
Chapter 8Density Fun
tional Theory8.1 Introdu
tionIn the previous le
ture we dis
ussed the Hartree-Fo
k method. This is a pow-erful ab initio method for 
al
ulating the ele
troni
 stru
ture of mole
ules,but has only limited su

ess with 
ondensed phases in general, and 
opes par-ti
ularly poorly with metalli
 solids in parti
ular. An alternative method,that is parti
ularly suited to bulk materials, and espe
ially metals, is thatof Density Fun
tional Theory. Whereas the fundamental obje
t in HF isthe many-body wavefun
tion whi
h is made up of one-ele
tron wavefun
-tions (orbitals), the fundamental quantity in DFT is the ele
troni
 
hargedensity whi
h is made up of one-ele
tron densities. In this le
ture we shallgive a brief outline of DFT, dis
uss a few pra
ti
al details about 
ommonimplementations and typi
al strengths and weaknesses.8.2 A fundamental theoremDensity Fun
tional Theory is based upon the Hohenberg-Kohn theorem -whi
h is that the ground state energy of a system of ele
trons is solely de-termined by the ground state 
harge density and that the 
harge densitywhi
h gives the minimum energy is unique. This is a tremendous simpli�-
ation 
ompared to more traditional approa
hes su
h as Hartree-Fo
k. Fora system with N ele
trons, the many-body wavefun
tion is 3N -dimensional,whereas the 
orresponding 
harge density is a 3D s
alar �eld! Furthermore,the theorem shows that this ground state energy 
an be found by minimizingan energy fun
tional w.r.t. the 
harge density. That is, the energy is givenby an integral of an (as yet) unknown fun
tion of the density over all spa
e,and we minimize the value of this integral to �nd the optimum density! Theproblem then is to determine what this fun
tion of the density is before we
an start to minimize anything . . . 71



72 CHAPTER 8. DENSITY FUNCTIONAL THEORY8.3 The sear
h for a universal fun
tionalA year after the publi
ation of the Hohenberg-Kohn theorem (whi
h wasviewed at the time as interesting but not very useful) 
ame the publi
ationof the Kohn-Sham equations. It was this whi
h turned the Hohenberg-Kohntheorem into a pra
ti
al 
al
ulational s
heme. The basis of their work was towrite down a form of this unknown energy fun
tional, and show how it 
ouldbe used to derive a set of e�e
tive one-ele
tron S
hrödinger-like equations.On
e again, we start from the variational prin
iple, but now in the formof a fun
tional of the ele
tron density (using square bra
kets, E [n] to showthat this is a fun
tional and not a fun
tion), that is:
E [n] = min

Ψ|n

∫
Ψ⋆ĤΨd3Nr (8.1)where by minΨ|n we mean minimizing w.r.t. the set of many-body wave-fun
tions {Ψ} whi
h are 
onsistent with the density n (r). This pro
edureis equivalent to minimizing w.r.t. the density, whi
h must be subje
t to the
onstraint

∫
n (r) d3r = N (8.2)where N is the number of ele
trons, whi
h therefore determines the normal-ization of Ψ.We use the Born-Oppenheimer approximation, and 
onsider the systemas a set of intera
ting ele
trons and ions. We pro
eed by separating theHamiltonian into two parts - Ĥ0 due to the homogeneous ele
tron gas (i.e.jellium - a system of ele
trons in a uniform, neutralizing, ba
kground ofpositive 
harge) and Vext (r) being the external potential (e.g. the ele
tron-ion Coulomb attra
tion). We then have

E [n] = min
Ψ|n

∫
Ψ⋆Ĥ0Ψd

3Nr +

∫
Vext (r)n (r) d3r (8.3)and the �rst term 
an be written as F [n], i.e. as a fun
tional of the ele
tronsalone. This fun
tional F [n] does not depend upon the ions or any otherexternal in�uen
e, and so must be a universal fun
tional of the ele
trons.Now all we have to do is �nd this fun
tional!We know from our experien
e with Hartree-Fo
k theory, that F [n] must
ontain 
ontributions due to the ele
troni
 kineti
 energy and the ele
tron-ele
tron Coulomb repulsion, as well as the e�e
ts of ele
tron ex
hange anddynami
al 
orrelations. At this point, Kohn-Sham broke this unknown fun
-tional into 3 parts:

