Chapter 9

Quantum Monte Carlo
Methods

Any numerical technique that uses random numbers, tends to be called
a 'Monte Carlo’ method, after the famous casino. Here we shall discuss
various techniques that have been developed to solve the many-electron
Schrodinger equation, which are therefore known collectively as Quantum
Monte Carlo methods (QMC). The primary difficulty in solving the many-
electron Schrodinger equation arises from the fact that the even the simplest
(product) many-electron wavefunction ¥ (rq,rs,...ry) is a 3N-dimensional
quantity, and so the calculation of expectation values will require 3/V-dimensional
integrals. We have already seen how the Hartree-Fock method then uses
the independent-electron approximation to reduce this to a number of two-
electron integrals, i.e. 6-dimensional integrals, each being over 4 basis func-
tions.

But what if we want to go beyond the independent-electron approxima-
tion? What if we want to have an exact treatment of dynamical correlation?
We will then have to handle these 3/N-dimensional integrals! What is the
best way to do this?

We start by revising standard methods for numerical integration of 1D
functions, introduce the technique of Monte Carlo integration, and then show
why Monte Carlo integration is superior for higher dimensional functions. We
then discuss two particular Monte Carlo techniques that have been developed
to solve the many-electron Schrédinger equation with very high levels of
accuracy.
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Figure 9.1: Simple integration grid for a smooth function in 1D.

9.1 Revision of numerical integration

9.1.1 Uniform quadrature

There exist many ways to integrate a continuous, bounded 1D function on
the interval [a,b] as shown in figure 9.1.
The simplest approach is to define a uniform grid of N points {x;} where

x; = a+1ih (9.1)

with h = % being the step size, and the index ¢ : 0 — N. We can then
approximate the integral as the sum of the function values on the grid points:

b N-1
/ f@)de =3 [ ) +0 ) 9.2)

This is an example of a first-order numerical integration (or quadrature)
method and has very low efficiency. We can easily generate higher-order
algorithms. For example, to generate a second-order method, we replace
the constant value f (z;) that is used across the interval [z;, z;+1] with a
1st-order polynomial:

(z

F@)~ f 0+ T i) - 1 @) (9.3

which then gives the trapezium rule:
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(9.4)

Similarly, we can extend this to third-order by dividing up each interval
into subintervals and doing piecewise quadratic approximations over each
subinterval, resulting in Simpson’s rule (which due to a fortunate cancellation
of errors is actually accurate to O (h4) ). The list can be extended to arbitrary
order.

One useful method is to successively repeat the trapezium rule for inter-
vals of size h, %, %, etc. which results in a series of values of the integral.
Fitting this series to a simple polynomial makes it possible to extrapolate
the result to zero step size, yielding a very accurate result. This is known as

the Romberg method.

9.1.2 Gaussian quadrature

An alternative approach is to not choose a uniform grid of points, but rather
to choose the points in such as way as to only sample the function at the most
important points, and then to add up the function values with appropriate
weights at each point. With the above example, we note that a simple change
of variable will map the original interval [a,b] onto the interval [—1,1]. We
can then exploit the properties of the Legendre polynomials, P; (which arise
in the solution of the radial Schrodinger equation for the hydrogen atom),
which are orthogonal over this interval:

1
/_1Pl (@) Py, (2) d = 611, (9.5)

Instead of using simple polynomial interpolation of f (x) over the uniform
interval [z;,x;11] we now use Legendre polynomials with the intervals being
non-uniform. An N** order Legendre polynomial has N roots, i.e. N zeroes,
and so we choose these as our grid points, with an effective step size h = %

The resulting Gauss-Legendre algorithm is:

1 N
/1 f (a;) dx ~ Z wif (LL’Z) + O (h2N) (9.6)
- i=1

where w; are the weights associated with each point and depend on the order
of the algorithm.

Note that the accuracy of the method using N points is equivalent to
a uniform-grid method using 2N points, and the order of the method is
also 2N. Hence this method can achieve very accurate results using fewer
function evaluations than uniform grid methods, as long as the function is
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reasonably smooth over the interval. However, it is more complex to code
and harder to extend to more points.

