
High Performance Computing
- Benchmarks

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview

• Why Benchmark?
• LINPACK
• HPC Challenge
• STREAMS
• SPEC
• Custom Benchmarks

Why Benchmark?
• How do you know which computer to buy?

– Might be based on a thorough knowledge of
the hardware specification and what all the bits
mean and how well they perform

– But what if it is new hardware?
– And what does “how well they perform”

mean?
• How do you compare two very different

computers?
– E.g. vector vs. MPP?
– E.g. AMD vs. Intel vs. IBM vs. …?

Pentium 3 vs. 4
• Which was faster, a 1.2 GHz Pentium 3 or a 3 GHz

Pentium 4?
• The P4 had a 31 stage instruction pipeline

(‘prescott’ core) vs. 10 in the P3.
– Latency of the P4 pipeline was actually higher!
– If a section of code continuously stalled the pipeline, it

would run at ~ 0.12 GFLOPS on the P3 and ~ 0.10
GFLOPS on the P4!

• Old example but principle always true – best
choice of chip depends on the code!

• Benchmarks aim to give a systematic way of
making comparisons based on “real world” codes.

Ranking Computers
• Top500 – a very popular list of the most

powerful computers in the world
– How are they ranked?
– Already seen it in earlier hardware lectures
– Based on the LINPACK benchmark
– But what does that actually tell you?

• Need to understand what a particular
benchmark actually measures and under
what conditions
– Then can determine whether or not this

benchmark has any relevance to you and the way
you intend to use that computer!

Useless Benchmarks
• Clock Speed

– Might give some indication of relative performance
within a given processor family

– Useless between different processor families
• My old 666 MHz Alpha EV 6/7 completed a CASTEP

calculation in about the same time as a 1.7 GHz P4 Xeon!
• Different architectures do different amount of work per clock

cycle, RISC vs. CISC, etc.
– Even between different processor generations from

a given manufacturer there can be surprises
• e.g. early Pentiums with higher clock speeds (up to 150

MHz) were slower in many “real-world” tests compared to
the 486s (at 66 MHz) they were intended to replace – cache
changes?

• Ditto 1.2 GHz Pentium 3 vs 3 GHz Pentium 4

MIPS – Another Useless Measure
• Millions of Instructions per Second

– (or Meaningless Indicator of Processor Speed)
– One of the earliest indicators of speed
– Closely related to clock speed
– Which instruction?

• On some architectures, a given instruction might take 20
clock cycles whereas equivalent instruction may take
only 1 or 2 on a different architecture

• What if there is no hardware support for a given
instruction? CISC vs. RISC?

– Only meaningful within a processor family, e.g.
Intel used to promote the iCOMP benchmark but
has now retired it in favour of industry standard
benchmarks.

MFLOPS – Another Useless Measure
• Millions of FLoating-point Operations Per Second

– Definition includes FP-adds and multiplies
– What about square roots and divides? Some do it in

hardware, others in microcode.
– What about fused multiply-adds as in some CPUs? Can

get multiple FLOPS per function unit per clock cycle!
– Peak MFLOPS is pretty meaningless – very few codes

will achieve anything like this due to memory
performance.

• So need a benchmark based upon some real-life
code. Something that will combine raw CPU speed
with memory performance. Something like …

LINPACK
• Actually a LINear algebra PACKage – a

library not a benchmark.
– But the developers used some of the routines, to

solve a system of linear equations by Gaussian
elimination, as a performance indicator

• as the number of FLOPs required was known, the
result could be expressed as average MFLOPS rate

• LINPACK tested both floating-point performance and
memory, and due to the nature of the algorithm, was
seen as a “hard problem” which could not be further
speeded-up – hence seen as a useful guide to real
scientific code performance – hence benchmark

More LINPACK
• LINPACK test comes in various forms:

1. 100x100 matrix, double precision, with strict use of
base code, can optimise compiler flags

2.1000x1000 matrix, any algorithm, as long as no
change in precision of answers

• But whilst in 1989 the 100x100 test was useful,
the data structures were ~ 320 kB, so once
cache sizes exceeded this, it became useless!

