
Chapter 9
Quantum Monte CarloMethods
Any numeri
al te
hnique that uses random numbers, tends to be 
alleda 'Monte Carlo' method, after the famous 
asino. Here we shall dis
ussvarious te
hniques that have been developed to solve the many-ele
tronS
hrödinger equation, whi
h are therefore known 
olle
tively as QuantumMonte Carlo methods (QMC). The primary di�
ulty in solving the many-ele
tron S
hrödinger equation arises from the fa
t that the even the simplest(produ
t) many-ele
tron wavefun
tion Ψ (r1, r2, . . . rN ) is a 3N -dimensionalquantity, and so the 
al
ulation of expe
tation values will require 3N -dimensionalintegrals. We have already seen how the Hartree-Fo
k method then usesthe independent-ele
tron approximation to redu
e this to a number of two-ele
tron integrals, i.e. 6-dimensional integrals, ea
h being over 4 basis fun
-tions.But what if we want to go beyond the independent-ele
tron approxima-tion? What if we want to have an exa
t treatment of dynami
al 
orrelation?We will then have to handle these 3N -dimensional integrals! What is thebest way to do this?We start by revising standard methods for numeri
al integration of 1Dfun
tions, introdu
e the te
hnique of Monte Carlo integration, and then showwhy Monte Carlo integration is superior for higher dimensional fun
tions. Wethen dis
uss two parti
ular Monte Carlo te
hniques that have been developedto solve the many-ele
tron S
hrödinger equation with very high levels ofa

ura
y. 81
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baFigure 9.1: Simple integration grid for a smooth fun
tion in 1D.9.1 Revision of numeri
al integration9.1.1 Uniform quadratureThere exist many ways to integrate a 
ontinuous, bounded 1D fun
tion onthe interval [a, b] as shown in �gure 9.1.The simplest approa
h is to de�ne a uniform grid of N points {xi} where
xi = a + ih (9.1)with h = (b−a)

N
being the step size, and the index i : 0 → N . We 
an thenapproximate the integral as the sum of the fun
tion values on the grid points:

∫ b

a

f (x) dx ≃ h

N−1∑

i

f (xi) + O (h) (9.2)This is an example of a �rst-order numeri
al integration (or quadrature)method and has very low e�
ien
y. We 
an easily generate higher-orderalgorithms. For example, to generate a se
ond-order method, we repla
ethe 
onstant value f (xi) that is used a
ross the interval [xi, xi+1] with a1st-order polynomial:
f (x) ≈ f (xi) +

(x − xi)

h
(f (xi+1) − f (xi)) (9.3)whi
h then gives the trapezium rule:
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∫ b

a

f (x) dx ≈ h

(
1

2
f (x0) + f (x1) + f (x2) + · · · + f (xN−1) +

1

2
f (xN )

)
+O

(
h2

)(9.4)Similarly, we 
an extend this to third-order by dividing up ea
h intervalinto subintervals and doing pie
ewise quadrati
 approximations over ea
hsubinterval, resulting in Simpson's rule (whi
h due to a fortunate 
an
ellationof errors is a
tually a

urate to O
(
h4

)). The list 
an be extended to arbitraryorder.One useful method is to su

essively repeat the trapezium rule for inter-vals of size h, h
2 , h

4 , et
. whi
h results in a series of values of the integral.Fitting this series to a simple polynomial makes it possible to extrapolatethe result to zero step size, yielding a very a

urate result. This is known asthe Romberg method.9.1.2 Gaussian quadratureAn alternative approa
h is to not 
hoose a uniform grid of points, but ratherto 
hoose the points in su
h as way as to only sample the fun
tion at the mostimportant points, and then to add up the fun
tion values with appropriateweights at ea
h point. With the above example, we note that a simple 
hangeof variable will map the original interval [a, b] onto the interval [−1, 1]. We
an then exploit the properties of the Legendre polynomials, Pl (whi
h arisein the solution of the radial S
hrödinger equation for the hydrogen atom),whi
h are orthogonal over this interval:
∫ 1

