
Chapter 7The Hartree-Fo
k Method7.1 Introdu
tionThere are many problems of interest, for example in solid state physi
s,and indeed, the whole of 
hemistry, where we need to 
onsider the quantumme
hani
al behaviour of many intera
ting ele
trons. This is a very di�
ultproblem. In earlier le
tures, we dis
ussed how to solve the S
hrödinger equa-tion for a single ele
tron in various ways, e.g. Numerov integration of thetime independent equation, spe
ial te
hniques for solving the time depen-dent equation, and various variational approa
hes. We shall now turn ourattention to solving the many-ele
tron problem.There is, of 
ourse, a hierar
hy of te
hniques that 
an be used to solvethis problem, whi
h di�er in the approximations used. There is usuallya trade-o� between 
omputational speed and a

ura
y. For example, wehave 
lassi
al mole
ular dynami
s whi
h negle
ts the existen
e of individualele
trons altogether and 
onsiders the intera
tion between atoms with someempiri
ally derived potential. Then there are the semi-empiri
al methods,whi
h start with a more or less rigorous treatment of the quantum me
hani
s,but then repla
e many of the terms in the equations with parameters derivedfrom experiments. Finally, there are the ab initio (from �rst prin
iples)methods, whi
h require no experimental input, but 
an still di�er in theapproximations made and so have varying 
ost and a

ura
y.The two most widespread ab initio methods are the Hartree-Fo
k methodand Density Fun
tional Theory. Traditionally, Hartree-Fo
k (HF) was usedby 
hemists and Density Fun
tional Theory (DFT) was used by physi
ists.This is be
ause for many years 
hemists were primarily interested in pre-di
ting the stru
ture and spe
tra of mole
ules to high a

ura
y, whereasphysi
ists were more 
on
erned with predi
ting the more general featuresof band stru
tures in solids. However, there have been many te
hni
al im-provements in the implementation of DFT over the last 10-15 years, whi
hhas meant that more 
hemists are starting to use DFT in preferen
e to HF.61



62 CHAPTER 7. THE HARTREE-FOCK METHODWe shall start by dis
ussing some of the basi
s that underly the HFmethod, before dis
ussing the method itself. We shall leave a dis
ussion ofDFT until the next le
ture. There are also Quantum Monte Carlo methodsthat 
an be used to solve this problem whi
h we will dis
uss at the end ofthis le
ture 
ourse.7.2 Born-Oppenheimer approximationObviously, when 
onsidering the study of atoms, mole
ules, solids, et
. weshould 
onsider the whole system as an intera
ting QM whole. For exam-ple, ea
h ele
tron is moving in the ele
tri
 �eld generated by all the otherele
trons and all the nu
lei. Therefore, we have a large numbers of inter-a
ting degrees of freedom. The most obvious approximation is to 
onsiderthe ele
trons as moving in the 
lassi
al �eld generated by stati
 nu
lei, asea
h ele
tron is mu
h lighter, and therefore moves mu
h faster, than anynu
leus. (The mass of the proton is 1835 times the mass of the ele
tron.)This therefore de
ouples the nu
lear and ele
troni
 degrees of freedom, andthe remaining problem is then how to solve for the ele
troni
 stru
ture of thesystem. This approximation, known as the Born-Oppenheimer approxima-tion, is almost universally used. The total energy of the system is now thesum of the energy of the ele
trons and the nu
lei. We often also negle
t theQM of the nu
lei, and instead just use the ele
trostati
 energy of the nu
lei.Note that the positions of the nu
lei 
an be varied in a quasi-stati
 mannerin order to �nd the minimum energy of the 
ombined system, in whi
h 
asewe 
onsider the ele
trons to be moving on the potential energy surfa
e givenby the nu
lei (also known as the Born-Oppenheimer surfa
e). This is notalways a valid approximation - see my own resear
h for more details!7.3 Many-ele
tron HamiltonianWe 
an now write down the Born-Oppenheimer Hamiltonian for the ele
tronsin atomi
 units:
Ĥ =

