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Overview

• Why Benchmark?
• LINPACK
• HPC Challenge
• STREAMS
• SPEC
• Custom Benchmarks



Why Benchmark?
• How do you know which computer to buy?

– Might be based on a thorough knowledge of 
the hardware specification and what all the bits 
mean and how well they perform

– But what if it is new hardware?
– And what does “how well they perform”

mean?
• How do you compare two very different 

computers? 
– E.g. vector vs. MPP?
– E.g. AMD vs. Intel vs. IBM vs. …?



Pentium 3 vs. 4
• Which was faster, a 1.2 GHz Pentium 3 or a 3 GHz 

Pentium 4?
• The P4 had a 31 stage instruction pipeline 

(‘prescott’ core) vs. 10 in the P3.
– Latency of the P4 pipeline was actually higher!
– If a section of code continuously stalled the pipeline, it 

would run at ~ 0.12 GFLOPS on the P3 and ~ 0.10 
GFLOPS on the P4!

• Old example but principle always true – best 
choice of chip depends on the code!

• Benchmarks aim to give a systematic way of 
making comparisons based on “real world” codes.



Ranking Computers
• Top500 – a very popular list of the most 

powerful computers in the world
– How are they ranked?
– Already seen it in earlier hardware lectures
– Based on the LINPACK benchmark
– But what does that actually tell you?

• Need to understand what a particular 
benchmark actually measures and under 
what conditions
– Then can determine whether or not this 

benchmark has any relevance to you and the way 
you intend to use that computer!



Useless Benchmarks
• Clock Speed

– Might give some indication of relative performance 
within a given processor family

– Useless between different processor families
• My old 666 MHz Alpha EV 6/7 completed a CASTEP 

calculation in about the same time as a 1.7 GHz P4 Xeon!
• Different architectures do different amount of work per clock 

cycle, RISC vs. CISC, etc.
– Even between different processor generations from 

a given manufacturer there can be surprises
• e.g. early Pentiums with higher clock speeds (up to 150 

MHz) were slower in many “real-world” tests compared to 
the 486s (at 66 MHz) they were intended to replace – cache 
changes?

• Ditto 1.2 GHz Pentium 3 vs 3 GHz Pentium 4



MIPS – Another Useless Measure
• Millions of Instructions per Second

– (or Meaningless Indicator of Processor Speed)
– One of the earliest indicators of speed
– Closely related to clock speed
– Which instruction? 

• On some architectures, a given instruction might take 20 
clock cycles whereas equivalent instruction may take 
only 1 or 2 on a different architecture

• What if there is no hardware support for a given 
instruction? CISC vs. RISC?

– Only meaningful within a processor family, e.g.  
Intel used to promote the iCOMP benchmark but 
has now retired it in favour of industry standard 
benchmarks.



MFLOPS – Another Useless Measure
• Millions of FLoating-point Operations Per Second

– Definition includes FP-adds and multiplies
– What about square roots and divides? Some do it in 

hardware, others in microcode.
– What about fused multiply-adds as in some CPUs? Can 

get multiple FLOPS per function unit per clock cycle!
– Peak MFLOPS is pretty meaningless – very few codes 

will achieve anything like this due to memory 
performance.

• So need a benchmark based upon some real-life 
code. Something that will combine raw CPU speed 
with memory performance. Something like …



LINPACK
• Actually a LINear algebra PACKage – a 

library not a benchmark.
– But the developers used some of the routines, to 

solve a system of linear equations by Gaussian 
elimination, as a performance indicator

• as the number of FLOPs required was known, the 
result could be expressed as average MFLOPS rate

• LINPACK tested both floating-point performance and 
memory, and due to the nature of the algorithm, was 
seen as a “hard problem” which could not be further 
speeded-up – hence seen as a useful guide to real 
scientific code performance – hence benchmark



More LINPACK
• LINPACK test comes in various forms:

1. 100x100 matrix, double precision, with strict use of 
base code, can optimise compiler flags

2.1000x1000 matrix, any algorithm, as long as no 
change in precision of answers

• But whilst in 1989 the 100x100 test was useful, 
the data structures were ~ 320 kB, so once 
cache sizes exceeded this, it became useless!