−1
Pl (x)Pm (x) dx = δlm (9.5)Instead of using simple polynomial interpolation of f (x) over the uniforminterval [xi, xi+1] we now use Legendre polynomials with the intervals beingnon-uniform. An N th order Legendre polynomial has N roots, i.e. N zeroes,and so we 
hoose these as our grid points, with an e�e
tive step size h = 2

N
.The resulting Gauss-Legendre algorithm is:

∫ 1

−1
f (x) dx ≈

N∑

i=1

wif (xi) + O
(
h2N

) (9.6)where wi are the weights asso
iated with ea
h point and depend on the orderof the algorithm.Note that the a

ura
y of the method using N points is equivalent toa uniform-grid method using 2N points, and the order of the method isalso 2N . Hen
e this method 
an a
hieve very a

urate results using fewerfun
tion evaluations than uniform grid methods, as long as the fun
tion is



84 CHAPTER 9. QUANTUM MONTE CARLO METHODSreasonably smooth over the interval. However, it is more 
omplex to 
odeand harder to extend to more points.Note also that other interpolating fun
tions and 
orresponding weights
an be used, whi
h gives rise to other Gaussian quadrature s
hemes.9.1.3 Higher dimensionsThese s
hemes 
an be simply extended to higher dimensions. However, thereare two major problems:1. The number of fun
tion evaluations required to a
hieve a given a
-
ura
y. If an integral requires N points to get a satisfa
tory answerin 1D, then it will require Nd points in d-dimensional spa
e. So, 30fun
tion evaluations in 1D be
ome 27000 fun
tion evaluations in 3D,et
.2. The region of integration is de�ned by a d−1 dimensional surfa
e whi
hmay be very 
omplex, and 
an make the 
reation of an appropriateintegration grid di�
ult.Both of these di�
ulties may be over
ome by the Monte Carlo integrationte
hnique.9.2 Monte Carlo integrationIn Monte Carlo integration, we have ea
h point 
ontributing to the integralwith a uniform weight, but now we 
hoose the points randomly. Before wedis
uss why this is a useful way of doing numeri
al integration, we shallre-
ap a little basi
 probability.9.2.1 Revision of probability1. The probability that a 
ontinuous variable x lies in the range x →
x + dx is given by p (x) dx, where

∫ ∞

−∞
p (x) dx = 1, p (x) ≥ 0∀x (9.7)whi
h de�nes the normalisation of p (x).2. The mean value of the variable x is given by
〈x〉 =

∫ ∞

−∞
p (x)xdx (9.8)and the 
orresponding varian
e is given by

σ2 =

∫ ∞

−∞
p (x)x2dx − 〈x〉2 (9.9)



9.2. MONTE CARLO INTEGRATION 853. The average value of any fun
tion of x is given by
〈f (x)〉 =

∫ ∞

−∞
p (x) f (x) dx (9.10)et
.4. For dis
rete variables, we distinguish between sample and populationstatisti
s. For a sample of size N we �nd that the sample mean 〈x〉 isan unbiased estimator of the population mean µ:

µ = 〈x〉 =
1

N

N∑

i=1

xi (9.11)but that the sample varian
e s2 is a biased estimator of the populationvarian
e σ2 and so we have:
σ2 =

N

N − 1
s2 =

1

N − 1

N∑

i=1

(xi − 〈x〉)2 =
1

N − 1

(〈
x2

〉
− 〈x〉2

)(9.12)5. Finally, the standard error in the estimate of the mean is given by
s〈x〉 =

s√
N

(9.13)and if N is large enough then the value of the mean will be Normallydistributed, a

ording to the 
entral limit theorem.9.2.2 Evaluating integralsWe now use the mean value theorem to evaluate the integral:
∫ b

a

f (x) dx = (b − a) 〈f〉 (9.14)That is, we 
hoose the set of N grid points randomly, evaluate f (x) atthese random points, and hen
e make an estimate of the average value of
f (x) whi
h therefore leads to a statisti
al un
ertainty in the result

σ =
(b − a)√

N

√
〈f2〉 − 〈f〉2 (9.15)We therefore have an integration te
hnique that has an error O

