
Chapter 6Basis Sets6.1 Introdu
tionIn previous le
tures, we introdu
ed the variational method as a means of�nding an approximate value for the ground state energy without knowingthe exa
t ground state wavefun
tion. Knowing the ground state energy, andhow it varies under 
ontrolled 
onditions, is a very useful way of 
al
ulatingmany properties of a quantum sytem. In many 
ases, the best way to dothis 
al
ulation is to use the linear (matrix) method, wherein the unknownwavefun
tion ψ (x) is expanded in terms of some basis set of known fun
tions
{χi (x)} :

ψ (x) =

N
∑

i=1

ciχi (x) (6.1)where the {ci} are the 
omplex expansion 
oe�
ients. Note that in generalthe set {χi (x)} must be linearly independent in order to form a basis set,but they do not need to be 
omplete, nor orthogonal, nor normalized! Inthis le
ture we will dis
uss some of the most 
ommon 
hoi
es of basis sets,their usage and impli
ations. These will form some of the basi
 tools usedin many di�erent 
omputational QM approa
hes, su
h as will be dis
ussedin the remaining le
tures.6.2 Revision of variational methodIn an earlier le
ture we saw that the task of �nding a variational value for theground state energy of a system is equivalent to solving the matrix equation:
HC = ESC (6.2)where H is the Hamiltonian matrix, S is the overlap matrix and C is theve
tor of expansion 
oe�
ients. Non-trivial solutions to this matrix equation51



52 CHAPTER 6. BASIS SETSare only possible if the equation is singular, i.e. the determinant:
|H −ES| = 0 (6.3)whi
h 
an then be solved for the eigenenergies {E} in the usual way.The solution of equation 6.3 is mu
h simpler with an appropriate 
hoi
eof basis set. This should be 
hosen to satisfy the appropriate boundary
onditions, and also to be similar in �shape� to the solution fun
tions, so thata minimal number of basis fun
tions are required to a
hieve 
onvergen
e inthe results. Note that if the χi basis fun
tions are orthonormal, then theoverlap matrix redu
es to the identity matrix and life is a bit simpler.For example, in the example of the in�nitely deep square well dis
ussedin an earlier le
ture, we used a simple polynomial basis set as it led to simpleexpressions for the overlap integrals. However, an equally valid (and perhapsmore obvious) 
hoi
e for a basis set would be the {sin (nx) , cos (nx) , 1} setused in Fourier series, with appropriate boundary 
onditions, e.g. ψ (x) → 0at x = ±π.More useful for 
al
ulations of atoms in mole
ules are the atomi
 or-bitals {

e−ξrYl,m (θ, φ)
} found as solutions to the S
hrödinger equation foran isolated hydrogen atom. Unfortunately, these form a non-orthogonal ba-sis, with non-trivial overlap integrals, and the more 
ompli
ated generalizedeigenvalue problem must be solved. There are two 
ommon approa
hes tothis problem:Chemists, whose interest is primarily mole
ules or small 
lusters of atoms,typi
ally use Gaussian basis sets {

e−αr2

}. These still form a non-orthogonalbasis set, but have the advantage that many of the overlap integrals 
an bedone analyti
ally. The basis fun
tions are short-ranged and have a similar�shape� to the atomi
 wavefun
tion, and an atomi
 orbital 
an typi
allybe �tted by a few Gaussians. Consequently, a small basis set (typi
ally 3or 4 Gaussian fun
tions/orbital/atom) may be used. We will dis
uss thisapproa
h in more detail in se
tion 6.3.Physi
ists, whose interest is primarily extended systems, prefer to exploitBlö
h's theorem and use a plane-wave basis set, {

eik.r
}. The plane-wavesform an orthogonal basis set, with the periodi
ity given by the unit 
ell,but typi
ally require many more basis fun
tions (typi
ally 50-100 plane-waves/ele
tron). One advantage of the plane-wave basis is that it is parti
u-larly trivial to Fourier transform, whi
h makes 
al
ulations of derivatives ofthe energy (e.g. for
es) very simple. We will dis
uss plane-waves and some
ommon tri
ks to improve their e�
ien
y in se
tion 6.4.6.3 Atomi
-style basis fun
tionsPerhaps the most obvious basis set to 
hoose in any atomi
 