• Library lives on as LAPACK – see later lectures



LINPACK lives!
• LINPACK “Highly Parallel Computing”

benchmark used as basis for Top500 ranks
– Vendor is allowed to pick matrix size (N)
– Information collected includes:

• Rpeak – system peak GFLOPS
• Nmax – matrix size (N) that gives highest GFLOPS for a given 

number of CPUs. 
• Rmax – the GFLOPS achieved for the Nmax size matrix 
• N½ - matrix size that gives Rmax/2 GFLOPS

– Interest in all values – for instance, Nmax reflects 
memory limitations on scaling of problem size, so high 
values of Nmax and N½ indicate system best suited to 
very scalable problems

– Big computers like big problems!



Problems with LINPACK

• Very little detailed information about the 
networking subsystem
– A key factor in modern cluster computers

• Hence the HPC Challenge benchmark:
– a combination of LINPACK/FP tests with 
– STREAM, 
– parallel matrix transpose, 
– random memory access, 
– complex DFT, 
– communication bandwidth and latency.



STREAM
• STREAM is memory speed benchmark (OMP)

– Instead of an aggregate overall system performance in a 
single number, focuses exclusively on memory bandwidth

– Measures user-sustainable memory bandwidth (not 
theoretical peak!), memory access costs and FP speed. 

– A balanced system will have comparable memory 
bandwidth (as measured by STREAM) to peak MFLOPS 
(as measured by LINPACK 1000x1000)

– Machine balance is peak FLOPS/memory bandwidth
• Values ~ 1 indicate a well-balanced machine – no need for cache
• Values » 1 needs very high cache hit rate to achieve useful 

performance  
• Useful for all systems – not just HPC – hence popularity
• See http://sites.utexas.edu/jdm4372/ (the creator) for latest ...



• Selection from STREAM Top20 (last updated 2017)
Machine Ncpu MFLOPS MW/s Balance
Cray_T932 (Vector ‘96) 32 57600 44909 1.3
NEC SX-7 (Vector ‘03) 32 282419 109032 2.6
SGI Altix 4700 (ccNUMA ‘06) 1024 6553600 543771 12.1
Fujitsu SPARC M10-45 (SMP ‘13) 1024 24576000 500338 49.1
Intel Xeon Phi SE10P (ACC ‘13) 61 1073600 21833 49.2
SGI UV 3000 (ccNUMA ‘15) 3072 103219200 1728273 59.7

• Selection STREAM PC-compatible (2017)
Machine Ncpu MFLOPS MW/s Balance
486-DX50 (‘95) 1 10 2.9 3.4
AMD Opteron 248 (‘03) 1/2 10666 393 / 750 11.2 / 11.7
Intel Core 2 Quad 6600 (‘07) 2/4 19200 / 38400 714 / 664 26.9 / 57.8

Intel Core i7-2600 (’11) 2/4 27200 / 54400 1770 / 1722 15.4 / 31.6

Intel Core i7-4930K (‘13) 1/2/  
… 12

13610 * Ncpu 1912 / 2500 / 
… 3797

7.1 / 10.9 
… 43.0

Raspberry Pi _2B (‘15) 1 594 70.5 8.4



SPEC Benchmarks
• The Systems Performance Evaluation Cooperative (SPEC) 

is a not-for-profit industry body 
– SPEC89, SPEC92, 95, 2000 and 2006 have come and gone
– SPEC2017 still current (problems with Win Vista …)
– SPEC attempts to keep benchmarks relevant 
– Each benchmark is a mixture of C and FORTRAN codes, covering 

a wide spread of application areas
– SPECmark was originally the geometric mean of the 10 codes in 

SPEC89 – limited scope.
– Later versions had more codes, with some codes focusing on 

integer and others on FP performance, hence now get separate 
SPECfp2006 and SPECint2006.