(
N− 1

2

)regardless of the dimensionality of the problem, whereas in d-dimensions thetrapezium rule is O
(
N− 2

d

) and Simpson's rule is O
(
N− 4

d

). Clearly, the



86 CHAPTER 9. QUANTUM MONTE CARLO METHODSMonte Carlo method is better than the trapezium rule for d > 4 and Simp-son's rule for d > 8. In many-body quantum me
hani
s, even the simplestform of the N -body wavefun
tion is 3N -dimensional, and so it 
an be seenthat the Monte Carlo integration te
hnique is invaluable. Even very simplemole
ules, su
h as O2 will have 16 ele
trons and so be 48-dimensional, andthe number of dimensions rises very rapidly with more 
omplex materials.9.2.3 Boundary 
onditionsWe 
an also use Monte Carlo integration in situations where the boundarysurfa
e is hard to sample randomly. All we need to do is de�ne a samplevolume V that in
ludes the region of interest, and extend the de�nitionof f (x) to be zero for points in V that lie outside the region of interest.In
luding su
h zero-weighted points will not a�e
t the value of the integralbut will in
rease the estimated error, as the e�e
tive number of points isredu
ed. Obviously, it is best to arrange the sample volume to be as 
loseas possible to the region of interest.9.2.4 Importan
e samplingIt is often the 
ase that the 
ontributions to the integral from di�erent sub-volumes within the region of interest vary 
onsiderably. If there are smallsub-volumes that make a large 
ontribution to the overall integral, then thesewill only be sampled rarely, and so there will be large statisti
al errors inthe result. It is therefore better to in
rease the density of sample pointsin those regions whi
h 
ontribute most to the integral. This is known asimportan
e sampling. Obviously, this requires some knowledge of the shapeof the integrand before the 
al
ulation starts! An alternative te
hnique,known as adaptive Monte Carlo, seeks to lo
ate these important sub-volumes�on-the-�y� by probing the fun
tion at random points without any priorknowledge of the shape of the fun
tion.9.3 Variational Monte Carlo9.3.1 Evaluating the energyThe Variational Monte Carlo (VMC) te
hnique 
ombines the variationalmethod dis
ussed in previous le
tures with Monte Carlo integration. Our aimis to �nd the best many-body wavefun
tion, by minimizing the expe
tationvalue of the energy:
EV MC =

∫
Ψ⋆ĤΨd3Nr

∫
|Ψ|2 d3Nr

(9.16)



9.3. VARIATIONAL MONTE CARLO 87where Ψ (r1, r2 . . . rN ) is an N -ele
tron many-body wavefun
tion. Note thatmany-body wavefun
tions for ele
trons are ne
essarily more 
omplex thanthe simple produ
t of N single-parti
le wavefun
tions due to the require-ments of the Pauli Ex
lusion Prin
iple. As dis
ussed before in the Hartree-Fo
k method, a simple way of making a wavefun
tion anti-symmetri
 (i.e.of in
orporating the e�e
ts of parti
le ex
hange) is to write it as a Slaterdeterminant :
Ψ =

1√
N !

∣∣∣∣∣∣∣∣∣

φ1 (1) φ1 (2) · · · φ1 (N)
φ2 (1) φ2 (2) · · · φ2 (N)... . . . ...
φN (1) · · · φN (N)

∣∣∣∣∣∣∣∣∣

(9.17)where φi (j) is a single-parti
le wavefun
tion for parti
le j in state i. Asusual, we 
an expand ea
h single-parti
le wavefun
tion in a basis set ofknown fun
tions. The problem is that as the number of parti
les in
reases,it rapidly be
omes impossible to perform the integrations exa
tly using nor-mal quadrature methods. Similarly, if we expand the wavefun
tion in somebasis, it again be
omes rapidly impossible to do exa
t diagonalization of the
orresponding matri
es.We therefore seek an alternative approa
h - that is, we rewrite equation9.16 in a form that is more amenable for Monte Carlo integration:
EV MC =

∫
|Ψ|2

(
Ψ−1ĤΨ

)
d3Nr

∫
|Ψ|2 d3Nr

(9.18)and so if we now de�ne the lo
al energy, EL as:
EL = Ψ−1ĤΨ (9.19)then equation 9.18 is now the same form as equation 9.10 with |Ψ|2 beingthe probability distribution.We now evaluate this integral M times, with di�erent 
on�gurations ofall the ele
trons {ri} ea
h time, whi
h therefore gives us an approximatevalue for the energy:

EV MC ≈ 1

M

M∑

j=1

EL ({ri}) (9.20)where EL is drawn from the distribution of |Ψ|2 .Note that as we are using Monte Carlo integration, and therefore only�nding an approximate value for this integral, it is not unlikely that anygiven value of EL will be lower than the true ground state energy. Thevariational prin
iple, that the expe
tation value of a trial wavefun
tion is



88 CHAPTER 9. QUANTUM MONTE CARLO METHODSonly an upper bound on the true ground state value, will only apply to theaverage value of EV MC .We must therefore generate di�erent sets of sample points, i.e. di�erent
on�gurations. We do this using the Metropolis algorithm:1. For a given 
on�guration {rold} 
al
ulate EL2. Generate a new set of points by moving all the points by a randomamount3. Cal
ulate EL for this new proposed 
on�guration {rnew}4. De
ide whether to a

ept or reje
t this new 
on�guration a

ording tothe Metropolis 
riteria:(a) 
al
ulate the ratio p =
∣∣∣Ψ({rnew})

Ψ({rold})

∣∣∣
2i. generate a uniformly distributed random number ξ between

[0, 1]ii. if ξ < p then a

ept the new 
on�guration, otherwise reje
tit.This algorithm will therefore tend to push the sample points towards theregions of high probability, resulting in importan
e sampling, with a �naldistribution of sample points given by |Ψtrial|2. Note that su

essive valuesof EL will 
ontinue to vary, resulting in an average value with a 
orrespond-ing standard error. Obviously, su

essive 
on�gurations will be 
orrelated,and so 
are must be taken in 
al
ulating the varian
e as su

essive mea-surements will not be independent - otherwise the varian
e will be badlyunderestimated. See �gure 9.2 for an example.The pre
ision of this answer 
an therefore be simply improved by in
reas-ing the number of 
on�gurations sampled.9.3.2 Improving the wavefun
tionTo improve the a

ura
y of our answer we need to be able to improve thefun
tional form of the trial wavefun
tion. In pra
ti
e, we usually seek tooptimise the wavefun
tion by minimizing the varian
e and not the energy,as the varian
e has a known lower bound of zero unlike the energy for whi
hwe do not have a lower bound. There are also e�
ient and stable algorithmsfor minimizing obje
tive fun
tions whi
h 
an be written as a sum of squares.Note that as Ψtrial → Ψexact the average value, EV MC , will de
rease, aswill the instantaneous �u
tuations, i.e. the varian
e will tend to zero. Thisis a result of the zero varian
e prin
iple - sin
e
ĤΨ = EΨ (9.21)
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Figure 9.2: Sket
h of evolution of EL during the 
ourse of a VMC 
al
ulation.The initial phase must be dis
arded, as this 
orresponds to 
on�gurationsthat are not very 
lose to |Ψtrial|2. Only the later points are kept for aver-aging.then for any eigenstate Ψ of the Hamiltonian we must have
Ψ−1ĤΨ = E (9.22)and so the lo
al energy EL is the same at all points in 
on�guration spa
e,and therefore EV MC has zero varian
e if Ψtrial = Ψexact .We 
an attempt to in
lude the e�e
ts of ele
tron-ele
tron 
orrelationby in
luding a Jastrow fun
tion J (α), writing our 
orrelated many-bodywavefun
tion as a produ
t of a single-parti
le wavefun
tion Φtrial (whi
h isnot varied) and a Jastrow fun
tion whi
h 
ontains a few tens of parameters,

{α}:
Ψ (α) = ΦtrialJ (α)We 
an now optimize this wavefun
tion Ψ (α) by minimizing the varian
eof the energy:

σ2
E (α) =

∫
|Ψ (α)|2 (EL (α) − EV MC (α))2 d3Mr

∫
|Ψ (α)|2 d3Mr

(9.23)where EV MC is variational and 
al
ulated as des
ribed above for a �xed
Ψ (α) :