al
ulation is thatof atomi
 orbitals, that is, the eigenfun
tions of an isolated atom. As the
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ule 
ome together to form bonds, the inner ele
troni
orbitals of ea
h atom will be only slightly modi�ed, whereas the outer oneswill overlap with those on other atoms to form hybrid orbitals. The resultis known as the Linear Combination of Atomi
 Orbitals (LCAO) method,and is widely used in di�erent quantum 
hemistry methods. Unfortunately,analyti
 forms for atomi
 orbitals are only known for the hydrogen atom!Therefore we assume that an atomi
 orbital for any single atom 
an bewritten in the general form of a Slater-type orbital (STO):
χµ (r,R) = rmPl (x, y, z) e

−µ(r−R) (6.4)where rm is a simple polynomial forming the radial part of the orbital anddepends on the quantum number n, Pl is the appropriate Legendre polyno-mial at angular momentum l, µ is the �range� of the orbital and R is the
entre-of-mass 
oordinate of the atom. This works very well for atoms, andoptimal values for µ 
an be found whi
h minimize the energy of the atomfor a given set of basis atomi
 orbitals.Unfortunately, this approa
h does not work well when there is more thanone atom present as the integrals required to evaluate the energy from theHamiltonian often require produ
ts of two or four su
h exponentials, whi
hare hard to 
al
ulate. For instan
e, if we assume that ea
h ele
tron intera
tswith the average 
harge density of the N − 1 others, then we may write asimple form of the ele
tron-ele
tron intera
tion as:
Ve−e =

N
∑

i=1

∫

∣

∣χi

(

r′
)∣

∣

2 1

|r− r′|
dr′ (6.5)whi
h is known as the Hartree potential. Using this we may then 
al
ulatethe Hartree energy (part of the total energy) from integrals su
h as

∫

χ⋆
k (r)Ve−eχk (r) dr (6.6)whi
h 
learly involves produ
ts of four exponentials in this 
ase.However, these integrals are 
onsiderably easier to 
al
ulate if we re-pla
e the exponentials by primitive Gaussian fun
tions, resulting in so-
alledGaussian-type orbitals (GTOs):

χα (r,R) = QM (x, y, z) e−α(r−R)2 (6.7)where QM is given by the spheri
al harmoni
s in Cartesian form. Thisis be
ause of the �Gaussian produ
t theorem�, that is, the produ
t of twoGaussians 
entred on di�erent atoms 
an be expressed as a new Gaussian
entred on the �
entre-of-mass� of the two atoms:
e−α(r−RA)2 .e−β(r−RB)2 = e−(α+β)(r−RP )2 (6.8)
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Figure 6.1: Approximation of a 1s Slater-type orbital using 1,2 and 3 Gaus-sians, i.e. STO-1G to STO-3G.where
RP =

αRA + βRB

α+ β
(6.9)whi
h means that many of the two-ele
tron integrals 
an now be done ana-lyti
ally.The minimal basis set 
ontains one GTO per atomi
 orbital. The value of

α in the exponent is then 
hosen su
h that the GTO �ts the atomi
 orbital insome optimal way. This is not very satisfa
tory. A better approa
h is to havemultiple GTOs per atomi
 orbital. The 
oe�
ients of ea
h Gaussian maybe found by �tting to the STO solution of the atomi
 
al
ulation. Theseare then 
ombined in �xed linear 
ombinations to form a new basis set,whi
h obviously has less basis fun
tions than 
omponent GTOs, and hen
eis known as a 
ontra
ted basis set. See �gure 6.1 for an example of using thispro
edure with the simplest possible STO.This is why the individual GTOs are 
alled primitive fun
tions, as theyare used to build the basis fun
tions of the 
ontra
ted set. It is also possibleto take an intermediate approa
h, and 
ontra
t some but not all of theGTOs resulting in a split-basis set. There are many other variants uponsu
h themes.Obviously, when reporting the results of a quantum 
hemistry 
al
ulationit is important to spe
ify the size and type of basis set used, so that someassessment of the a