N∑

i=1

p̂2
i

2
+

1

2

N∑

i,j=1;i6=j

1

|ri − rj|
−

K∑

n=1

N∑

i=1

Zn

|ri − Rn|
(7.1)where the indi
es i and j refer to one of the N ele
trons, and the n indexrefers to one of the K nu
lei. The ele
trons are at positions ri and the nu
leiat Rn. The �rst term then represents the kineti
 energy of the ele
tron,the se
ond the Coulomb repulsion between di�erent ele
trons, and the thirdterm represents the Coulomb attra
tion between ele
trons and nu
lei.The 
urious thing is that although we 
an write down the exa
t many-body Hamiltonian, we do not know the form of the 
orresponding exa
t
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tion! The di�
ulty in solving the many-body S
hrödingerequation is primarily the se
ond term in equation 7.1 whi
h 
ontains the in-tera
tions between all the ele
trons. The simplest way around this problemis therefore to approximate this term in a manner that de
ouples the inter-a
tions. This is the basis of the independent parti
le approximation.7.4 Independent parti
le approximationThe independent parti
le approximation e�e
ts the two fundamental partsof the problem - the Hamiltonian and the wavefun
tion. We repla
e theele
tron-ele
tron repulsion term with one that only depends on repulsionbetween an ele
tron and the average position of all the other ele
trons. We
an then 
ombine the se
ond and third terms in equation 7.1 to yield:
Ĥ ≃

N∑

i=1

(
p̂2

i

2
+ Veff (ri)

) (7.2)where Veff (r) is the e�e
tive potential, whi
h depends on the position ofall the nu
lei {R} and also on the wavefun
tion ψ that the Hamiltonian isa
ting upon! The other part of the approximation is to assume that we 
anwrite down the basi
 form of ψ in terms of one-ele
tron wavefun
tions, su
has the atomi
 orbitals of an isolated Hydrogen atom.We therefore have to solve this problem self-
onsistently : that is, givena set of nu
lear 
oordinates {R} and a guess at ψ we 
al
ulate Veff , form
Ĥ, and solve to get a new ψ. We then use this new ψ to make a new Veff ,et
 and repeat until there is no further 
hange in ψ, whereupon we have theself-
onsistent solution.The Born-Oppenheimer and the independent parti
le approximation arethe basi
 ingredients of many ab initio approa
hes - the di�eren
es arise inthe form of Veff and ψ 
hosen.7.5 Hartree methodOne of the oldest methods is the Hartree method. In this, the N -ele
tronwavefun
tion is 
hosen to be a simple produ
t of one-ele
tron wavefun
tions
φk (otherwise known as orbitals):

Ψ (r1, r2 . . . rN ) = φ1 (r1)φ2 (r2) . . . φN (rN ) (7.3)and the 
orresponding Hamiltonian is:
Ĥ = −1

2
∇2 +

N∑

i=1

∫ ∣∣φi

(
r
′
)∣∣2 1

|r− r′|dr
′ −
∑

n

Zn

|r− Rn|
(7.4)



64 CHAPTER 7. THE HARTREE-FOCK METHODwhere this form for the se
ond term is known as the Hartree potential.The simple produ
t form of the many-ele
tron wavefun
tion is 
alledun
orrelated, be
ause the probability of �nding an ele
tron at r1 and anotherone at r2 is un
orrelated as it 
an be written as the produ
t of two one-ele
tron probabilities. Note that we are not saying that the two ele
tronsare not intera
ting - there is still the 1
|r1−r2|

term in the Hamiltonian, butthat this intera
tion has been taken into a

ount in an average way. Itis the average 
harge distribution of r2 that intera
ts with the ele
tron at
r1. This negle
t of 
orrelations 
an lead to unphysi
al results - the mostfamous of whi
h is that it predi
ts that an H2 mole
ule will disso
iate (asthe H −H bond length is in
reased) into a state where both ele
trons sit onthe same atom. The other major �aw with this form of the many-ele
tronwavefun
tion is that it is not anti-symmetri
 under parti
le ex
hange asrequired by the Pauli Ex
lusion Prin
iple for fermions.We know, for example, that when dealing with a two parti
le system thatthe overall wavefun
tion is not just the produ
t of the two individual wave-fun
tion - we need to form a proper symmetrised 
ombination. In general, ifparti
le 1 is in state α (r1) and parti
le two is in state β (r2) then the overallwavefun
tion is:

ψ (r1, r2) =
1√
2

(α (r1)β (r2) − α (r2) β (r1)) (7.5)as the ele
trons are indistinguishable, and the overall wavefun
tion must beanti-symmetri
 (i.e. 
hanges sign) under parti
le ex
hange. If we in
ludespin, then it is the overal produ
t of spa
e*spin that must be antisymmetri
- for example, for two ele
trons that 
an ea
h by either spin-up or spin-down,we know that there are 4 possible results - 3 states making a triplet withnet spin 1~ and a singlet with net spin 0~. We therefore �nd that the basi
Hartree method negle
ts all e�e
ts of ex
hange and 
orrelation.There is also a �aw in the Hartree potential, in that it 
ontains theintera
tion of any given orbital with itself, as the summation in the 
hargedensity runs over all su
h fun
tions. This is an example of a spurious self-intera
tion, whi
h must be 
orre
ted.Both of these de�
ien
ies are remedied in the Hartree-Fo
k method.7.6 Hartree-Fo
k methodThe two major �aws in the Hartree method 
an be 
ured by writing the
N -ele
tron wavefun
tion as an anti-symmetrised produ
t of orbitals, whi
h
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an be expressed most 
on
isely as a Slater determinant :
Ψ =

1√
N !

∣∣∣∣∣∣∣∣∣

φ1 (1) φ1 (2) · · · φ1 (N)
φ2 (1) φ2 (2) · · · φ2 (N)... . . .
φN (1) φN (N)

∣∣∣∣∣∣∣∣∣

(7.6)whi
h has the useful side-e�e
t of also making the resulting wavefun
tion
orrelated. The result is that every ele
tron is surrounded by an �ex
hangehole� within whi
h there is only a very small probability of �nding anotherele
tron.Note that the term �
orrelated� is used in various ways in ele
troni
 stru
-ture theory. The term �
orrelation e�e
t� is usually taken to refer to 
orrela-tions other than those due to ex
hange, for example dynami
 
orrelations dueto Coulomb repulsion between ele
trons. As su
h, the Hartree-Fo
k methodis usually 
onsidered to negle
t 
orrelation but to treat ex
hange exa
tly.The Hartree-Fo
k method may be derived by applying the variationalprin
iple to equation 7.1, using a single Slater determinant wavefun
tionand minimising the expe
tation value of the energy w.r.t. the orbitals. Theresult is:
F̂ φk =

(
ĥ+ Ĵ − K̂

)
φk (7.7)where F̂ is known as the Fo
k operator, and

ĥφk =

(

−1

2
∇2 −

K∑

n=1

Zn

|r− Rn|

)

φk (7.8)
Ĵφk =

N∑

l=1

∫ ∣∣φl

(
r
′
)∣∣2 1

|r − r′|φk (r) dr′ (7.9)
K̂φk =

N∑

l=1

∫
φ⋆

l

(
r
′
) 1

|r − r′|φk

(
r
′
)
φl (r) dr

′ (7.10)where Ĵ is known as the Coulomb operator, and K̂ as the ex
hange operator.The Hartree method 
an be 
onsidered as (ĥ+ Ĵ
), but the ex
hangeoperator is the new addition due to Fo
k. It looks like the Coulomb operator,but with the two orbital labels k and l inter
hanged. This is an exampleof a non-lo
al operator, that is, the e�e
t on φk (r) is determined by theassumed values for φk (r′) at all positions r

′. The ex
hange term vanishesfor orthogonal states φk (r) and φl (r) so that two ele
trons with the samequantum numbers but di�erent spins do not feel this term - as required bythe ex
lusion prin
iple. Note that the ex
hange term also 
an
els the self-energy term in the Hartree potential as a result of the anti-symmetry. Note



66 CHAPTER 7. THE HARTREE-FOCK METHODalso that the ex
hange term has a negative sign - that is, ex
hange lowersthe total energy of the system, due to the tenden
y to keep two ele
tronswith the same spin apart.As in the Hartree method, this equation must also be solved by the self-
onsistent approa
h. A subtlety is that the total energy of the system is notmerely the sum of the eigenvalues of the Fo
k operator, εk, but rather isgiven by:
〈E〉 =