EV MC (α) =

∫
|Ψ (α)|2 EL (α) d3Nr

∫
|Ψ (α)|2 d3Nr

(9.24)We therefore start the VMC 
al
ulation with an approximate trial wave-fun
tion from some less a

urate ele
troni
 stru
ture method, su
h asHartree-Fo
k, or Density Fun
tional Theory and then evaluate EV MC for an initial



90 CHAPTER 9. QUANTUM MONTE CARLO METHODSset of Jastrow parameters {α0} to derive a value for σ2
E (α0). We then ad-just the parameters {α} and re-run the VMC to get a generate a new set of
on�gurations and a new value for σ2

E (α). This is then repeated until wehave minimized σ2
E (α) whereupon the wavefun
tion is as good as it 
an begiven the fun
tional form of the trial wavefun
tion.9.4 Di�usion Monte CarloThe a

ura
y limitations of VMC 
an be largely over
ome by the Di�usionMonte Carlo (DMC) te
hnique. This has a quite di�erent theoreti
al foun-dation, whi
h we shall not dis
uss in any detail here. In pra
ti
e, it is oftenused with VMC as a ��rst-stage� 
al
ulation! We start by 
onsidering thetime dependent S
hrödinger equation in imaginary time, τ = it:

−1

2
∇2Ψ + V Ψ = − ∂Ψ

∂ (it)
(9.25)whi
h we 
an therefore imagine splitting into two parts - a di�usion equation:

−1

2
∇2Ψ = −1

2

∂Ψ

∂τ
(9.26)and a rate equation:

V Ψ = −1

2

∂Ψ

∂τ
(9.27)We 
an then simulate the solution of equation 9.25 using a distribution ofwalkers. Ea
h walker is a point in 3N -dimensional 
on�guration spa
e, whi
hmoves with a 
ombination of dire
ted drift (equation 9.27) and di�usivemotion (equation 9.26). The number of walkers is not 
onstant - they maybe killed o� in regions of high V or multiplied in regions of low V . The netdistribution of walkers will then represent Ψ. This is shown s
hemati
ally in�gure 9.3.One major problem is that Ψ is not positive-de�nite, and therefore doesnot make a very good probability distribution! The rate equation is alsobadly behaved. The solution to both of these problems is to work with adi�erent probability distribution:

f (r1, r2 . . . rN ; τ) = Ψ (r1, r2 . . . rN ; τ) Φtrial (r1, r2 . . . rN ) (9.28)where Φtrial (r1, r2 . . . rN ) is a �xed trial wavefun
tion, whi
h is typi
ally the�nal optimized trial wavefun
tion from a VMC 
al
ulation, and Ψ is the�true� unknown many-body wavefun
tion. By �xing this trial wavefun
tion,whi
h is already a good approximation to the �true� wavefun
tion, but al-lowing it to be multiplied by another fun
tion a
tually has the e�e
t of only
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Figure 9.3: Sket
h of DMC in a
tion: a simple initial wavefun
tion Ψinit isrepresented by an initial density of walkers. The walkers are then movedforwards in imaginary time τ , with some being killed o� in regions where Vis high and so Ψ ought to be small, and multiplied in regions of low V . The�nal density of walkers is then a better estimate of the wavefun
tion, Ψfinal.
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h the result has a zero value. That is, we have�xed the nodes of the resulting probability distribution, whi
h stops walkers
rossing over from regions of positive Ψ to negative Ψ. This is known as the�xed-node approximation.We then 
al
ulate the energy as:
EDMC =