ura
y of the 
al
ulation may be made. There is a
ommon shorthand for this: saying that a 
al
ulation used an STO-3G basis
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ontra
ted to make ea
h STO, similarly anSTO-31 basis means that 3 GTOs have been 
ontra
ted and that 1 (theoutermost one) has not been 
ontra
ted.Note that the use of GTOs as a basis implies that the basis fun
tions arenot orthogonal - therefore as dis
ussed in earlier le
tures on the VariationalMethod, the generalised eigenvalue problem will have to be solved.6.3.1 Aside - Solving the generalized eigenvalue problemIn order to solve the generalized eigenvalue problem, equation 6.2, we mustperform a basis transformation to 
onvert the overlap matrix S into the unitmatrix I whi
h will then make it possible to 
onvert the problem into thenormal form. We start by diagonalizing the overlap matrix:
Sdiag = U†SU (6.10)and then noti
ing that the eigenvalues of S are positive-de�nite, it is possi-ble to de�ne (Sdiag)

− 1

2 (whi
h is just the inverse of the square root of theeigenvalues of S on the leading diagonal), and so
(Sdiag)

− 1

2 U†SU (Sdiag)
− 1

2 = V†SV = I (6.11)whi
h means that the matrix
V = U (Sdiag)

− 1

2 (6.12)has the desired property of 
onverting the overlap matrix into the unit ma-trix.We 
an now substitute this into equation 6.2 as:
V†HVV−1C = EV†SVV−1Cand so de�ning

C′ = V−1C (6.13)
H′ = V†HV (6.14)we now obtain
H′C′ = EC′ (6.15)whi
h is just the normal eigenvalue problem but with transformed matri
es.We 
an now solve this using standard te
hniques to get the eigenvalues {E}and eigenve
tors C′ whi
h 
an then be transformed into the eigenve
tors ofthe original problem by inverting equation 6.13.



56 CHAPTER 6. BASIS SETS6.4 Solid-style basis fun
tionsWhen 
onsidering solids (or liquids) rather than isolated mole
ules, we aremore 
on
erned with extended (in�nite) systems. Hen
e the most 
ommon
hoi
e of basis fun
tion in this 
ase is the plane-wave and so we 
an expandour wavefun
tion as:
ψ (r) =

∑

g

cge
ig.r (6.16)where g is a re
ipro
al latti
e ve
tor. If we now apply periodi
 boundary
onditions it 
an be seen that {g} form a dis
retized set as there must bea longest wavelength that 
an be represented within the periodi
 unit 
ell,
orresponding to a shortest g. This plane-wave expansion, of 
ourse, is anin�nite expansion in prin
iple and so in pra
ti
e must be trun
ated at somemaximum 
uto� energy, given by:

Ecut =
~

2 |gmax|
2

2m
(6.17)The 
hoi
e of the plane-wave basis has several advantages - it is positionindependent (unlike atom-
entred Gaussians) whi
h makes moving the atomsaround straightforward. It is also unbiased, and simple to extend - if we wantto improve the basis by adding more basis fun
tions, then this 
an simplydone by in
reasing the 
uto� energy. It is also simple to Fourier transformthe wavefun
tion from real spa
e to re
ipro
al spa
e (beloved of 
ondensedmatter physi
ists) whi
h from a 
omputational point of view, makes the
al
ulation of the kineti
 energy (and any other derivatives) trivial:

∇2ψ =
∑

g

|g|2 cge
ig.r (6.18)One disadvantage of plane-waves, however, is that whilst they are a natu-ral basis for des
ribing the smoothly varying wavefun
tion far from an atom,they do not 
losely represent the wavefun
tion 
lose to the atom. For thisreason, a plane-wave basis set tends to 
ontain many more elements thanthe 
orresponding Gaussian-type orbital basis. Worst of all, is that 
ertainwavefun
tions, su
h as the 1s state of hydrogen, have a 
usp at the origin (see�gure 6.2), whi
h is impossible to �t with a �nite number of plane-waves.This is 
ommonly dealt with by the pseudo-potential approximation.6.4.1 Pseudo-potentialsWhen 
onsidering the ele
troni
 properties of a material, su
h as the makingof 
hemi
al bonds, the quantity of interest is the wavefun
tion at some dis-tan
e from the atomi
 
