Chapter 8

Density Functional Theory

8.1 Introduction

In the previous lecture we discussed the Hartree-Fock method. This is a pow-
erful ab initio method for calculating the electronic structure of molecules,
but has only limited success with condensed phases in general, and copes par-
ticularly poorly with metallic solids in particular. An alternative method,
that is particularly suited to bulk materials, and especially metals, is that
of Density Functional Theory. Whereas the fundamental object in HF is
the many-body wavefunction which is made up of one-electron wavefunc-
tions (orbitals), the fundamental quantity in DFT is the electronic charge
density which is made up of one-electron densities. In this lecture we shall
give a brief outline of DFT, discuss a few practical details about common
implementations and typical strengths and weaknesses.

8.2 A fundamental theorem

Density Functional Theory is based upon the Hohenberg-Kohn theorem -
which is that the ground state energy of a system of electrons is solely de-
termined by the ground state charge density and that the charge density
which gives the minimum energy is unique. This is a tremendous simplifi-
cation compared to more traditional approaches such as Hartree-Fock. For
a system with N electrons, the many-body wavefunction is 3/N-dimensional,
whereas the corresponding charge density is a 3D scalar field! Furthermore,
the theorem shows that this ground state energy can be found by minimizing
an energy functional w.r.t. the charge density. That is, the energy is given
by an integral of an (as yet) unknown function of the density over all space,
and we minimize the value of this integral to find the optimum density! The
problem then is to determine what this function of the density is before we
can start to minimize anything ...
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8.3 The search for a universal functional

A year after the publication of the Hohenberg-Kohn theorem (which was
viewed at the time as interesting but not very useful) came the publication
of the Kohn-Sham equations. 1t was this which turned the Hohenberg-Kohn
theorem into a practical calculational scheme. The basis of their work was to
write down a form of this unknown energy functional, and show how it could
be used to derive a set of effective one-electron Schrodinger-like equations.

Once again, we start from the variational principle, but now in the form
of a functional of the electron density (using square brackets, E [n] to show
that this is a functional and not a function), that is:

En]= min/\I/*ﬁ\IJd?’Nr (8.1)
¥|n

where by ming|,, we mean minimizing w.r.t. the set of many-body wave-

functions {¥} which are consistent with the density n (r). This procedure

is equivalent to minimizing w.r.t. the density, which must be subject to the

constraint

/n (r)d®r =N (8.2)

where N is the number of electrons, which therefore determines the normal-
ization of W.

We use the Born-Oppenheimer approximation, and consider the system
as a set of interacting electrons and ions. We proceed by separating the
Hamiltonian into two parts - ﬁo due to the homogeneous electron gas (i.e.
jellium - a system of electrons in a uniform, neutralizing, background of
positive charge) and Vg, (r) being the external potential (e.g. the electron-
ion Coulomb attraction). We then have

En] = I\Iplin/ U*HoWdNr + /Vemt (r)n (r) d*r (8.3)
n

and the first term can be written as F' [n], i.e. as a functional of the electrons

alone. This functional F'[n] does not depend upon the ions or any other

external influence, and so must be a universal functional of the electrons.

Now all we have to do is find this functional!

We know from our experience with Hartree-Fock theory, that F' [n] must
contain contributions due to the electronic kinetic energy and the electron-
electron Coulomb repulsion, as well as the effects of electron exchange and
dynamical correlations. At this point, Kohn-Sham broke this unknown func-
tional into 3 parts:

Fn)=TI[n]+ % //n (') ! n (r) d3r'd3r + Ege [n) (8.4)
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where T [n] is a kinetic energy functional, the second term is the electron-
electron Coulomb repulsion that we have seen before, and all the many-body
effects (including exchange and correlation) are lumped together into the
third term - the ezchange-correlation functional E..[n].