• Library lives on as LAPACK – see later lectures

LINPACK lives!
• LINPACK “Highly Parallel Computing”

benchmark used as basis for Top500 ranks
– Vendor is allowed to pick matrix size (N)
– Information collected includes:

• Rpeak – system peak GFLOPS
• Nmax – matrix size (N) that gives highest GFLOPS for a given

number of CPUs.
• Rmax – the GFLOPS achieved for the Nmax size matrix
• N½ - matrix size that gives Rmax/2 GFLOPS

– Interest in all values – for instance, Nmax reflects
memory limitations on scaling of problem size, so high
values of Nmax and N½ indicate system best suited to
very scalable problems

– Big computers like big problems!

Problems with LINPACK

• Very little detailed information about the
networking subsystem
– A key factor in modern cluster computers

• Hence the HPC Challenge benchmark:
– a combination of LINPACK/FP tests with
– STREAM,
– parallel matrix transpose,
– random memory access,
– complex DFT,
– communication bandwidth and latency.

STREAM
• STREAM is memory speed benchmark (OMP)

– Instead of an aggregate overall system performance in a
single number, focuses exclusively on memory bandwidth

– Measures user-sustainable memory bandwidth (not
theoretical peak!), memory access costs and FP speed.

– A balanced system will have comparable memory
bandwidth (as measured by STREAM) to peak MFLOPS
(as measured by LINPACK 1000x1000)

– Machine balance is peak FLOPS/memory bandwidth
• Values ~ 1 indicate a well-balanced machine – no need for cache
• Values » 1 needs very high cache hit rate to achieve useful

performance
• Useful for all systems – not just HPC – hence popularity
• See http://sites.utexas.edu/jdm4372/ (the creator) for latest ...

• Selection from STREAM Top20 (last updated 2017)
Machine Ncpu MFLOPS MW/s Balance
Cray_T932 (Vector ‘96) 32 57600 44909 1.3
NEC SX-7 (Vector ‘03) 32 282419 109032 2.6
SGI Altix 4700 (ccNUMA ‘06) 1024 6553600 543771 12.1
Fujitsu SPARC M10-45 (SMP ‘13) 1024 24576000 500338 49.1
Intel Xeon Phi SE10P (ACC ‘13) 61 1073600 21833 49.2
SGI UV 3000 (ccNUMA ‘15) 3072 103219200 1728273 59.7

• Selection STREAM PC-compatible (2017)
Machine Ncpu MFLOPS MW/s Balance
486-DX50 (‘95) 1 10 2.9 3.4
AMD Opteron 248 (‘03) 1/2 10666 393 / 750 11.2 / 11.7
Intel Core 2 Quad 6600 (‘07) 2/4 19200 / 38400 714 / 664 26.9 / 57.8

Intel Core i7-2600 (’11) 2/4 27200 / 54400 1770 / 1722 15.4 / 31.6

Intel Core i7-4930K (‘13) 1/2/
… 12

13610 * Ncpu 1912 / 2500 /
… 3797

7.1 / 10.9
… 43.0

Raspberry Pi _2B (‘15) 1 594 70.5 8.4

SPEC Benchmarks
• The Systems Performance Evaluation Cooperative (SPEC)

is a not-for-profit industry body
– SPEC89, SPEC92, 95, 2000 and 2006 have come and gone
– SPEC2017 still current (problems with Win Vista …)
– SPEC attempts to keep benchmarks relevant
– Each benchmark is a mixture of C and FORTRAN codes, covering

a wide spread of application areas
– SPECmark was originally the geometric mean of the 10 codes in

SPEC89 – limited scope.
– Later versions had more codes, with some codes focusing on

integer and others on FP performance, hence now get separate
SPECfp2006 and SPECint2006.

– Also a “base” version of benchmark without vendor tweaks and
aggressive optimisations to stop cheating.

– Also a “rate” version for measuring parallel throughput.
– Additional benchmarks for graphics, MPI, Java, Cloud, etc …

SYSmark 2018
• Another commercial benchmark, widely used

in the mainstream PC industry, produced by
BAPCo
– Updated every 2 years or so until Windows Vista

caused major problems – stuck at 2007 until
2014. Now cross-platform ...

– Based upon typical “office” productivity and
internet content creation applications

– Useful for many PC buyers and hence
manufacturers, but not for HPC

– New variant for tablets in 2017, mobiles in 2018

Choosing a Benchmark
• Have discussed only a small selection of the

available benchmarks – see
http://www.netlib.org/benchmark for more!