entre. Indeed, with multi-ele
tron atoms, many ofthe ele
trons play no part at all in everyday pro
esses. This leads to a natural
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Figure 6.2: 1s hydrogeni
 wavefun
tion showing 
usp at origin.division of the ele
trons into 
ore and valen
e ele
trons. The 
ore ele
tronsdo not 
ontribute to the properties of interest and so may be 
ombined withthe atomi
 nu
leus to form an inert ion, whereas the valen
e ele
trons willneed to be treated in detail. This redu
es the number of ele
trons that needto be 
onsidered in the problem.Moreover, we do not need to have an a

urate wavefun
tion for all dis-tan
es from the nu
leus, but only those beyond some 
riti
al radius wherethe physi
ally relevant pro
esses take pla
e, su
h as inter-atom wavefun
tionoverlap in bond formation. Within this radius the valen
e wavefun
tion willin general have various nodes be
ause of the requirements of orthogonality tothe 
ore wavefun
tions. This means that it will be rapidly 
hanging and againrequire many plane-waves to �t it a

urately. However, we may (with some
are) approximate the wavefun
tion within this region without e�e
ting anyphysi
al observables. This is the basis of the pseudo-potential approximation- we repla
e the true ioni
 potential by a mu
h smoother pseudo-potentialwithin some 
riti
al radius, so that the 
orresponding pseudo-wavefun
tionis smooth and 
an be represented in many fewer plane-waves. There mustbe 
areful mat
hing of the pseudo and true potentials at the 
riti
al radius,so that outside this 
riti
al radius the pseudo-wavefun
tion is identi
al tothe true wavefun
tion. This is shown in �gure 6.3. The net result is thatwe 
an 
orre
tly reprodu
e the original wavefun
tion in the physi
ally rele-vant region of spa
e with many fewer plane-waves than would otherwise bene
essary.6.4.2 Super
ellsAt this point, you may be wondering how 
an we have re
ipro
al latti
eve
tors if we are trying to treat a mole
ule - surely they only exist in in�niteperiodi
 systems? The answer is that we use the super
ell te
hnique - that is,
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Figure 6.3: S
hemati
 showing the original ele
tron-ion potential and 
or-responding wavefun
tion (solid lines), and the repla
ement pseudo-potentialand pseudo-wavefun
tion (dashed lines). The pseudo-potential (wavefun
-tion) is mat
hed onto the original potential (wavefun
tion) at the radius rcand beyond this radius there is no di�eren
e.any non-periodi
 stru
ture is pla
ed within a su�
iently large unit 
ell andrepeated with periodi
 boundary 
onditions. Obviously, if the intention isto 
al
ulate the properties of a single isolated mole
ule, then the size of this
ell must be 
hosen su�
iently large that there is negligible overlap betweenthe wavefun
tion of the mole
ule and that of its periodi
 images. Using thiste
hnique of super
ells, it is then possible to 
al
ulate many di�erent kindsof systems, in
luding mole
ules, 
lusters of atoms, surfa
es, et
.6.5 Final 
ommentsA few �nal points to highlight:
• We 
an express a wavefun
tion in terms of basis fun
tions, whi
h thenturns the S
hrödinger equation into an eigenvalue equation whi
h 
anthen be solved numeri
ally using the linear variational method.
• If the basis set is in
omplete, then the eigenvalues obtained will beupper bounds on the true eigenvalues.
• If the basis set is non-orthogonal, then the generalized eigenvalue prob-lem has to be solved.
• Within quantum 
hemistry, a Gaussian basis set is often used.
• Within physi
s, a plane-wave basis set is often used.



6.6. FURTHER READING 596.6 Further reading
• Basis sets in �Methods of Ele
troni
 Stru
ture Cal
ulations� by M.Springborg, Chapter 10
• Gaussian basis sets in �Computational Physi
s� by J.M. Thijssen, se
-tion 4.6
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