F [n] = T [n] +
1

2

∫ ∫
n

(
r
′
) 1

|r− r′|
n (r) d3r′d3r +Exc [n] (8.4)



8.3. THE SEARCH FOR A UNIVERSAL FUNCTIONAL 73where T [n] is a kineti
 energy fun
tional, the se
ond term is the ele
tron-ele
tron Coulomb repulsion that we have seen before, and all the many-bodye�e
ts (in
luding ex
hange and 
orrelation) are lumped together into thethird term - the ex
hange-
orrelation fun
tional Exc [n].Unfortunately, it is not known how to 
al
ulate the kineti
 energy of a
harge density. So, they then introdu
ed a �
titious set of non-intera
tingone-ele
tron wavefun
tions, {ψi}, whi
h do not represent atomi
 orbitals butinstead are merely 
hosen to reprodu
e the ground state density:
n (r) =

N∑

j=1

|ψj (r)|2 (8.5)and so we 
an now write down the kineti
 energy in terms of these fun
tions:
T = −

1

2

N∑

j=1

∇2ψj (8.6)whi
h is a
tually the kineti
 energy of a set of non-intera
ting ele
trons thathave the same density as the intera
ting system, and negle
ts any e�e
ts ofintera
tion on kineti
 energy.Note that at this stage, everything in F [n] is exa
t and universal for anyele
tron 
harge density, and all the dependen
e on ions has been put into
Vext (r). The only unknown quantity remaining is the ex
hange-
orrelationfun
tional whi
h by de�nition therefore 
ontains all the 
ontributions nota

ounted for by the other terms!We 
an now perform the minimization of equation 8.1 w.r.t. the densitysubje
t to the 
onstraint of equation 8.2, whi
h then results in the Kohn-Sham equations:

(
−

1

2
∇2 + Veff

)
ψj = εjψj (8.7)whi
h look like a set of one-parti
le S
hrödinger equations for the Kohn-Shameigenfun
tions in terms of an e�e
tive potential Veff where

Veff (r) =

∫
n

(
r
′
) 1

|r− r′|
d3r′ + Vxc (n (r)) + Vext (r) (8.8)and all the unknown terms are 
ontained in the ex
hange-
orrelation poten-tial Vxc.At this point, we have all the ingredients for an e�
ient and exa
t s
hemebar one - we don't know what to do for Vxc. So, in true physi
ist style, weapproximate it by things we do know!



74 CHAPTER 8. DENSITY FUNCTIONAL THEORY8.4 The Ex
hange-Correlation fun
tionalThe ex
hange-
orrelation fun
tional is the key ingredient of DFT, and whilstthe Hohenberg-Kohn theorem assures us that it exists and is a universalfun
tional that will apply to all ele
tron densities, regardless of how theele
trons are intera
ting, it does not tell us what the form of this fun
tionalis! Kohn-Sham made the following apparently drasti
 approximation in thespirit of the mean-�eld treatment of everything else in DFT, that has 
ome tobe known as the Lo
al Density Approximation (LDA). That is, they assumedthat an ele
tron at a point with a given lo
al ele
tron density experien
esthe same many-body response by the surrounding ele
trons as if the wholematerial had this same density. Of 
ourse, if the entire system had the samedensity at all points, then this would 
orrespond to �jellium�, i.e. the uniformhomogeneous ele
tron gas. This approximation might be expe
ted to workwell for metalli
 
rystals with relatively uniform ele
tron densities - whi
h istrue. It has also been found, somewhat more surprisingly, to be surprisinglya

urate for many other materials, in
luding insulators and semi
ondu
tors(both solid and liquid), surfa
es, and even mole
ules.Formally, we write:
Exc =

