often possible to 
al
ulate the for
es on the ions from the totalenergy and hen
e both relax stru
tures to equilibrium, and also domole
ular dynami
s. Similarly, for periodi
 systems, the stress on theunit 
ell 
an be 
al
ulated whi
h enables the shape of the unit 
ell tobe determined and for mole
ular dynami
s with pressure 
ontrol.5.4 Further reading
• Hellmann-Feynman Theorem in �Methods of Ele
troni
 Stru
ture Cal-
ulations� by M. Springborg, Chapter 20
• Example appli
ations in many 
hapters of �Methods of Ele
troni
 Stru
-ture Cal
ulations� by M. Springborg
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