Chapter 7

The Hartree-Fock Method

7.1 Introduction

There are many problems of interest, for example in solid state physics,
and indeed, the whole of chemistry, where we need to consider the quantum
mechanical behaviour of many interacting electrons. This is a very difficult
problem. In earlier lectures, we discussed how to solve the Schrédinger equa-
tion for a single electron in various ways, e.g. Numerov integration of the
time independent equation, special techniques for solving the time depen-
dent equation, and various variational approaches. We shall now turn our
attention to solving the many-electron problem.

There is, of course, a hierarchy of techniques that can be used to solve
this problem, which differ in the approximations used. There is usually
a trade-off between computational speed and accuracy. For example, we
have classical molecular dynamics which neglects the existence of individual
electrons altogether and considers the interaction between atoms with some
empirically derived potential. Then there are the semi-empirical methods,
which start with a more or less rigorous treatment of the quantum mechanics,
but then replace many of the terms in the equations with parameters derived
from experiments. Finally, there are the ab initio (from first principles)
methods, which require no experimental input, but can still differ in the
approximations made and so have varying cost and accuracy.

The two most widespread ab initio methods are the Hartree- Fock method
and Density Functional Theory. Traditionally, Hartree-Fock (HF) was used
by chemists and Density Functional Theory (DFT) was used by physicists.
This is because for many years chemists were primarily interested in pre-
dicting the structure and spectra of molecules to high accuracy, whereas
physicists were more concerned with predicting the more general features
of band structures in solids. However, there have been many technical im-
provements in the implementation of DFT over the last 10-15 years, which
has meant that more chemists are starting to use DFT in preference to HF.
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We shall start by discussing some of the basics that underly the HF
method, before discussing the method itself. We shall leave a discussion of
DFT until the next lecture. There are also Quantum Monte Carlo methods
that can be used to solve this problem which we will discuss at the end of
this lecture course.

7.2 Born-Oppenheimer approximation

Obviously, when considering the study of atoms, molecules, solids, etc. we
should consider the whole system as an interacting QM whole. For exam-
ple, each electron is moving in the electric field generated by all the other
electrons and all the nuclei. Therefore, we have a large numbers of inter-
acting degrees of freedom. The most obvious approximation is to consider
the electrons as moving in the classical field generated by static nuclei, as
each electron is much lighter, and therefore moves much faster, than any
nucleus. (The mass of the proton is 1835 times the mass of the electron.)
This therefore decouples the nuclear and electronic degrees of freedom, and
the remaining problem is then how to solve for the electronic structure of the
system. This approximation, known as the Born-Oppenheimer approxima-
tion, is almost universally used. The total energy of the system is now the
sum of the energy of the electrons and the nuclei. We often also neglect the
QM of the nuclei, and instead just use the electrostatic energy of the nuclei.
Note that the positions of the nuclei can be varied in a quasi-static manner
in order to find the minimum energy of the combined system, in which case
we consider the electrons to be moving on the potential energy surface given
by the nuclei (also known as the Born-Oppenheimer surface). This is not
always a valid approximation - see my own research for more details!

7.3 Many-electron Hamiltonian

We can now write down the Born-Oppenheimer Hamiltonian for the electrons
in atomic units:
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where the indices ¢ and j refer to one of the N electrons, and the n index
refers to one of the K nuclei. The electrons are at positions r; and the nuclei
at Ry,. The first term then represents the kinetic energy of the electron,
the second the Coulomb repulsion between different electrons, and the third
term represents the Coulomb attraction between electrons and nuclei.

The curious thing is that although we can write down the exact many-
body Hamiltonian, we do not know the form of the corresponding exact
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many-body wavefunction! The difficulty in solving the many-body Schrédinger
equation is primarily the second term in equation 7.1 which contains the in-
teractions between all the electrons. The simplest way around this problem
is therefore to approximate this term in a manner that decouples the inter-
actions. This is the basis of the independent particle approximation.

7.4 Independent particle approximation

The independent particle approximation effects the two fundamental parts
of the problem - the Hamiltonian and the wavefunction. We replace the
electron-electron repulsion term with one that only depends on repulsion
between an electron and the average position of all the other electrons. We
can then combine the second and third terms in equation 7.1 to yield:

:;( + Vigs r,)> (7.2)

where Vs (r) is the effective potential, which depends on the position of
all the nuclei {R} and also on the wavefunction ¢ that the Hamiltonian is
acting upon! The other part of the approximation is to assume that we can
write down the basic form of 4 in terms of one-electron wavefunctions, such
as the atomic orbitals of an isolated Hydrogen atom.

We therefore have to solve this problem self-consistently: that is, given
a set of nuclear coordinates {R} and a guess at 1 we calculate Vs, form
ﬁ, and solve to get a new . We then use this new v to make a new V,;y,
etc and repeat until there is no further change in v, whereupon we have the
self-consistent solution.

The Born-Oppenheimer and the independent particle approximation are
the basic ingredients of many ab initio approaches - the differences arise in
the form of Vs and 1 chosen.