Unfortunately, it is not known how to calculate the kinetic energy of a
charge density. So, they then introduced a fictitious set of non-interacting
one-electron wavefunctions, {1;}, which do not represent atomic orbitals but
instead are merely chosen to reproduce the ground state density:

N
n(r) =Y | () (8.5)
j=1

and so we can now write down the kinetic energy in terms of these functions:

|
T= —§;V2¢j (8.6)

which is actually the kinetic energy of a set of non-interacting electrons that
have the same density as the interacting system, and neglects any effects of
interaction on kinetic energy.

Note that at this stage, everything in F'[n] is exact and universal for any
electron charge density, and all the dependence on ions has been put into
Vet (r). The only unknown quantity remaining is the exchange-correlation
functional which by definition therefore contains all the contributions not
accounted for by the other terms!

We can now perform the minimization of equation 8.1 w.r.t. the density
subject to the constraint of equation 8.2, which then results in the Kohn-
Sham equations:

<—%V2 + Veff) Vj = €51 (8.7)

which look like a set of one-particle Schrédinger equations for the Kohn-Sham
eigenfunctions in terms of an effective potential Viy; where

Vi (r) = / n () B+ Voo (0 (D) 4 Vi (1) (8.8)
and all the unknown terms are contained in the exchange-correlation poten-
tial V..

At this point, we have all the ingredients for an efficient and exact scheme
bar one - we don’t know what to do for V.. So, in true physicist style, we
approximate it by things we do know!
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8.4 The Exchange-Correlation functional

The exchange-correlation functional is the key ingredient of DFT, and whilst
the Hohenberg-Kohn theorem assures us that it exists and is a universal
functional that will apply to all electron densities, regardless of how the
electrons are interacting, it does not tell us what the form of this functional
is!

Kohn-Sham made the following apparently drastic approximation in the
spirit of the mean-field treatment of everything else in DF'T, that has come to
be known as the Local Density Approximation (LDA). That is, they assumed
that an electron at a point with a given local electron density experiences
the same many-body response by the surrounding electrons as if the whole
material had this same density. Of course, if the entire system had the same
density at all points, then this would correspond to “jellium”, i.e. the uniform
homogeneous electron gas. This approximation might be expected to work
well for metallic crystals with relatively uniform electron densities - which is
true. It has also been found, somewhat more surprisingly, to be surprisingly
accurate for many other materials, including insulators and semiconductors
(both solid and liquid), surfaces, and even molecules.

Formally, we write:

By = / ere [0 (0)] 1 () dPr (8.9)

where e, [n] is the exchange-correlation energy per particle of a homoge-
neous electron gas at density n which has been calculated using another
very accurate technique - the Quantum Monte Carlo method - and has been
conveniently parameterized for use in LDA calculations.

This approach (and indeed the whole of DFT) can also be extended to
spin-polarized systems, where there is a different number of spin-up and
spin-down electrons, and the exchange-correlation functional is split into
two parts for the spin-up density and the spin-down density. This results
in the Local Spin Density Approzimation (LSDA). New exchange-correlation
functionals have recently been developed that include both the local density
and also the gradients of the local density, which are collectively known as
the Generalized Gradient Approzimation (GGA).

All forms of the exchange-correlation functional lead to the formation of
the exchange-correlation hole. That is, there is a region surrounding each
electron where other electrons are excluded - see figure 8.1. This hole in the
electron density integrates to exactly one electron, and therefore reveals a
single positive charge from the jellium background. It is the electron and this
hole that then move together as a single neutral entity. The LDA therefore
represents this hole by a sphere, whilst GGAs put in more elaborate shape
effects. The key to the effectiveness of the LDA is that it correctly integrates
to give exactly one excluded electron in the exchange-correlation hole.
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Figure 8.1: Simple view of the exchange-correlation hole, with a typical size
rs being dependent on the local electron density.

