
High Performance Computing
- Advanced OpenMP

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview
• History of OpenMP
• Advanced OpenMP

– V1: synchronization and sections
– V2: nested parallelism and workshare
– V3: tasks
– V4+ using accelerators, etc

• OpenMP Tips and Gotchas
• OpenMP Implementations

History of OpenMP
• Began as proprietary SGI directives
• Became open standard in 1997

– OpenMP v1.0 (Fortran = 1997, C/C++ in 1998)
• PARALLEL, PARALLEL DO, PRIVATE/SHARED/REDUCTION
• OMP_GET_NUM_THREADS etc
• (covered all this briefly in previous OpenMP lecture)
• Also synchronization constructs such as

MASTER/CRITICAL/BARRIER etc
• Additional worksharing constructs such as SECTIONS and

SINGLE

OpenMP Thread Model
• Program execution begins with single master thread
• Parallel construct creates team of threads (which

includes the master) using fork-join model

picture from
Wikipedia

Synchronization Constructs

• MASTER … END MASTER
– Enclosed code is only executed by master thread
– Other threads skip
– No synchronization at end
– No implied BARRIER at start or end

• SINGLE … END SINGLE
– Execute on one thread but not necessarily master
– Implies synchronization at start

Synchronization Constructs II
• CRITICAL … END CRITICAL

– Enclosed code is only executed by one thread at
a time

– A thread will wait at start until no other thread is
executing same block

– No synchronization at end
• BARRIER (single statement)

– Synchronizes all threads in a team
– Must be reached by all or none of the threads

Synchronization Constructs III
• ATOMIC

– Following single statement has protected memory
update so that cannot have race condition

– i.e. prevents multiple threads writing to same
memory location

• FLUSH
– Synchronization of all pending read/ writes to

memory (or specified list of vars) for all threads
– Often implicit, e.g. BARRIER, PARALLEL, END

DO etc but not with MASTER or WORKSHARE

SECTIONS
• Specify a parallel block, wherein each

designated SECTION is executed once
by one thread in team

!$OMP SECTIONS [clause …]
!$OMP SECTION
… code …

!$OMP END SECTION
!$OMP SECTION

… code …
!$OMP END SECTION
!$OMP END SECTIONS [NOWAIT]

• Optional clause on entry
specifies PRIVATE,
REDUCTION etc.

• Arbitrary number of
SECTION … END
SECTION blocks

• Optional NOWAIT
means no barrier – any
thread can continue
immediately

Structure of OpenMP

picture from Wikipedia

History of OMP (II)
• Began as proprietary SGI directives
• Became open standard in 1997

– OpenMP v1.0 (Fortran = 1997, C/C++ in 1998)
• PARALLEL, PARALLEL DO, PRIVATE/SHARED/REDUCTION
• OMP_GET_NUM_THREADS etc
• Also synchronization constructs such as

MASTER/CRITICAL/BARRIER etc

– OpenMP v2.0 (Fortran = 2000, C/C++ in 2002)
added

• NESTED parallelism
• WORKSHARE, PARALLEL WORKSHARE
• V2.5 (unified Fortran and C/C++ in 2005)

Nested Parallelism
• Can have a PARALLEL construct inside

another one
– Only if supported by this implementation

• Use OMP_GET_NESTED() to test (returns true/false
– also SET version available)

• Also OMP_NESTED environment variable
– If not supported then code only gets 1 thread

per nested region i.e. no additional parallelism
– Can create arbitrary number of new teams of

threads

WORKSHARE
• “The WORKSHARE directive divides the work of

executing the enclosed code into separate units of work,
and causes the threads of the team to share the work of
executing the enclosed code such that each unit is
executed only once. The units of work may be assigned to
threads in any manner as long as each unit is executed
exactly once.”