– Also a “base” version of benchmark without vendor tweaks and 
aggressive optimisations to stop cheating.

– Also a “rate” version for measuring parallel throughput.
– Additional benchmarks for graphics, MPI, Java, Cloud, etc …



SYSmark 2018
• Another commercial benchmark, widely used 

in the mainstream PC industry, produced by 
BAPCo
– Updated every 2 years or so until Windows Vista 

caused major problems – stuck at 2007 until 
2014. Now cross-platform ...

– Based upon  typical “office” productivity and 
internet content creation applications

– Useful for many PC buyers and hence 
manufacturers, but not for HPC

– New variant for tablets in 2017, mobiles in 2018



Choosing a Benchmark
• Have discussed only a small selection of the 

available benchmarks – see 
http://www.netlib.org/benchmark for more!

• Why so many? 
– No single test will tell you everything you need to 

know – but can get some idea by combining data 
from different tests as done in HPC Challenge

– Tests become obsolete over time due to hardware 
developments – c.f. the LINPACK 100x100

– And also software developments – particularly 
compilers. Vendors target compiler development to 
improve their performance on a test – hence need to 
regularly update & review the benchmark contents

– Hence some industrial benchmarks keep code secret



Creating Your Own 
Benchmark

• Why?
– Because the best test that is relevant to you as a 

HPC user, is how well your HPC codes run!
– If you are responsible for spending a large sum 

(£10k - £10m) then you want to get it right!
– Maybe your codes need special library support? 

Maybe your codes will test the compiler/ hardware in 
a non-standard way? Lots of I/O or graphics? 

– Maybe your tests will expose a bug in the compiler?

• NB Unlikely to be able to do this when buying a 
“standard PC”!



Making A Benchmark
• Need it to be a representative test for your needs

– But not require too long to run (1 hour max)
– Might require extracting a kernel from your code – the 

key computational features – and writing a simple 
driver.

– Test of CPU and memory or other things
• I/O? Graphics? Throughput? Interactive use?

• Need it to be repeatable and portable
– Will need to average times on a given machine
– Repeat with different compiler flags
– Repeat on different machines
– Automate the building/running/analysis of results?



Beware The Compiler!
• By extracting a computational kernel and stripping 

the code down, you may create problems
– A clever compiler might be able to over-optimise your 

kernel code in a way that is not representative of the 
main code

– Need to put extra obstacles in the way to confuse the 
compiler – not something you normally want to do!

• E.g. executing a given loop multiple times to get a reasonably 
large enough time to measure may be self-defeating if the 
compiler can spot this and just execute the loop once!

– Also beware the effects of cache
• If you repeat something multiple times, the first time will incur the 

cache-miss cost, whilst the other iterations might all be from 
cache and hence run disproportionably faster! 

• Need to flush cache between loops somehow.



Bad Benchmarks
CPU benchmark

# total number of flops 
required is 10000
do  I = 1,10000
x = y*z
end do

Any good compiler will 
recognise that a single trip 
through the loop with give 
the same result, and 
hence remove the loop 
entirely.

Memory benchmark
// repeat the benchmark
// 100 times for good 
// stats
for (i=0;i<100;i++){

t = 0.0;
for (j=0;j<50000){

t += A[j]*B[j];
}

}

A and B may easily fit in cache.
After first loop, code measures
cache not memory performance.



Benchmarks and Vendors
• These days, profit margins on most HPC machines 

are very small
– Hence vendors are generally reluctant to give you much 

support in porting & running your benchmarks – would 
rather you stick to published data

• i.e. the benchmarks that they like!

– Not true for big computer tendering activities such as 
ARCHER-2

• Suddenly a lot of vendor interest in porting and optimising academic 
codes! CASTEP has been one of the benchmarks since HPCx ...