∫
εxc [n (r)]n (r) d3r (8.9)where εxc [n] is the ex
hange-
orrelation energy per parti
le of a homoge-neous ele
tron gas at density n whi
h has been 
al
ulated using anothervery a

urate te
hnique - the Quantum Monte Carlo method - and has been
onveniently parameterized for use in LDA 
al
ulations.This approa
h (and indeed the whole of DFT) 
an also be extended tospin-polarized systems, where there is a di�erent number of spin-up andspin-down ele
trons, and the ex
hange-
orrelation fun
tional is split intotwo parts for the spin-up density and the spin-down density. This resultsin the Lo
al Spin Density Approximation (LSDA). New ex
hange-
orrelationfun
tionals have re
ently been developed that in
lude both the lo
al densityand also the gradients of the lo
al density, whi
h are 
olle
tively known asthe Generalized Gradient Approximation (GGA).All forms of the ex
hange-
orrelation fun
tional lead to the formation ofthe ex
hange-
orrelation hole. That is, there is a region surrounding ea
hele
tron where other ele
trons are ex
luded - see �gure 8.1. This hole in theele
tron density integrates to exa
tly one ele
tron, and therefore reveals asingle positive 
harge from the jellium ba
kground. It is the ele
tron and thishole that then move together as a single neutral entity. The LDA thereforerepresents this hole by a sphere, whilst GGAs put in more elaborate shapee�e
ts. The key to the e�e
tiveness of the LDA is that it 
orre
tly integratesto give exa
tly one ex
luded ele
tron in the ex
hange-
orrelation hole.



8.5. SOLVING THE KOHN-SHAM EQUATIONS 75
(r)ρ
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Figure 8.1: Simple view of the ex
hange-
orrelation hole, with a typi
al size
rs being dependent on the lo
al ele
tron density.8.5 Solving the Kohn-Sham equationsThe traditional approa
h to solving the Kohn-Sham equations is to expandthe Kohn-Sham eigenfun
tions in terms of plane-waves:

ψj (r) =
∑

g

cj,ge
ig.r (8.10)where g is a re
ipro
al latti
e ve
tor, as the one-ele
tron Kohn-Sham fun
-tions do not have any 
onne
tion with atomi
 orbitals, but are merely a
onvenien
e for 
al
ulating the density and the kineti
 energy. If we thensubstitute equation 8.10 into equation 8.7 and integrate, we get the followingse
ular equation:

∑

g′

(
g

2δg,g′ + VHartree (g) + Vxc

(
g − g

′
)

+ Vext

(
g − g

′
))
cj,g = εjcj,g(8.11)whi
h 
an be trivially 
ast into matrix form and the Kohn-Sham eigenvaluesfound by matrix diagonalization as seen in previous le
tures. This 
an bea 
omputationally expensive pro
edure - a system with N ele
trons and

M basis fun
tions will require the 
onstru
tion and storage of an M ×MHamiltonian matrix, whi
h will require O(M3) operations to diagonalizeper iteration towards self-
onsisten
y. The use of e�
ient pseudopotentials
hemes (as dis
ussed in earlier le
tures) 
an help to redu
e M but exa
tdiagonalization is still an expensive operation. This was for a long timethe major bottle-ne
k in the method, and prevented the appli
ation of themethod to systems with any more than a few tens of atoms on even thefastest super
omputers.