N∑

l=1

(
εk − 1

2

∫
φ⋆

k (r)
(
Ĵ − K̂

)
φk (r) dr

) (7.11)where the se
ond term is subtra
ted o� the sum of the eigenvalues, to preventdouble 
ounting 
ertain integrals.The most time 
onsuming part of the problem is the 
al
ulation of allthe integrals in the Coulomb and ex
hange operators, whi
h are known astwo-ele
tron integrals. Remember that in order to 
al
ulate εk we need toevaluate
εk =

∫
φ⋆

k (r) F̂ φk (r) dr (7.12)whi
h therefore 
ontains many integrals of the general form:
∫ ∫

φ⋆
p (r)φ⋆

q

(
r
′
) 1

|r− r′|φs

(
r
′
)
φt (r) dr′dr (7.13)where the di�erent labels p, q, r, s vary a

ording to whether 
al
ulatingHartree or ex
hange terms, with some symmetry of labels as appropriate.Note that if we expand ea
h orbital in terms of some basis fun
tions, with

M basis fun
tions in total, then there will be approximately M4

8
of thesetwo-ele
tron integrals to perform. For example, a small system, with say 6atoms and 12 basis fun
tions per atom, will require approximately 3.4 milliontwo-ele
tron integrals per iteration towards self-
onsisten
y! The results ofall these integrals are then used to form the Fo
k matrix, whi
h then must bediagonalized, whi
h as mentioned before is an O (M3

) operation. Therefore,a lot of e�ort has been devoted over the years towards minimising the sizeof the basis set required (as dis
ussed earlier in the le
ture on Basis Sets),and to approximating or even negle
ting various subsets of these integrals.7.7 Approximate Hartree-Fo
kIt used to be quite 
ommon pra
ti
e to negle
t various subsets of the two-ele
tron integrals. The 
rudest su
h approximation was to negle
t all inte-grals whi
h involved the overlap of Gaussians from di�erent atoms - an ap-proa
h known as Complete Negle
t of Di�erential Overlap (CNDO). This isdrasti
! Whilst su
h integrals may be small, there are many of them and theiroverall e�e
t is not insigni�
ant. Therefore, other less drasti
 s
hemes were
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a b cFigure 7.1: S
hemati
 of some of the di�erent Slater determinants in a Con-�guration Intera
tion 
al
ulation. (a) shows the referen
e spin-polarized HFgrounds state, (b) shows a sample single ex
itation, (
) shows a sample dou-ble ex
itation. This 
an be extended to higher multipli
ities. In a full CI
al
ulation, all su
h determinants are in
luded.devised, su
h as Intermediate Negle
t of Di�erential Overlap (INDO), andModi�ed Intermediate Negle
t of Di�erential Overlap (MINDO) and others.In these s
hemes, some of the integrals are repla
ed by semi-empiri
al param-eterizations, whilst others are done analyti
ally. Obviously, su
h approa
hesare signi�
antly qui
ker than Hartree-Fo
k, but are severely 
ompromised ina

ura
y and reliability, and are not mu
h used nowadays.7.8 Improving the Hartree-Fo
k approa
hWhilst the Hartree-Fo
k method has many strengths, it has some weak-nesses, su
h as the negle
t of Coulomb 
orrelations. This 
an be remedied ina systemati
 way by improving upon the form of the many-body wavefun
-tion used. Instead of 
onsidering just a single Slater determinant, 
onsider alinear 
ombination of determinants, where ea
h determinant is 
onstru
tedfrom the ground state by ex
iting ele
trons. See �gure 7.1 for an example.The resulting wavefun
tion must produ
e a lower ground state energy as it
ontains more basis fun
tions. This approa
h is known as the Con�gurationIntera
tion (CI) method. Obviously, it is only possible to 
onsider a lim-ited number of additional determinants as the 
ost of the 
al
ulation risesdramati
ally. However, it is possible to extrapolate results from a sequen
eof 
al
ulations with progressively more determinants, to the �full CI� limit.Su
h results are in prin
iple exa
t (within the Born-Oppenheimer approxi-mation) but in pra
ti
e will be limited by the �nite basis set size used forea
h determinant. Note that the total number of determinants is M ! where
M is the size of the basis set in ea
h determinant.