– Hence interest in events such as Computing Insights UK 
(formerly Machine Evaluation Workshop), where many HPC 
vendors can display their latest wares, and where users can 
run their own small (~15 min) benchmarks on many 
different systems



CIUK 2021 Presentations
• Martyn Guest for “user benchmarking” with 

computational chemistry kernels:
– Uses both “synthetic” and “end-user” benchmarks
– E.g. stripped down “kernel” or a mix of standard apps
– Focus on multi-core systems – both CPU and whole 

system to look at effect of networking etc.
– Compare job with same number of cores, and also same 

number of nodes, with different CPUs etc
– LOT of details in 78 slides in 45 mins … 

https://epubs.stfc.ac.uk/work/51539351
– Also available as a Zoom recording

https://epubs.stfc.ac.uk/work/51539351
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Summary  ± Core-to-Core Comparisons
• A Core-to-Core comparison suggests on average that the Intel Ice 

Lake 8358 2.6 GHz SKU outperforms all others, although relative 
performance is sensitive to effective use of the AVX instructions.

• Low utilisation of AVX-512 leads to weaker performance of the SKL, 
CSL and Ice Lake CPUs and better performance of the Rome & 
Milan-based clusters e.g. DLPOLY, LAMMPS

• With significant AVX-512 utilisation, Ice Lake Lake systems outperform 
the AMD Milan systems in core-to-core comparisons e.g. Gromacs, 
notwithstanding the use of AVX2-256. 

• Modest improvement at best on moving from Skylake to Cascade 
Lake systems ± more dramatic improvement moving to Ice Lake. 

• Strong Performance of the CSL Gold  6248 system (2.5Ghz), but 
surprisingly weak performance from the CSL Platinum 8280 (2.7GHz)

• Improved CPU performance of Spartan 7742 cluster across all 
DSSOLFDWLRQV�FRPSDUHG�WR�&,8.¶���ILQGLQJV��7XUER�0RGH��

• Baselined across P100 and V100 NVIDIA GPU performance.
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Summary  ± Node-to-Node Comparisons

• Given superior core performance, a Node-to-Node comparison 
typical of the performance when running a workload shows the Ice 
Lake 8358 delivering superior performance compared to (i) the SKL 
Gold 6148 (64 cores vs. 40 cores) by a factor of between 1.6 ± 2.3 
across all applications.

• The AMD Rome 7702 and Milan 7713 (128 cores) along with the 
Intel CSX-AP 9242 (96 cores) are the dominant systems given the 
³KLJK´�FRUH�FRXQWV��H�J���*520$&6�DQG�*$0(66-UK.

• The comparison with the SMD Rome-based Spartan 7742-based 
cluster now resolved following the previous reported CIUK 
performance issues (attributed to Turbo mode)

• Pricing ± remains of course a key issue, but lies outside the scope of 
this presentation. 



Acceptance Tests
• Having benchmarked the various machines 

available, it is a good idea to write an “acceptance 
test” into the contract for the final machine
– When we bought Erik we specified that the machine was 

to be able to run CASTEP and AMBER non-stop for 8 
days on 16 nodes each, without fault.

– This was primarily to test the compilers and the thermal 
stability of the machine

• Had heard “horror stories” of other clusters that would over-heat 
and fail/shutdown after less than 1 day of running

• Problem eventually traced to faulty RDRAM chips

– Same on Edred – took over 4 months to pass
• Problems due to hardware / supplier chain / software stack

– Hence now our standard approach …



Further Reading
• Chapter 15 & 16 of “HPC (2nd edition)”, Kevin 

Dowd and Charles Severance, O'Reilly (1999).
• Top500 at https://www.top500.org
• LINPACK at https://www.top500.org/project/linpack
• HPC Challenge at https://icl.cs.utk.edu/hpcc
• STREAM at http://sites.utexas.edu/jdm4372/
• SPEC at https://www.spec.org
• SYSmark2018 at https://bapco.com/products
• DLPOLY Benchmarking paper –

https://doi.org/10.1080/08927022.2019.1603380  
• Computing Insight UK – see 

https://www.scd.stfc.ac.uk/Pages/CIUK2021.aspx