Note also that other interpolating functions and corresponding weights
can be used, which gives rise to other Gaussian quadrature schemes.

9.1.3 Higher dimensions

These schemes can be simply extended to higher dimensions. However, there
are two major problems:

1. The number of function evaluations required to achieve a given ac-
curacy. If an integral requires N points to get a satisfactory answer
in 1D, then it will require N? points in d-dimensional space. So, 30
function evaluations in 1D become 27000 function evaluations in 3D,
etc.

2. The region of integration is defined by a d—1 dimensional surface which
may be very complex, and can make the creation of an appropriate
integration grid difficult.

Both of these difficulties may be overcome by the Monte Carlo integration
technique.

9.2 Monte Carlo integration

In Monte Carlo integration, we have each point contributing to the integral
with a uniform weight, but now we choose the points randomly. Before we
discuss why this is a useful way of doing numerical integration, we shall
re-cap a little basic probability.

9.2.1 Revision of probability

1. The probability that a continuous variable z lies in the range x —
x + dx is given by p (z) dx, where

/_00 p(z)de =1, p(z)>0Ve (9.7)

which defines the normalisation of p (z).

2. The mean value of the variable x is given by

o0

(z) = / p(x) zdx (9.8)
—00

and the corresponding variance is given by

0% = /00 p(z) ?dz — (z)? (9.9)

—00
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3. The average value of any function of x is given by

uu»z/wmwfuMw (9.10)

—00

etc.

4. For discrete variables, we distinguish between sample and population
statistics. For a sample of size N we find that the sample mean (z) is
an unbiased estimator of the population mean pu:

N
=)= 2> m (9.11)
=1

2

but that the sample variance s is a biased estimator of the population

variance o2 and so we have:

N 1 &
o’ = g 182 = g2 @i- (x))? = N_1 (<$2> - <x>2)

=1
(9.12)

5. Finally, the standard error in the estimate of the mean is given by

S
o) = —— 9.13

and if NV is large enough then the value of the mean will be Normally
distributed, according to the central limit theorem.

9.2.2 Evaluating integrals

We now use the mean value theorem to evaluate the integral:

b
/ ﬂ@dw=®—aMﬁ (9.14)

That is, we choose the set of N grid points randomly, evaluate f (x) at
these random points, and hence make an estimate of the average value of
f () which therefore leads to a statistical uncertainty in the result

(b—a)
VN

o= (f2) = (F)? (9.15)
We therefore have an integration technique that has an error O <N_%

regardless of the dimensionality of the problem, whereas in d-dimensions the
trapezium rule is O (N_%) and Simpson’s rule is O (N_%). Clearly, the
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Monte Carlo method is better than the trapezium rule for d > 4 and Simp-
son’s rule for d > 8. In many-body quantum mechanics, even the simplest
form of the N-body wavefunction is 3/N-dimensional, and so it can be seen
that the Monte Carlo integration technique is invaluable. Even very simple
molecules, such as Oy will have 16 electrons and so be 48-dimensional, and
the number of dimensions rises very rapidly with more complex materials.

9.2.3 Boundary conditions

We can also use Monte Carlo integration in situations where the boundary
surface is hard to sample randomly. All we need to do is define a sample
volume V' that includes the region of interest, and extend the definition
of f(x) to be zero for points in V that lie outside the region of interest.
Including such zero-weighted points will not affect the value of the integral
but will increase the estimated error, as the effective number of points is
reduced. Obviously, it is best to arrange the sample volume to be as close
as possible to the region of interest.

9.2.4 Importance sampling

It is often the case that the contributions to the integral from different sub-
volumes within the region of interest vary considerably. If there are small
sub-volumes that make a large contribution to the overall integral, then these
will only be sampled rarely, and so there will be large statistical errors in
the result. It is therefore better to increase the density of sample points
in those regions which contribute most to the integral. This is known as
importance sampling. Obviously, this requires some knowledge of the shape
of the integrand before the calculation starts! An alternative technique,
known as adaptive Monte Carlo, seeks to locate these important sub-volumes
“on-the-fly” by probing the function at random points without any prior
knowledge of the shape of the function.