7.5 Hartree method

One of the oldest methods is the Hartree method. In this, the N-electron
wavefunction is chosen to be a simple product of one-electron wavefunctions
¢r. (otherwise known as orbitals):
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and the corresponding Hamiltonian is:
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where this form for the second term is known as the Hartree potential.

The simple product form of the many-electron wavefunction is called
uncorrelated, because the probability of finding an electron at ry and another
one at ro is uncorrelated as it can be written as the product of two one-
electron probabilities. Note that we are not saying that the two electrons
are not interacting - there is still the ﬁ term in the Hamiltonian, but
that this interaction has been taken into account in an average way. It
is the average charge distribution of ry that interacts with the electron at
ri. This neglect of correlations can lead to unphysical results - the most
famous of which is that it predicts that an Hs molecule will dissociate (as
the H — H bond length is increased) into a state where both electrons sit on
the same atom. The other major flaw with this form of the many-electron
wavefunction is that it is not anti-symmetric under particle exchange as
required by the Pauli Ezclusion Principle for fermions.

We know, for example, that when dealing with a two particle system that
the overall wavefunction is not just the product of the two individual wave-
function - we need to form a proper symmetrised combination. In general, if
particle 1 is in state « (r1) and particle two is in state 3 (r2) then the overall
wavefunction is:

0 (r1,12) = % (o (1) B (2) — o (r2) B (1)) (7.5)

as the electrons are indistinguishable, and the overall wavefunction must be
anti-symmetric (i.e. changes sign) under particle exchange. If we include
spin, then it is the overal product of space*spin that must be antisymmetric
- for example, for two electrons that can each by either spin-up or spin-down,
we know that there are 4 possible results - 3 states making a triplet with
net spin 1A and a singlet with net spin 0A. We therefore find that the basic
Hartree method neglects all effects of exchange and correlation.

There is also a flaw in the Hartree potential, in that it contains the
interaction of any given orbital with itself, as the summation in the charge
density runs over all such functions. This is an example of a spurious self-
interaction, which must be corrected.

Both of these deficiencies are remedied in the Hartree-Fock method.

7.6 Hartree-Fock method

The two major flaws in the Hartree method can be cured by writing the
N-electron wavefunction as an anti-symmetrised product of orbitals, which
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can be expressed most concisely as a Slater determinant:
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which has the useful side-effect of also making the resulting wavefunction
correlated. The result is that every electron is surrounded by an “ezchange
hole” within which there is only a very small probability of finding another
electron.

Note that the term “correlated” is used in various ways in electronic struc-
ture theory. The term “correlation effect” is usually taken to refer to correla-
tions other than those due to exchange, for example dynamic correlations due
to Coulomb repulsion between electrons. As such, the Hartree-Fock method
is usually considered to neglect correlation but to treat exchange exactly.

The Hartree-Fock method may be derived by applying the variational
principle to equation 7.1, using a single Slater determinant wavefunction
and minimising the expectation value of the energy w.r.t. the orbitals. The
result is:
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where F is known as the Fock operator, and
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where J is known as the Coulomb operator, and K as the exchange operator.

The Hartree method can be considered as <ﬁ+ j), but the exchange
operator is the new addition due to Fock. It looks like the Coulomb operator,
but with the two orbital labels k and [ interchanged. This is an example
of a non-local operator, that is, the effect on ¢y (r) is determined by the
assumed values for ¢y (r') at all positions r'. The exchange term vanishes
for orthogonal states ¢ (r) and ¢; (r) so that two electrons with the same
quantum numbers but different spins do not feel this term - as required by
the exclusion principle. Note that the exchange term also cancels the self-
energy term in the Hartree potential as a result of the anti-symmetry. Note
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also that the exchange term has a negative sign - that is, exchange lowers
the total energy of the system, due to the tendency to keep two electrons
with the same spin apart.

As in the Hartree method, this equation must also be solved by the self-
consistent approach. A subtlety is that the total energy of the system is not
merely the sum of the eigenvalues of the Fock operator, €, but rather is
given by:

N
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where the second term is subtracted off the sum of the eigenvalues, to prevent
double counting certain integrals.

The most time consuming part of the problem is the calculation of all
the integrals in the Coulomb and exchange operators, which are known as
two-electron integrals. Remember that in order to calculate €, we need to

evaluate
€k = /¢>2 (r) Foy (r) dr (7.12)
which therefore contains many integrals of the general form:
1
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where the different labels p,q,r,s vary according to whether calculating
Hartree or exchange terms, with some symmetry of labels as appropriate.
Note that if we expand each orbital in terms of some basis functions, with
M basis functions in total, then there will be approximately MT4 of these
two-electron integrals to perform. For example, a small system, with say 6
atoms and 12 basis functions per atom, will require approximately 3.4 million
two-electron integrals per iteration towards self-consistency! The results of
all these integrals are then used to form the Fock matrix, which then must be
diagonalized, which as mentioned before is an O (M3) operation. Therefore,
a lot of effort has been devoted over the years towards minimising the size
of the basis set required (as discussed earlier in the lecture on Basis Sets),
and to approximating or even neglecting various subsets of these integrals.