∫
ΨΦtrialELd3Nr∫
ΨΦtriald3Nr

(9.29)
≈ 1

M

M∑

j=1

EL ({ri}) (9.30)where the lo
al energy, EL is as before.9.5 ResultsThe limiting fa
tor in the a

ura
y of a VMC 
al
ulation is the a

ura
y ofthe trial wavefun
tion. This must be kept �xed as it is used in the Metropolisalgorithm to guide the sample points towards the most important regions toyield an a

urate integration result. The pre
ision of the VMC 
al
ulation
an be arbitrarily in
reased by simply running the 
al
ulation for longer,generating more samples and hen
e redu
ing the standard error in the results.With DMC, the only signi�
ant assumption, whi
h is therefore the limitingfa
tor to the a

ura
y of a DMC 
al
ulation, is the �xed-node approximation.Note that both VMC and DMC 
an be applied to ex
ited states as wellas the ground state, and gives a good des
ription of a range of properties,not just the energy.As an example of the abilities of these methods, 
onsider table 9.1. Herewe 
onsider the level of treatment of the 
orrelation energy, Ecorr, whi
h
an be 
onsidered as the di�eren
e between the exa
t ground state energy(within the Born-Oppenheimer approximation) and the Hartree-Fo
k en-ergy be
ause, as previously dis
ussed, Hartree-Fo
k has no treatment ofdynami
 
orrelation. We 
an put some treatment of dynami
 
orrelationinto Hartree-Fo
k by using multiple determinants as in the Con�gurationIntera
tion method. Here, we in
lude results from the Coupled Cluster SDTmethod (CCSDT) (i.e. trun
ated Con�guration Intera
tion by 
onsideringall determinants with single, double and triple ex
itations but no higher de-terminants). This is 
onsiderably more expensive than single determinantHartree-Fo
k and produ
es a 
onsiderable improvement. Note that the 
or-relation energy is not a

essible as su
h in DFT. The results for VMC andDMC 
al
ulations show the obvious advantages of these methods. We alsoin
lude in this table a simple des
ription of the s
aling of the various methodswith in
reasing system size (N ele
trons).
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alingHF 0 O
(
N4

)DFT N/A O
(
N3

)CCSDT ~75% O
(
N8

)VMC ~85% O
(
N3

)DMC ~95% O
(
N3

)Table 9.1: Ability of di�erent ab initio methods to treat dynami
al ele
tron-ele
tron 
orrelation, and the s
aling of the method with system size.Method C Si GeDFT 7.58 4.84 4.02VMC 7.36±0.01 4.48±0.01 3.80±0.02DMC 7.46±0.01 4.63±0.02 3.85±0.02Expt 7.37 4.64 3.85Table 9.2: Cohesive energy of di�erent elemental semi
ondu
tors in eV/atom.As another example, in table 9.2 we show the 
ohesive energies, Ecoh, ofa range of simple semi
ondu
tors (the 
ohesive energy is the binding energyper atom in the bulk material). Whilst the DFT results are already quitea

urate (typi
ally within 5% error), the QMC results are even better. Notethat this is a 
al
ulation that HF has a lot of di�
ulty with, typi
ally gettingup to 50% error!However, there is a very high 
omputational 
ost of 
al
ulating (a verya

urate value for) the energy using QMC te
hniques. This may be o�setby implementing VMC and DMC on a massively parallel 
omputer, whi
his straightforward to do - more so than HF or DFT! Consequently, QMCte
hniques have only been taken seriously sin
e the beginning of the 1990'swith the advent of su�
iently powerful parallel 
omputers, and even nowhave not been widely adopted.One de�
ien
y in any QMC method, that has not been highlighted untilnow, is that it is not possible to 
al
ulate QM for
es analyti
ally whi
h makesoptimizing the geometry of the atoms very di�
ult. For this reason, thereis still 
onsiderable interest in less rigorous, less expensive te
hniques, su
has Hartree-Fo
k or Density Fun
tional Theory.9.6 Final 
ommentsA few �nal points to highlight:
• Monte Carlo integration is mu
h more e�
ient than either uniform orGaussian quadrature in higher dimensions.
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• VMC is an e�
ient te
hnique for evaluating the energy of a givenmany-body wavefun
tion.
• VMC may also be used to optimize the wavefun
tion via the Jastrowfun
tion.
• Di�usion Monte Carlo is more a

urate than VMC but is signi�
antly
omputationally more expensive.
• Neither DMC nor VMC use the independent-ele
tron approximationand as su
h are �true� many-body methods, whi
h may signi�
antlyimprove the a

ura
y of any experimental observables 
al
ulated.9.7 Further reading
• QMC in �Computational Physi
s� by J.M. Thijssen, 
hapter 12