• Why so many?
– No single test will tell you everything you need to

know – but can get some idea by combining data
from different tests as done in HPC Challenge

– Tests become obsolete over time due to hardware
developments – c.f. the LINPACK 100x100

– And also software developments – particularly
compilers. Vendors target compiler development to
improve their performance on a test – hence need to
regularly update & review the benchmark contents

– Hence some industrial benchmarks keep code secret

Creating Your Own
Benchmark

• Why?
– Because the best test that is relevant to you as a

HPC user, is how well your HPC codes run!
– If you are responsible for spending a large sum

(£10k - £10m) then you want to get it right!
– Maybe your codes need special library support?

Maybe your codes will test the compiler/ hardware in
a non-standard way? Lots of I/O or graphics?

– Maybe your tests will expose a bug in the compiler?

• NB Unlikely to be able to do this when buying a
“standard PC”!

Making A Benchmark
• Need it to be a representative test for your needs

– But not require too long to run (1 hour max)
– Might require extracting a kernel from your code – the

key computational features – and writing a simple
driver.

– Test of CPU and memory or other things
• I/O? Graphics? Throughput? Interactive use?

• Need it to be repeatable and portable
– Will need to average times on a given machine
– Repeat with different compiler flags
– Repeat on different machines
– Automate the building/running/analysis of results?

Beware The Compiler!
• By extracting a computational kernel and stripping

the code down, you may create problems
– A clever compiler might be able to over-optimise your

kernel code in a way that is not representative of the
main code

– Need to put extra obstacles in the way to confuse the
compiler – not something you normally want to do!

• E.g. executing a given loop multiple times to get a reasonably
large enough time to measure may be self-defeating if the
compiler can spot this and just execute the loop once!

– Also beware the effects of cache
• If you repeat something multiple times, the first time will incur the

cache-miss cost, whilst the other iterations might all be from
cache and hence run disproportionably faster!

• Need to flush cache between loops somehow.

Bad Benchmarks
CPU benchmark

total number of flops
required is 10000
do I = 1,10000
x = y*z
end do

Any good compiler will
recognise that a single trip
through the loop with give
the same result, and
hence remove the loop
entirely.

Memory benchmark
// repeat the benchmark
// 100 times for good
// stats
for (i=0;i<100;i++){

t = 0.0;
for (j=0;j<50000){

t += A[j]*B[j];
}

}

A and B may easily fit in cache.
After first loop, code measures
cache not memory performance.

Benchmarks and Vendors
• These days, profit margins on most HPC machines

are very small
– Hence vendors are generally reluctant to give you much

support in porting & running your benchmarks – would
rather you stick to published data

• i.e. the benchmarks that they like!

– Not true for big computer tendering activities such as
ARCHER-2

• Suddenly a lot of vendor interest in porting and optimising academic
codes! CASTEP has been one of the benchmarks since HPCx ...

– Hence interest in events such as Computing Insights UK
(formerly Machine Evaluation Workshop), where many HPC
vendors can display their latest wares, and where users can
run their own small (~15 min) benchmarks on many
different systems

CIUK 2021 Presentations
• Martyn Guest for “user benchmarking” with

computational chemistry kernels:
– Uses both “synthetic” and “end-user” benchmarks
– E.g. stripped down “kernel” or a mix of standard apps
– Focus on multi-core systems – both CPU and whole

system to look at effect of networking etc.
– Compare job with same number of cores, and also same

number of nodes, with different CPUs etc
– LOT of details in 78 slides in 45 mins …

https://epubs.stfc.ac.uk/work/51539351
– Also available as a Zoom recording

https://epubs.stfc.ac.uk/work/51539351

18Performance of Computational Chemistry Codes

132,035

195,122
212,057

224,832

423,280

331,265 333,322 337,079 334,845

363,799

320,941 312,910

409,575

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

Th
or

 B
DW

 e
5-

26
97

A
v4

 2
.6

GH
z

(T
)

De
ll

SK
L G

ol
d

61
48

 2
.4

GH
z (

T)

De
ll

CS
L G

ol
d

62
48

 2
.5

GH
z

De
ll

 C
SL

 8
28

0
2.

7G
Hz

In
te

l C
SL

-A
P

92
42

/2
.3

GH
z

De
ll

 Ic
e

La
ke

83
58

 2
.6

GH
z

De
ll

 Ic
e

La
ke

83
52

Y
2.