!$OMP WORKSHARE
… block of code …

!$OMP END WORKSHARE [NOWAIT]

• The block of code is
divided up between
threads according to given
rules

• Optional NOWAIT means
no barrier – any thread can
continue immediately

WORKSHARE example
INTEGER, DIMENSION(1:M,1:N) :: A,B,C,D
…
!$OMP PARALLEL WORKSHARE

A=B+C
WHERE (C/=0) D=1/C

!$OMP END PARALLEL WORKSHARE

• Can use WORKSHARE over array
operations including WHERE and FORALL

• Can execute iterations in any order
• Distribution of threads up to compiler

History of OpenMP (III)
• Became open standard in 1997

– OpenMP v1.0 (Fortran = 1997, C/C++ in 1998)
• PARALLEL, PARALLEL DO, PRIVATE/SHARED/REDUCTION
• OMP_GET_NUM_THREADS etc
• MASTER/CRITICAL/BARRIER etc

– OpenMP v2.0 (Fortran = 2000, C/C++ in 2002)
• NESTED parallelism
• WORKSHARE, PARALLEL WORKSHARE
• V2.5 (unified Fortran and C/C++ in 2005)

– OpenMP v3.0 (2008)
• TASKS

TASKS
• TASK … END TASK defines a block of code

which is packaged up for later execution
– Some thread in the parallel region will execute

the task at some point in future
– Has an overhead but more efficient than forking

a POSIX thread as OpenMP threads stay alive
after join

• Tasks can be nested and by default, the
parent task will not wait for children to finish
unless use TASKWAIT directive

Linked List Example
p = listhead;
while (p) {

process(p);

p=next(p);
}

• Classic sequential linked list
traversal

• Do some work on each item
in list

• Assume that items can be
processed independently

• How to parallelize? No
loops!

Parallel pointer chasing
#pragma omp parallel
{
#pragma omp single private(p)

{
p = listhead;

while (p) {
#pragma omp task firstprivate(p)

{

process(p);
}

p=next(p);
}

}

}

Only 1 thread
packages the tasks
– others free to do
the work

TASK includes
code and data –
here we make a
copy of p when the
task is packaged as
variable might be
out of scope at time
of execution.

End of parallel
region implies a
barrier and so
ensures all tasks
have completed.

Parallel pointer chasing on multiple lists
#pragma omp parallel
{
#pragma omp for private(p)

for (int i=0l; i<numlists; i++){
p = listheads[i];

while (p) {
#pragma omp task firstprivate(p)

{

process(p);
}

p=next(p);
}

}

}

All threads package
the tasks

Using multiple
linked lists so can
do parallel creation
of tasks
NB packaging
thread might decide
to execute a task
without packaging it
at all! End of parallel

region implies a
barrier and so
ensures all tasks
have completed.

TASKS and data sharing
• Default rule for data sharing is firstprivate

to ensure value set at creation time
• OpenMP v3.0 changes some basic rules:

– “private” now means per task not per thread
– “shared” means “use existing storage”

whereas “private” means “make new copy”
• Variables shared in enclosing parallel

context are shared in the task

Nested tasks
• Data sharing can be

complicated as here:
– parent task has private B

so each child task shares
this value.

– If parent task finishes then
B may be deallocated
which is trouble for
children!

– Hence need taskwait
before exit …

!$OMP task private(B)
… B=…
!$OMP task shared(B)

… compute(B) …
!$OMP end task

…
!$OMP taskwait
!$OMP end task

Using TASKS
• Very powerful idea but:

– Data scoping rules can be tricky – using
default(none) to be explicit is a good idea!

– Bigger overhead than using “parallel do” etc
– Best if user controls number & granularity of task

• NB BARRIER affects threads not tasks and
must make sure all threads in team reach it,
so do NOT put inside a task! Ditto workshare.

• Can put parallel regions inside as nesting.

History of OpenMP (IV)
• Became open standard in 1997

– OpenMP v1.0 (Fortran = 1997, C/C++ in 1998)
– OpenMP v2.0 (Fortran = 2000, C/C++ in 2002)
– OpenMP v3.0 (2008)
– OpenMP v4.0 (2013)

• Support for SIMD and accelerators, extensions to TASKS …
• V4.5 (2015) adds TASKLOOP

– OpenMP v5 (2018)
• Full support for accelerators

SIMD

• Many compilers have proprietary directives
to aid vectorization and generate SIMD code

• OpenMP v4 gives standard set
– shows loop should be SIMDized
– execute iterations in SIMD chunks
– Each chunk executed concurrently over SIMD
– NOT divided across threads

SIMD control
!$OMP PARALLEL DO SIMD [clauses]
…

!$OMP END PARALLEL DO SIMD

• In addition to usual clauses (e.g. private,
shared, etc) can also have
– SAFELEN(length) – max no. of iterations in chunk
– ALIGNED – specify byte alignment of vars