9.3 Variational Monte Carlo

9.3.1 Evaluating the energy

The Variational Monte Carlo (VMC) technique combines the variational
method discussed in previous lectures with Monte Carlo integration. Our aim
is to find the best many-body wavefunction, by minimizing the expectation
value of the energy:

[U*HWdNr

A — 9.16
J 1w a3y (910

Evne
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where W (ry,re...ry) is an N-electron many-body wavefunction. Note that
many-body wavefunctions for electrons are necessarily more complex than
the simple product of N single-particle wavefunctions due to the require-
ments of the Pauli Exclusion Principle. As discussed before in the Hartree-
Fock method, a simple way of making a wavefunction anti-symmetric (i.e.
of incorporating the effects of particle exchange) is to write it as a Slater
determinant:

ol s o1

on (1) - ¢N (N)

where ¢; (j) is a single-particle wavefunction for particle j in state i. As
usual, we can expand each single-particle wavefunction in a basis set of
known functions. The problem is that as the number of particles increases,
it rapidly becomes impossible to perform the integrations exactly using nor-
mal quadrature methods. Similarly, if we expand the wavefunction in some
basis, it again becomes rapidly impossible to do exact diagonalization of the
corresponding matrices.

We therefore seek an alternative approach - that is, we rewrite equation
9.16 in a form that is more amenable for Monte Carlo integration:

J 1w (et aw)

Evue = T 1oy (9.18)
and so if we now define the local energy, Fp as:
E,=V"'H¥ (9.19)

then equation 9.18 is now the same form as equation 9.10 with |\I'|2 being
the probability distribution.

We now evaluate this integral M times, with different configurations of
all the electrons {r;} each time, which therefore gives us an approximate
value for the energy:

1 M
Eyyc ® 57 > EL({r:}) (9.20)
j=1

where Ep is drawn from the distribution of [¥|? .

Note that as we are using Monte Carlo integration, and therefore only
finding an approximate value for this integral, it is not unlikely that any
given value of Ej will be lower than the true ground state energy. The
variational principle, that the expectation value of a trial wavefunction is
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only an upper bound on the true ground state value, will only apply to the
average value of Ey o .

We must therefore generate different sets of sample points, i.e. different
configurations. We do this using the Metropolis algorithm:

1. For a given configuration {r,;} calculate Ef,

2. Generate a new set of points by moving all the points by a random
amount

3. Calculate Ep, for this new proposed configuration {rye, }

4. Decide whether to accept or reject this new configuration according to
the Metropolis criteria:

2

(a) calculate the ratio p = ‘%

i. generate a uniformly distributed random number £ between
[0,1]

ii. if & < p then accept the new configuration, otherwise reject
it.

This algorithm will therefore tend to push the sample points towards the
regions of high probability, resulting in importance sampling, with a final
distribution of sample points given by ’\I’tm’al’z- Note that successive values
of E will continue to vary, resulting in an average value with a correspond-
ing standard error. Obviously, successive configurations will be correlated,
and so care must be taken in calculating the variance as successive mea-
surements will not be independent - otherwise the variance will be badly
underestimated. See figure 9.2 for an example.

The precision of this answer can therefore be simply improved by increas-
ing the number of configurations sampled.

9.3.2 Improving the wavefunction

To improve the accuracy of our answer we need to be able to improve the
functional form of the trial wavefunction. In practice, we usually seek to
optimise the wavefunction by minimizing the variance and not the energy,
as the variance has a known lower bound of zero unlike the energy for which
we do not have a lower bound. There are also efficient and stable algorithms
for minimizing objective functions which can be written as a sum of squares.