8.5 Solving the Kohn-Sham equations

The traditional approach to solving the Kohn-Sham equations is to expand
the Kohn-Sham eigenfunctions in terms of plane-waves:

hy (1) = cjge’®” (8.10)
g

where g is a reciprocal lattice vector, as the one-electron Kohn-Sham func-
tions do not have any connection with atomic orbitals, but are merely a
convenience for calculating the density and the kinetic energy. If we then
substitute equation 8.10 into equation 8.7 and integrate, we get the following
secular equation:

Z (g25g,g/ + VHartree (g) + Vae (g - g/) + Veat (g - g/)) Cig = E€Cjg
gl
(8.11)

which can be trivially cast into matrix form and the Kohn-Sham eigenvalues
found by matrix diagonalization as seen in previous lectures. This can be
a computationally expensive procedure - a system with N electrons and
M basis functions will require the construction and storage of an M x M
Hamiltonian matrix, which will require O(M?3) operations to diagonalize
per iteration towards self-consistency. The use of efficient pseudopotential
schemes (as discussed in earlier lectures) can help to reduce M but exact
diagonalization is still an expensive operation. This was for a long time
the major bottle-neck in the method, and prevented the application of the
method to systems with any more than a few tens of atoms on even the
fastest supercomputers.
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8.5.1 Car-Parrinello approach

A major breakthrough came in 1985 when Car and Parrinello put forward
an alternative solution scheme. They considered treating each coefficient
¢jg in the plane-wave expansion as a separate dynamical variable by asso-
ciating a fictitious mass with each coefficient. They therefore viewed the
problem as being analogous to classical mechanics, with M particles moving
in some potential V¢ which could then be studied using traditional molec-
ular dynamics techniques. If a fictitious damping was added, then the net
result was that the coefficients, initially set to some random values, would
evolve to the lowest energy configuration, and hence generate the ground
state wavefunction of the system! As well as being a novel way of approach-
ing the problem, it was also significantly faster than matrix diagonalization,
requiring O(N2M) operations to reach the ground state. At a stroke, this
increased by an order of magnitude the number of atoms that could be rea-
sonably studied.

Car and Parrinello also showed how it was possible to include the motion
of the real ions at the same time, and hence do ab initio molecular dynamics,
i.e. move the atoms around using forces derived from the full QM treatment
of the electrons. If damping was added to the ions as well, then this was
now an efficient scheme for generating the optimal configuration of all the
atoms in the system. It could also be used, for the first time, to study real
dynamical processes with an ab initio method.

8.5.2 Conjugate-gradients approach

A few years later, another breakthrough was achieved by Teter and Payne,
when they realized that the Car-Parrinello method was effectively treating
the problem as one of function minimization, and that the minimizing al-
gorithm they were using was equivalent to the standard steepest descents
algorithm. Whilst this is a simple and robust algorithm, it is well know to
be far from the most efficient minimizer available. Therefore, a new approach
was introduced, of iterative minimization using the conjugate-gradients al-
gorithm. A schematic of the difference between these two methods is shown
in figure 8.2. This new algorithm produced another order-of-magnitude im-
provement in speed (although the scaling was still O(N?M)). The new
method could be used both to minimize the energy of the electrons and also
to move the atoms around, either in molecular dynamics fashion or to find
the equilibrium geometry.

These algorithmic improvements, coupled with developments in the con-
struction of optimal pseudo-potentials, mean that it is now routine to calcu-
late the ground state properties of systems with around a hundred atoms on
a workstation, and several thousand atoms on a supercomputer. In my own
research, I have used a single processor workstation to calculate the optimal
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Figure 8.2: Schematic showing the search strategy and consequent perfor-
mance of two different function minimization algorithms, in a 2D anisotropic
harmonic potential. The equipotentials are therefore ellipses as shown. (a)
show the behaviour of the steepest descents minimizer which takes many
steps to find the minimum, whilst (b) shows the conjugate-gradients mini-
mizer which requires just two steps.

geometry of a system of 864 atoms using these methods (although it took
many days to complete and the calculation required 4GB RAM).

8.6 Alternatives to Kohn-Sham

Recently, there has been a lot of effort in finding new formulations of DFT
that do not require the introduction of the Kohn-Sham functions, but rather
using a different formulation of quantum mechanics based upon density ma-
trices. The advantage of such a technique is that it would scale as linearly
with the number of atoms - that is, it would be an O (N) method. This is
something of a Holy Grail for electronic structure calculations, as it would be
much more efficient than any other technique for large systems, and would
enable the study of very large systems (e.g. 10,000+ atoms). For exam-
ple, it would then be possible to do first-principles calculations of biological
molecules (proteins, etc) for the first time. This is an area of intense ongoing
research, with some some of the best results coming from the Cambridge
group in recent months.