76 CHAPTER 8. DENSITY FUNCTIONAL THEORY8.5.1 Car-Parrinello approa
hA major breakthrough 
ame in 1985 when Car and Parrinello put forwardan alternative solution s
heme. They 
onsidered treating ea
h 
oe�
ient
cj,g in the plane-wave expansion as a separate dynami
al variable by asso-
iating a �
titious mass with ea
h 
oe�
ient. They therefore viewed theproblem as being analogous to 
lassi
al me
hani
s, with M parti
les movingin some potential Veff whi
h 
ould then be studied using traditional mole
-ular dynami
s te
hniques. If a �
titious damping was added, then the netresult was that the 
oe�
ients, initially set to some random values, wouldevolve to the lowest energy 
on�guration, and hen
e generate the groundstate wavefun
tion of the system! As well as being a novel way of approa
h-ing the problem, it was also signi�
antly faster than matrix diagonalization,requiring O(N2M) operations to rea
h the ground state. At a stroke, thisin
reased by an order of magnitude the number of atoms that 
ould be rea-sonably studied.Car and Parrinello also showed how it was possible to in
lude the motionof the real ions at the same time, and hen
e do ab initio mole
ular dynami
s,i.e. move the atoms around using for
es derived from the full QM treatmentof the ele
trons. If damping was added to the ions as well, then this wasnow an e�
ient s
heme for generating the optimal 
on�guration of all theatoms in the system. It 
ould also be used, for the �rst time, to study realdynami
al pro
esses with an ab initio method.8.5.2 Conjugate-gradients approa
hA few years later, another breakthrough was a
hieved by Teter and Payne,when they realized that the Car-Parrinello method was e�e
tively treatingthe problem as one of fun
tion minimization, and that the minimizing al-gorithm they were using was equivalent to the standard steepest des
entsalgorithm. Whilst this is a simple and robust algorithm, it is well know tobe far from the most e�
ient minimizer available. Therefore, a new approa
hwas introdu
ed, of iterative minimization using the 
onjugate-gradients al-gorithm. A s
hemati
 of the di�eren
e between these two methods is shownin �gure 8.2. This new algorithm produ
ed another order-of-magnitude im-provement in speed (although the s
aling was still O(N2M)). The newmethod 
ould be used both to minimize the energy of the ele
trons and alsoto move the atoms around, either in mole
ular dynami
s fashion or to �ndthe equilibrium geometry.These algorithmi
 improvements, 
oupled with developments in the 
on-stru
tion of optimal pseudo-potentials, mean that it is now routine to 
al
u-late the ground state properties of systems with around a hundred atoms ona workstation, and several thousand atoms on a super
omputer. In my ownresear
h, I have used a single pro
essor workstation to 
al
ulate the optimal
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a bFigure 8.2: S
hemati
 showing the sear
h strategy and 
onsequent perfor-man
e of two di�erent fun
tion minimization algorithms, in a 2D anisotropi
harmoni
 potential. The equipotentials are therefore ellipses as shown. (a)show the behaviour of the steepest des
ents minimizer whi
h takes manysteps to �nd the minimum, whilst (b) shows the 
onjugate-gradients mini-mizer whi
h requires just two steps.geometry of a system of 864 atoms using these methods (although it tookmany days to 
omplete and the 
al
ulation required 4GB RAM).8.6 Alternatives to Kohn-ShamRe
ently, there has been a lot of e�ort in �nding new formulations of DFTthat do not require the introdu
tion of the Kohn-Sham fun
tions, but ratherusing a di�erent formulation of quantum me
hani
s based upon density ma-tri
es. The advantage of su
h a te
hnique is that it would s
ale as linearlywith the number of atoms - that is, it would be an O (N) method. This issomething of a Holy Grail for ele
troni
 stru
ture 
al
ulations, as it would bemu
h more e�
ient than any other te
hnique for large systems, and wouldenable the study of very large systems (e.g. 10,000+ atoms). For exam-ple, it would then be possible to do �rst-prin
iples 
al
ulations of biologi
almole
ules (proteins, et
) for the �rst time. This is an area of intense ongoingresear
h, with some some of the best results 
oming from the Cambridgegroup in re
ent months.There has also been mu
h interest re
ently in generalised Kohn-Shams
hemes, where a variety of di�erent approa
hes to the unknown universalfun
tional have been explored, for example, in
orporating re
ent insightsfrom Many Body Perturbation Theory as in re
ent work from Prof. Godby'sgroup.8.7 ResultsLike Hartree-Fo
k, DFT 
al
ulations 
al
ulate the total energy of a systemof atoms, from whi
h many stru
tural, ele
troni
 and dynami
al properties
an be derived. However unlike HF, it is also routinely applied to 
ondensedphases, whi
h opens up new possibilities, su
h as the 
al
ulation of latti
e
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onstants, stru
tural phase transitions, elasti
 