• Also DECLARE SIMD directive to generate
SIMDized version of functions, etc

Accelerators
• Similar to OpenACC directives but

– Supports more than just loops (only option
in OpenACC v1.0)

– Less reliance on compiler to do the work
• Non-proprietary

– Unlike CUDA
• More than GPUs

– Support for Xeon Phi – preferred by Intel

Accelerator Model
• One host device with multiple target devices

– device = execution engine with local storage –
can have multiple but all must be of same type

– device data environment = data associated with
target data or target region

– TARGET constructs control how data and code
is offloaded to a device

– Code in target region executes on the device
– Executes in serial by default– can add extra

OpenMP for device-level parallelism

Accelerator Directives
• TARGET DATA – move data (either

to/from device) but does not execute code
• TARGET UPDATE – updates data during

a target data region
• DECLARE TARGET – compiles version of

subprogram to execute on device
• MAP clause – specifies how variables are

accessible – can be TO/FROM/TOFROM

Accelerator Example
#pragma omp target map(to:B,C) map(tofrom:sum)
#pragma omp parallel for reduction(+:sum)
for (int i=0; i<N; i++){

sum += B[i]+C[i];
}

• The ‘parallel for’ will execute on target device
– Arrays B,C will be read-only
– Sum will be read-write

• NB target region is blocking – thread must
wait until device completes. Can embed
targets inside tasks to be asynchronous …

OpenMP v4 and GPUs
• What if multiple GPUs? Many multiprocessors!

– OpenMP synchronization not possible between
multiprocessors

– Solution is the TEAMS construct to create multiple
master threads to execute in parallel, spawn
parallel regions, but not synchronize or
communicate with each other

– Use DISTRIBUTE construct to spread iterations of a
parallel loop across teams

TEAMS example
#pragma omp target teams distribute parallel for \
map(to:B,C), map(tofrom:sum), reduction (+:sum)
for (int i=0; i<N; i++){

sum += B[i]+C[i];
}

• This now distributes iterations across
multiprocessors AND across threads
within a multiprocessor!

• NB Can have multiple GPUs or MICs but
all must be of same type!

OpenMP Tips and Gotchas
• There is an overhead to executing a parallel region

– Typically 10-100 microseconds
– Hence region must contain enough work!

• Not all loops have independent iterations which can
be OpenMP parallelized
– Try running in reverse order & see if get same result!

• PRIVATE variables are uninitialized on entry
– Can use FIRSTPRIVATE instead but probably bug
– Always use DEFAULT(NONE) to force explicit

• REDUCTION variables must be initialized before
OMP section as original value added to on exit …

OpenMP and Scheduling

• Default schedule is compiler dependent
– Best to always specify – do not assume STATIC

• Hard to tune chunksize for static/dynamic
– Often more robust to tune the “number of

chunks per thread” and derive chunksize from
that

– Chunksize expression must be integer but need
not be constant or compile-time expression

OpenMP and huge loops
• What if loop has many lines and lots of

variables?
• Best to refactor loop body into a

subprogram
– Can then make many variables local and

hence private by default
– And only pass in those that are required so

easier to spot and make shared/private etc
– Much easier to test and correctly parallelize!

OpenMP and Static Variables
• Compiling a working serial code with

OpenMP caused it to break – why?
– Most likely your code assumed that the

contents of a local variable were preserved
– OpenMP forces all locals to be static on stack

(not heap) and have separate stack per thread
– Need to use SAVE or static correctly and

consider if the variables should be
THREADPRIVATE

– Common issue with ‘first pass’ code – may
need to move it outside the parallel region

OpenMP Implementations
• No full v5 yet – see supported versions at

https://www.openmp.org/resources/openmp-compilers-tools/

• gcc/gfortran
– Activate by –fopenmp flag
– OpenMP v4.5 since v6

• Full version in C/C++ but only partial Fortran until v11
– Partial OpenMP v5 since v9

• icc/ifort
– Activate by –openmp flag
– v17.0 for OpenMP v4.5
– v2021.1 has partial OpenMP v5.0

Further Reading
• Chapter 6 of “Introduction to High

Performance Computing for Scientists and
Engineers”, Georg Hager and Gerhard
Wellein, CRC Press (2011).

• OpenMP at http://openmp.org includes lots
of tutorials and guides

• Nice tutorial/guide at
https://computing.llnl.gov/tutorials/openMP/

• Also guides on the HPC website …