7.7 Approximate Hartree-Fock

It used to be quite common practice to neglect various subsets of the two-
electron integrals. The crudest such approximation was to neglect all inte-
grals which involved the overlap of Gaussians from different atoms - an ap-
proach known as Complete Neglect of Differential Overlap (CNDO). This is
drastic! Whilst such integrals may be small, there are many of them and their
overall effect is not insignificant. Therefore, other less drastic schemes were
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Figure 7.1: Schematic of some of the different Slater determinants in a Con-
figuration Interaction calculation. (a) shows the reference spin-polarized HF
grounds state, (b) shows a sample single excitation, (c¢) shows a sample dou-
ble excitation. This can be extended to higher multiplicities. In a full CI
calculation, all such determinants are included.

devised, such as Intermediate Neglect of Differential Overlap (INDO), and
Modified Intermediate Neglect of Differential Overlap (MINDO) and others.
In these schemes, some of the integrals are replaced by semi-empirical param-
eterizations, whilst others are done analytically. Obviously, such approaches
are significantly quicker than Hartree-Fock, but are severely compromised in
accuracy and reliability, and are not much used nowadays.

7.8 Improving the Hartree-Fock approach

Whilst the Hartree-Fock method has many strengths, it has some weak-
nesses, such as the neglect of Coulomb correlations. This can be remedied in
a systematic way by improving upon the form of the many-body wavefunc-
tion used. Instead of considering just a single Slater determinant, consider a
linear combination of determinants, where each determinant is constructed
from the ground state by exciting electrons. See figure 7.1 for an example.
The resulting wavefunction must produce a lower ground state energy as it
contains more basis functions. This approach is known as the Configuration
Interaction (CI) method. Obviously, it is only possible to consider a lim-
ited number of additional determinants as the cost of the calculation rises
dramatically. However, it is possible to extrapolate results from a sequence
of calculations with progressively more determinants, to the “full CI” limit.
Such results are in principle exact (within the Born-Oppenheimer approxi-
mation) but in practice will be limited by the finite basis set size used for
each determinant. Note that the total number of determinants is M! where
M is the size of the basis set in each determinant.
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Other, more complex schemes, such as Mgller-Plesset, attempt to include
the effect of correlations using perturbation analysis, at differing levels: MP2
corresponds to a second-order perturbation theory (where Hartree-Fock is
actually the first-order theory) and adds the correlation between pairs of
electrons. Similarly, MP3 adds the interaction between pairs of pairs of
electrons, and so on for higher orders. Whilst Hartree-Fock scales as M*,
MP2 scales as M°, MP3 as M5, etc. Very few calculations go beyond MP4,
and even that is only for very small molecules containing at most 10-20
electrons.

7.9 Results

Using the analytic expressions for the Hamiltonian and the orbitals, it is
possible to calculate expressions for the forces, i.e. the first derivative of
the total energy. This gives higher accuracy than numerical differencing,
and can be used to great effect in calculating the equilibrium geometry of
the system, i.e. the arrangement of atoms which minimizes both the energy
and the forces on the atoms. It has also more recently become possible
to calculate the second-derivatives of the total energy, which then makes it
possible to calculate vibrational frequencies and locate saddle-points of the
potential energy surface (e.g. transition states of chemical reactions).

The many-body wavefunction found can be used to calculate many elec-
tronic and optical properties, such as the electron charge density, polariz-
abilities, etc. and the one-electron orbitals can be used in an approximate
way to interpret photo-emission spectra using Koopman’s Theorem.

In situations where the Hartree-Fock method works, such as for organic
molecules, or clusters of atoms from the main group of the periodic table,
it produces results of high precision (as many of the computations are done
pseudo-analytically), and with a reasonable accuracy. For example, bond
lengths are generally correct to within £0.003 A | angles to within +3°, and
relative energies can be as good as 0.05 eV /atom. However, it typically over-
estimates vibrational frequencies by about 10%, and underestimates binding
energies by as much as 50%.

Whilst the basic cost of calculating the matrix elements of the Hamil-
tonian is O (M4)7 in practice a large number of these integrals can be jus-
tifiably neglected for sufficiently large systems, and the computational cost
is then dominated by diagonalizing the Hamiltonian, which therefore means
that the overall cost scales as O (M3) Calculations of individual molecules
containing a few hundred atoms have been performed, but the inclusion of
correlation with multiple determinants reduces the accessible system size to
a few tens of atoms. There have also been developments in applying the
method to solids but it has been found to be unsatisfactory for metallic
systems and works best for high-symmetry insulators.
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7.10 Final comments
A few final points to highlight:

e The Hartree-Fock method is most often applied to the study of molecules.

o [t gives an exact treatment of the effects of electron exchange by using
a Slater determinant form for the many-body wavefunction.

e It is most often used with a Gaussian basis set.
e It does not include any effects of dynamic correlation.

e Such effects can be included by more complex schemes, such as CI, but
are exceedingly expensive.

7.11 Further reading

e Hartree-Fock theory in “Methods of Electronic Structure Calculations”
by M. Springborg, Chapter 9

e Hartree-Fock theory in “Computational Physics” by J.M. Thijssen,
chapter 4
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