There has also been much interest recently in generalised Kohn-Sham
schemes, where a variety of different approaches to the unknown universal
functional have been explored, for example, incorporating recent insights
from Many Body Perturbation Theory as in recent work from Prof. Godby’s

group.

8.7 Results

Like Hartree-Fock, DFT calculations calculate the total energy of a system
of atoms, from which many structural, electronic and dynamical properties
can be derived. However unlike HF, it is also routinely applied to condensed
phases, which opens up new possibilities, such as the calculation of lattice
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constants, structural phase transitions, elastic constants, phonon spectra,
and more.

Using the LDA, it is usually possible to get lattice constants and inter-
atomic distances correct to at least £0.02 A | bond-angles to within +3°, rel-
ative energies are typically correct to at least 0.005 eV /atom, and vibrational
frequencies to within 10 — 50 cm ™', Similarly, it gives a good description of
elastic constants, dipole moments, magnetic moments, etc.

However, the LDA tends to overbind atoms which results in it over-
estimating the metallic character of a material. For example, one notable
failure is that it predicts NiO to be a metal, whereas it is experimentally
known to be an anti-ferromagnetic insulator. Similarly, it overestimates very
weak bonds, such as hydrogen bonds.

It is possible, although not strictly justified, to consider the Kohn-Sham
eigenvalues as electron energies. This often gives a good description of the
band-structure of the material, as well as quantities like the work function,
optical and UV spectra. However, the LDA tends to underestimate the band-
gap in insulators and semiconductors. This is not too surprising as DFT is
intended to be a ground-state only theory!

Using either the Car-Parrinello or conjugate-gradients techniques, it is
possible to do ab initio molecular dynamics, using a typical time step of 1
fsec, and simulating dynamical processes for up to 10 psec on a supercom-
puter. This makes it possible to directly study dynamical phenomena such
as structural phase transitions, diffusion, chemical reactions and catalysis.

The use of GGA improves certain areas, and makes it possible to get
absolute binding energies as good as 0.05 eV /atom, and gives a much better
description of subtle effects, such as transition states and hydrogen bonds.
Unfortunately, it does not give a uniform improvement for all quantities for
all systems! The GGA is not a magic bullet. ..

However, there are some more unusual materials for which DFT as de-
scribed is not an appropriate theory. These are known as strongly-correlated
materials and require an approach which goes beyond the mean-field ap-
proach of DFT. (Surprisingly, HF often works quite well for these materi-
als). Such materials include high-temperature superconductors and colossal
magneto-resistance materials. Recent theoretical advances in treating such
materials involve developing a time-dependent DFT which is giving very
promising results.

Note that the precision of DFT results tends to be less than HF because
of the use of numerical integration on grids rather than analytic integration.
However, it is simple to make the precision better than the accuracy due to
approximate treatment of exchange and correlation, which is therefore good
enough.
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8.8

Final comments

A few final points to highlight:

8.9

DFT is most often used to study condensed phases, using periodic
boundary conditions, involving any atom in the periodic table.

It is an exact theory in principle, but in practice uses an approximate
treatment for exchange and correlation.

It is most often used with a plane-wave basis set and pseudo-potentials.

There is no systematic way to improve the accuracy of the calculation
(unlike HF with multiple determinants).

It is simple to parallelize the method using different sets of plane-waves
on different nodes of a parallel computer. This makes it simple to apply
to very large systems - up to a few thousand atoms.

It can also be used to generate ab initio molecular dynamics, which
further widens the range of phenomena that can be studied.
Further reading

DFT in “Methods of Electronic Structure Calculations” by M. Spring-
borg, Chapter 15

DFT in “Computational Physics” by J.M. Thijssen, chapter 5
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