3G
Hz

In
te

l I
ce

 La
ke

83
60

Y
2.

4G
Hz

In
te

l I
ce

 La
ke

83
68

Q
 2

.6
GH

z

AM
D

Ep
yc

 R
om

e
77

02
 2

.0
 G

Hz

AM
D

Ep
yc

 M
ila

n
75

13
 2

.6
 G

Hz

AM
D

Ep
yc

 M
ila

n
74

43
 2

.8
5

GH
z

AM
D

Ep
yc

 M
ila

n
77

13
 2

.0
 G

Hz

TR
IA

D
 [R

at
e

(M
B

/s
)]

Memory B/W ± STREAM performance
OMP_NUM_THREADS (KMP_AFFINITY=physical

Cascade Lake &
Cascade Lake-AP AMD Rome

7702
Skylake

Gold
6148

a(i) = b(i) + q*c(i)

Ice Lake SKUs
AMD Milan 7513 &

7443 & 7713

19Performance of Computational Chemistry Codes

4,126

4,878

5,301

4,015

4,409

5,176 5,208

4,682
4,406

2,842

5,015

6,519

3,200

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Th
or

 B
DW

 e
5-

26
97

A
v4

2.
6G

Hz
 (T

)

De
ll

SK
L G

ol
d

61
48

 2
.4

GH
z

(T
)

De
ll

CS
L G

ol
d

62
48

 2
.5

GH
z

De
ll

 C
SL

 8
28

0
2.

7G
Hz

In
te

l C
SL

-A
P

92
42

/2
.3

GH
z

De
ll

 Ic
e

La
ke

83
58

 2
.6

GH
z

De
ll

 Ic
e

La
ke

83
52

Y
2.

3G
Hz

In
te

l I
ce

 La
ke

83
60

Y
2.

4G
Hz

In
te

l I
ce

 La
ke

83
68

Q
 2

.6
GH

z

AM
D

Ep
yc

Ro
m

e
77

02
 2

.0
GH

z

AM
D

Ep
yc

M
ila

n
75

13
 2

.6
GH

z

AM
D

Ep
yc

M
ila

n
74

43
2.

85
 G

Hz

AM
D

Ep
yc

M
ila

n
77

13
 2

.0
GH

z

Memory B/W ± STREAM / core performance

TRIAD [Rate (MB/s)]
OMP_NUM_THREADS (KMP_AFFINITY=physical

TRIAD [Rate (MB/s)]

Cascade Lake &
Cascade Lake-AP

AMD Rome
7702Skylake

Gold
6148

Ice Lake SKUs

AMD Milan 7513 &
7443 & 7713

16Performance of Computational Chemistry Codes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0
32 PEs

64 PEs

128 PEs

256 PEs

CPU Scalar numeric ops (%)

CPU Vector numeric ops (%)

CPU Memory accesses (%)

Performance Data (32-256 PEs)

DLPOLY4 ± Performance Report

Smooth Particle Mesh Ewald Scheme

CPU Time Breakdown

Total Wallclock Time
Breakdown

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0
32 PEs

64 PEs

128 PEs

256 PEs

CPU (%)

MPI (%)

³DL_POLY - A Performance Overview. Analysing,
Understanding and Exploiting available HPC Technology´��
Martyn F Guest, Alin M Elena and Aidan B G Chalk, Molecular
Simulation, (2019) 10.1080/08927022.2019.1603380

36Performance of Computational Chemistry Codes

Performance Data (32-256 PEs)

GROMACS ± Ligocellulose Performance Report

CPU Time Breakdown

Total Wallclock Time
Breakdown

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0
40 PEs

80 PEs

160 PEs

320 PEs

CPU (%)

MPI (%)

0.0

10.0

20.0

30.0

40.0

50.0

60.0
40 PEs

80 PEs

160 PEs

320 PEs

CPU Scalar numeric ops (%)
CPU Vector numeric ops (%)
CPU Memory accesses (%)

71Performance of Computational Chemistry Codes

1.19

1.21

1.22

1.25

1.27

1.31

1.33

1.50

1.50

0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50

VASP Pd-O complex

VASP Zeolite complex

GROMACS HECBIOSIM

DLPOLY-4 Gramicidin

DLPOLY-4 NaCl

LAMMPS Rhodopsin

LAMMPS LJ Melt

GAMESS-UK (SioSi7)

GAMESS-UK (cyc-sporin)

NPEs = 128

Improved
Performance of Dell
|EMC Ice Lake 8358

(T) system (HDR)
vs.