68 CHAPTER 7. THE HARTREE-FOCK METHODOther, more 
omplex s
hemes, su
h as Møller-Plesset, attempt to in
ludethe e�e
t of 
orrelations using perturbation analysis, at di�ering levels: MP2
orresponds to a se
ond-order perturbation theory (where Hartree-Fo
k isa
tually the �rst-order theory) and adds the 
orrelation between pairs ofele
trons. Similarly, MP3 adds the intera
tion between pairs of pairs ofele
trons, and so on for higher orders. Whilst Hartree-Fo
k s
ales as M4,MP2 s
ales as M5, MP3 as M6, et
. Very few 
al
ulations go beyond MP4,and even that is only for very small mole
ules 
ontaining at most 10-20ele
trons.7.9 ResultsUsing the analyti
 expressions for the Hamiltonian and the orbitals, it ispossible to 
al
ulate expressions for the for
es, i.e. the �rst derivative ofthe total energy. This gives higher a

ura
y than numeri
al di�eren
ing,and 
an be used to great e�e
t in 
al
ulating the equilibrium geometry ofthe system, i.e. the arrangement of atoms whi
h minimizes both the energyand the for
es on the atoms. It has also more re
ently be
ome possibleto 
al
ulate the se
ond-derivatives of the total energy, whi
h then makes itpossible to 
al
ulate vibrational frequen
ies and lo
ate saddle-points of thepotential energy surfa
e (e.g. transition states of 
hemi
al rea
tions).The many-body wavefun
tion found 
an be used to 
al
ulate many ele
-troni
 and opti
al properties, su
h as the ele
tron 
harge density, polariz-abilities, et
. and the one-ele
tron orbitals 
an be used in an approximateway to interpret photo-emission spe
tra using Koopman's Theorem.In situations where the Hartree-Fo
k method works, su
h as for organi
mole
ules, or 
lusters of atoms from the main group of the periodi
 table,it produ
es results of high pre
ision (as many of the 
omputations are donepseudo-analyti
ally), and with a reasonable a

ura
y. For example, bondlengths are generally 
orre
t to within ±0.003 Å , angles to within ±3◦, andrelative energies 
an be as good as 0.05 eV/atom. However, it typi
ally over-estimates vibrational frequen
ies by about 10%, and underestimates bindingenergies by as mu
h as 50%.Whilst the basi
 
ost of 
al
ulating the matrix elements of the Hamil-tonian is O (M4
), in pra
ti
e a large number of these integrals 
an be jus-ti�ably negle
ted for su�
iently large systems, and the 
omputational 
ostis then dominated by diagonalizing the Hamiltonian, whi
h therefore meansthat the overall 
ost s
ales as O (M3

). Cal
ulations of individual mole
ules
ontaining a few hundred atoms have been performed, but the in
lusion of
orrelation with multiple determinants redu
es the a

essible system size toa few tens of atoms. There have also been developments in applying themethod to solids but it has been found to be unsatisfa
tory for metalli
systems and works best for high-symmetry insulators.



7.10. FINAL COMMENTS 697.10 Final 
ommentsA few �nal points to highlight:
• The Hartree-Fo
k method is most often applied to the study of mole
ules.
• It gives an exa
t treatment of the e�e
ts of ele
tron ex
hange by usinga Slater determinant form for the many-body wavefun
tion.
• It is most often used with a Gaussian basis set.
• It does not in
lude any e�e
ts of dynami
 
orrelation.
• Su
h e�e
ts 
an be in
luded by more 
omplex s
hemes, su
h as CI, butare ex
eedingly expensive.7.11 Further reading
• Hartree-Fo
k theory in �Methods of Ele
troni
 Stru
ture Cal
ulations�by M. Springborg, Chapter 9
• Hartree-Fo
k theory in �Computational Physi
s� by J.M. Thijssen,
hapter 4
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