Note that as Uypj01 — WYeraer the average value, Ey o, will decrease, as
will the instantaneous fluctuations, i.e. the variance will tend to zero. This
is a result of the zero variance principle - since

HU = EV (9.21)
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Figure 9.2: Sketch of evolution of £, during the course of a VMC calculation.
The initial phase must be discarded, as this corresponds to configurations
that are not very close to \‘I’mal\2- Only the later points are kept for aver-

aging.

then for any eigenstate ¥ of the Hamiltonian we must have
U'HU = E (9.22)

and so the local energy Fp, is the same at all points in configuration space,
and therefore Ey ;¢ has zero variance if Wi = VYeract -

We can attempt to include the effects of electron-electron correlation
by including a Jastrow function J(«), writing our correlated many-body
wavefunction as a product of a single-particle wavefunction ®;.;,; (which is
not varied) and a Jastrow function which contains a few tens of parameters,

{a}:
U () = Ppprjrd (@)

We can now optimize this wavefunction ¥ («) by minimizing the variance
of the energy:

_ S (@) (BL (@) — Evue (o ))? d*Mr
7E f!‘I’ )[? d3My

(9.23)

where Ey ;¢ is variational and calculated as described above for a fixed

V(o) :

J 19 (2)]* Bp (o) &7
[ (@) d3Nr
We therefore start the VMC calculation with an approximate trial wave-

function from some less accurate electronic structure method, such as Hartree-

Evyce (a) =

(9.24)

Fock, or Density Functional Theory and then evaluate Ey ;¢ for an initial
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set of Jastrow parameters {ag} to derive a value for 0% (ap). We then ad-
just the parameters {a} and re-run the VMC to get a generate a new set of
configurations and a new value for 0% (). This is then repeated until we
have minimized % («) whereupon the wavefunction is as good as it can be
given the functional form of the trial wavefunction.

9.4 Diffusion Monte Carlo

The accuracy limitations of VMC can be largely overcome by the Diffusion
Monte Carlo (DMC) technique. This has a quite different theoretical foun-
dation, which we shall not discuss in any detail here. In practice, it is often
used with VMC as a “first-stage” calculation! We start by considering the
time dependent Schrédinger equation in imaginary time, T = it:

ov

oo
- v 2
2V v+ Ve @) (9.25)

which we can therefore imagine splitting into two parts - a diffusion equation

1, 10¥
VW == 2
QV 2 0T (9.26)
and a rate equation:
10¥
VI =——— 9.27
2 07 ( )

We can then simulate the solution of equation 9.25 using a distribution of
walkers. Each walker is a point in 3N-dimensional configuration space, which
moves with a combination of directed drift (equation 9.27) and diffusive
motion (equation 9.26). The number of walkers is not constant - they may
be killed off in regions of high V' or multiplied in regions of low V. The net
distribution of walkers will then represent W. This is shown schematically in
figure 9.3.

One major problem is that ¥ is not positive-definite, and therefore does
not make a very good probability distribution! The rate equation is also
badly behaved. The solution to both of these problems is to work with a
different probability distribution:

fri,ro...vn;7) =V (r1,r0...vN; T) Pprjar (r1,72 ... TN) (9.28)

where @0 (r1,12 ... 1N) is a fixed trial wavefunction, which is typically the
final optimized trial wavefunction from a VMC calculation, and ¥ is the
“true” unknown many-body wavefunction. By fixing this trial wavefunction,
which is already a good approximation to the “true” wavefunction, but al-
lowing it to be multiplied by another function actually has the effect of only



9.4. DIFFUSION MONTE CARLO 91

V(X)

V(X)
¥ final

- X

Figure 9.3: Sketch of DMC in action: a simple initial wavefunction W, is
represented by an initial density of walkers. The walkers are then moved
forwards in imaginary time 7, with some being killed off in regions where V'
is high and so ¥ ought to be small, and multiplied in regions of low V. The
final density of walkers is then a better estimate of the wavefunction, W f;,,4
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fixing the points at which the result has a zero value. That is, we have
fixed the nodes of the resulting probability distribution, which stops walkers
crossing over from regions of positive ¥ to negative W. This is known as the
fizxed-node approzimation.

We then calculate the energy as:

[V Erd3Nr
E = 9.29
DMC f \Ijq)trialdgNT ( )

%

LM
i ZEL ({r:i}) (930)
j=1

where the local energy, Ep is as before.