Hawk- Atos SKL Gold
6148 / 2.4 GHz IB-

EDR

Average Factor = 1.31

Ice Lake 8358 2.6 GHz HDR vs. SKL 6148 2.4 GHz EDR

NPEs = 128

70Performance of Computational Chemistry Codes

Summary ± Core-to-Core Comparisons
• A Core-to-Core comparison suggests on average that the Intel Ice

Lake 8358 2.6 GHz SKU outperforms all others, although relative
performance is sensitive to effective use of the AVX instructions.

• Low utilisation of AVX-512 leads to weaker performance of the SKL,
CSL and Ice Lake CPUs and better performance of the Rome &
Milan-based clusters e.g. DLPOLY, LAMMPS

• With significant AVX-512 utilisation, Ice Lake Lake systems outperform
the AMD Milan systems in core-to-core comparisons e.g. Gromacs,
notwithstanding the use of AVX2-256.

• Modest improvement at best on moving from Skylake to Cascade
Lake systems more dramatic improvement moving to Ice Lake.

• Strong Performance of the CSL Gold 6248 system (2.5Ghz), but
surprisingly weak performance from the CSL Platinum 8280 (2.7GHz)

• Improved CPU performance of Spartan 7742 cluster across all

• Baselined across P100 and V100 NVIDIA GPU performance.

75Performance of Computational Chemistry Codes

1.57

1.66

1.67

1.79

2.07

2.07

2.09

2.10

2.27

1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

DLPOLY-4 NaCl

DLPOLY-4 Gramicidin

GAMESS-UK (cyc-sporin)

GAMESS-UK (SioSi7)

VASP Pd-O complex

VASP Zeolite complex

GROMACS HECBIOSIM

LAMMPS LJ Melt

LAMMPS Rhodopsin

Improved Performance of
Dell |EMC Ice Lake 8358

(T) system (HDR)
vs.

Hawk- Atos SKL Gold
6148 / 2.4 GHz IB-EDR

Average Factor = 1.92

Ice Lake 8358 2.6 GHz HDR vs. SKL 6148 2.4 GHz EDR

4 Node Comparison

74Performance of Computational Chemistry Codes

Summary ± Node-to-Node Comparisons

• Given superior core performance, a Node-to-Node comparison
typical of the performance when running a workload shows the Ice
Lake 8358 delivering superior performance compared to (i) the SKL
Gold 6148 (64 cores vs. 40 cores) by a factor of between 1.6 2.3
across all applications.

• The AMD Rome 7702 and Milan 7713 (128 cores) along with the
Intel CSX-AP 9242 (96 cores) are the dominant systems given the

-UK.

• The comparison with the SMD Rome-based Spartan 7742-based
cluster now resolved following the previous reported CIUK
performance issues (attributed to Turbo mode)

• Pricing remains of course a key issue, but lies outside the scope of
this presentation.

Acceptance Tests
• Having benchmarked the various machines

available, it is a good idea to write an “acceptance
test” into the contract for the final machine
– When we bought Erik we specified that the machine was

to be able to run CASTEP and AMBER non-stop for 8
days on 16 nodes each, without fault.

– This was primarily to test the compilers and the thermal
stability of the machine

• Had heard “horror stories” of other clusters that would over-heat
and fail/shutdown after less than 1 day of running

• Problem eventually traced to faulty RDRAM chips

– Same on Edred – took over 4 months to pass
• Problems due to hardware / supplier chain / software stack

– Hence now our standard approach …

Further Reading
• Chapter 15 & 16 of “HPC (2nd edition)”, Kevin

Dowd and Charles Severance, O'Reilly (1999).
• Top500 at https://www.top500.org
• LINPACK at https://www.top500.org/project/linpack
• HPC Challenge at https://icl.cs.utk.edu/hpcc
• STREAM at http://sites.utexas.edu/jdm4372/
• SPEC at https://www.spec.org
• SYSmark2018 at https://bapco.com/products
• DLPOLY Benchmarking paper –

https://doi.org/10.1080/08927022.2019.1603380
• Computing Insight UK – see

https://www.scd.stfc.ac.uk/Pages/CIUK2021.aspx