onstants, phonon spe
tra,and more.Using the LDA, it is usually possible to get latti
e 
onstants and inter-atomi
 distan
es 
orre
t to at least ±0.02 Å , bond-angles to within ±3◦, rel-ative energies are typi
ally 
orre
t to at least 0.005 eV/atom, and vibrationalfrequen
ies to within 10 − 50 cm−1. Similarly, it gives a good des
ription ofelasti
 
onstants, dipole moments, magneti
 moments, et
.However, the LDA tends to overbind atoms whi
h results in it over-estimating the metalli
 
hara
ter of a material. For example, one notablefailure is that it predi
ts NiO to be a metal, whereas it is experimentallyknown to be an anti-ferromagneti
 insulator. Similarly, it overestimates veryweak bonds, su
h as hydrogen bonds.It is possible, although not stri
tly justi�ed, to 
onsider the Kohn-Shameigenvalues as ele
tron energies. This often gives a good des
ription of theband-stru
ture of the material, as well as quantities like the work fun
tion,opti
al and UV spe
tra. However, the LDA tends to underestimate the band-gap in insulators and semi
ondu
tors. This is not too surprising as DFT isintended to be a ground-state only theory!Using either the Car-Parrinello or 
onjugate-gradients te
hniques, it ispossible to do ab initio mole
ular dynami
s, using a typi
al time step of 1fse
, and simulating dynami
al pro
esses for up to 10 pse
 on a super
om-puter. This makes it possible to dire
tly study dynami
al phenomena su
has stru
tural phase transitions, di�usion, 
hemi
al rea
tions and 
atalysis.The use of GGA improves 
ertain areas, and makes it possible to getabsolute binding energies as good as 0.05 eV/atom, and gives a mu
h betterdes
ription of subtle e�e
ts, su
h as transition states and hydrogen bonds.Unfortunately, it does not give a uniform improvement for all quantities forall systems! The GGA is not a magi
 bullet. . .However, there are some more unusual materials for whi
h DFT as de-s
ribed is not an appropriate theory. These are known as strongly-
orrelatedmaterials and require an approa
h whi
h goes beyond the mean-�eld ap-proa
h of DFT. (Surprisingly, HF often works quite well for these materi-als). Su
h materials in
lude high-temperature super
ondu
tors and 
olossalmagneto-resistan
e materials. Re
ent theoreti
al advan
es in treating su
hmaterials involve developing a time-dependent DFT whi
h is giving verypromising results.Note that the pre
ision of DFT results tends to be less than HF be
auseof the use of numeri
al integration on grids rather than analyti
 integration.However, it is simple to make the pre
ision better than the a

ura
y due toapproximate treatment of ex
hange and 
orrelation, whi
h is therefore goodenough.



8.8. FINAL COMMENTS 798.8 Final 
ommentsA few �nal points to highlight:
• DFT is most often used to study 
ondensed phases, using periodi
boundary 
onditions, involving any atom in the periodi
 table.
• It is an exa
t theory in prin
iple, but in pra
ti
e uses an approximatetreatment for ex
hange and 
orrelation.
• It is most often used with a plane-wave basis set and pseudo-potentials.
• There is no systemati
 way to improve the a

ura
y of the 
al
ulation(unlike HF with multiple determinants).
• It is simple to parallelize the method using di�erent sets of plane-waveson di�erent nodes of a parallel 
omputer. This makes it simple to applyto very large systems - up to a few thousand atoms.
• It 
an also be used to generate ab initio mole
ular dynami
s, whi
hfurther widens the range of phenomena that 
an be studied.8.9 Further reading
• DFT in �Methods of Ele
troni
 Stru
ture Cal
ulations� by M. Spring-borg, Chapter 15
• DFT in �Computational Physi
s� by J.M. Thijssen, 
hapter 5
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