9.5 Results

The limiting factor in the accuracy of a VMC calculation is the accuracy of
the trial wavefunction. This must be kept fixed as it is used in the Metropolis
algorithm to guide the sample points towards the most important regions to
yield an accurate integration result. The precision of the VMC calculation
can be arbitrarily increased by simply running the calculation for longer,
generating more samples and hence reducing the standard error in the results.
With DMC, the only significant assumption, which is therefore the limiting
factor to the accuracy of a DMC calculation, is the fixed-node approximation.

Note that both VMC and DMC can be applied to excited states as well
as the ground state, and gives a good description of a range of properties,
not just the energy.

As an example of the abilities of these methods, consider table 9.1. Here
we consider the level of treatment of the correlation energy, F -, which
can be considered as the difference between the exact ground state energy
(within the Born-Oppenheimer approximation) and the Hartree-Fock en-
ergy because, as previously discussed, Hartree-Fock has no treatment of
dynamic correlation. We can put some treatment of dynamic correlation
into Hartree-Fock by using multiple determinants as in the Configuration
Interaction method. Here, we include results from the Coupled Cluster SDT
method (CCSDT) (i.e. truncated Configuration Interaction by considering
all determinants with single, double and triple excitations but no higher de-
terminants). This is considerably more expensive than single determinant
Hartree-Fock and produces a considerable improvement. Note that the cor-
relation energy is not accessible as such in DFT. The results for VMC and
DMC calculations show the obvious advantages of these methods. We also
include in this table a simple description of the scaling of the various methods
with increasing system size (N electrons).
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‘ Method ‘ E.orr ‘ Scaling ‘

HF 0 |o(NY
DFT | N/A [ O(N?)
CCSDT | “75% | O (N°®)
VMC | 85% | O (N?)
DMC | 795% | O (N?)

Table 9.1: Ability of different ab initio methods to treat dynamical electron-
electron correlation, and the scaling of the method with system size.

‘ Method ‘ C ‘ Si ‘ Ge ‘
DFT 7.58 4.84 4.02
VMC | 7.364+0.01 | 4.484+0.01 | 3.80+£0.02
DMC | 7.46+0.01 | 4.6340.02 | 3.85+0.02
Expt 7.37 4.64 3.85

Table 9.2: Cohesive energy of different elemental semiconductors in eV /atom.

As another example, in table 9.2 we show the cohesive energies, Fqp, of
a range of simple semiconductors (the cohesive energy is the binding energy
per atom in the bulk material). Whilst the DFT results are already quite
accurate (typically within 5% error), the QMC results are even better. Note
that this is a calculation that HF has a lot of difficulty with, typically getting
up to 50% error!

However, there is a very high computational cost of calculating (a very
accurate value for) the energy using QMC techniques. This may be offset
by implementing VMC and DMC on a massively parallel computer, which
is straightforward to do - more so than HF or DFT! Consequently, QMC
techniques have only been taken seriously since the beginning of the 1990’s
with the advent of sufficiently powerful parallel computers, and even now
have not been widely adopted.

One deficiency in any QMC method, that has not been highlighted until
now, is that it is not possible to calculate QM forces analytically which makes
optimizing the geometry of the atoms very difficult. For this reason, there
is still considerable interest in less rigorous, less expensive techniques, such
as Hartree-Fock or Density Functional Theory.

9.6 Final comments

A few final points to highlight:

e Monte Carlo integration is much more efficient than either uniform or
Gaussian quadrature in higher dimensions.
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e VMC is an efficient technique for evaluating the energy of a given
many-body wavefunction.

e VMC may also be used to optimize the wavefunction via the Jastrow
function.

e Diffusion Monte Carlo is more accurate than VMC but is significantly
computationally more expensive.

e Neither DMC nor VMC use the independent-electron approximation
and as such are “true” many-body methods, which may significantly
improve the accuracy of any experimental observables calculated.

9.7 Further reading

e QMC in “Computational Physics” by J.M. Thijssen, chapter 12



