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Overview

• Parallel Molecular Dynamics

• Parallel Quantum Mechanics
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MD Basics

• Integrate the Newtonian equations of motion for 
atomic positions and momentum to generate a 
trajectory in phase space
– Different regimes correspond to different models for 

calculating the forces on the atoms
– Often it is this force calculation that is the most time 

consuming part of the calculation
• Hence need to minimise the number of force 

calculations and/or make them as fast as 
possible – need ~106 MD steps for a reasonable 
calculation!



Speeding up Serial MD (I)
• Pair-wise forces: 

– N(N-1)/2 calculations so scaling ~O(N2)
– But if interaction is short-range then can exploit 

spatial locality to make this ~O(N) using Verlet 
neighbour-list and/or cell-list schemes:



Speeding up Serial MD (II)

• Long range interactions (e.g. Coulomb) 
and periodic boundary conditions look bad 
– suggests that particle will interact with all 

particles in cell AND all image cells to infinity!
– Solution is to use Ewald technique to produce 

finite sum ~O(N3/2)
– more advanced techniques (e.g. Smoothed 

Particle-Mesh Ewald) make this scale as 
~O(NlogN) or even better but approximate the 
exact answer …



Parallel MD

• Cloning
• Master-Slave
• Replicated Data
• Systolic
• Domain Decomposition



Cloning MD
Good way of 
generating 
ensemble averages

Run lots of different 
independent 
simulations.

Each processor 
must be capable of 
running entire 
simulation so limits 
size of problem that 
can be tackled.



Master-Slave MD

Parallelise the bottleneck -
the force calculation

Can be useful with complex 
force models, e.g. fully QM, 
especially if distribute data 
so can tackle larger 
problems. As used in 
CASTEP! 

May require complex pattern 
of communications to get 
good load balancing and 
global synchronisation to 
integrate equations of 
motion.



Replicated Data MD
Developed from 
cloning: each processor 
has complete set of 
data but only operates 
on subset.

E.g. in a pair-potential 
calculation, calculates 
N2/n forces and then 
communicates to n-1
others. Then global 
sync as integrate 
motion.

Limited problem size 
and poor comms 
strategy.



Systolic MD (I)
•Uses a (virtual) ring topology and “pulses” data like heart. 
Initially each processor has 2 packets of data:

•1st pulse: each processor calculates forces within its packets 
(intra-group), and between the two packets (inter-group). 
Then every processor (except one) then passes one set of 
data to its left neighbour and receives in its place the 
corresponding packet from its right neighbour. It also sends its 
other packet to its right neighbour and receives one from its 
left neighbour, as shown: 



Systolic MD (II)
•Subsequent pulses: Above process repeats until every 
processor has received in turn a copy of every packet. 

•At the end of this sequence, each processor has 
calculated the full set of forces and can therefore integrate 
the equations of motion. A single time step therefore 
consists of 2n – 1 systolic pulses, after which all the 
packets are back where they started.

•Good scaling and load balancing but complex to code.



Domain Decomposition MD
• Based upon cell-list approach:

• Physical system is divided into a number of contiguous 
domains, which are then mapped onto processors.

• Each domain must be sufficiently large that the pair forces 
can be calculated independently for each domain hence 
need size of system >> interaction range

• Use cell-list techniques to map the interactions between 
domains and processors. Equations of motion for each 
domain can then be integrated independently. Any particles 
leaving a domain are mapped onto the appropriate domain 
and processor at the end of the step.

• Good load balancing and simple comms but non-
ideal scaling and difficult to apply to complex 
interactions. 



Massively Parallel MD
• Domain decomposition

– DL_POLY3 used domain decomposition with replicated 
data which limited scaling and had I/O bottleneck.

– DL_POLY4 uses MPI-2 (includes parallel I/O) and fully 
distributed data so now scales much better[1] …

– Largest(?) MD calculation (using LAMMPS) has 19 
billion atoms[2] and also uses this technique.

1. M. F. Guest, A. M. Elena and A. B. G. Chalk “DL_POLY - A performance overview 
analysing, understanding and exploiting available HPC technology”, Mol. Sim. 47, 
194-227 (2021) 

2. K. Kadau, T.C. Germann and P.S. Lomdahl, “Large-scale MD simulation of 19 
billion particles”, Int. J. Mod. Phys. C 15, 193-201 (2004)



Parallel Quantum Mechanics
• Many different levels of approximation

– “ab initio” means “from the beginning”, i.e. calculation 
using QM without any empirical input, only atomic number 
of atoms and approximate arrangement

• Density Functional Theory is a very popular ab initio
scheme – allows efficient first principles calculations 
of systems containing 100s of atoms on PC or 
1000s on parallel computer

• CASTEP is a DFT code developed within UK and 
one of the flagship codes on successive UK 
supercomputers
– Designed to be parallel from the beginning
– And also run on serial machines – had best single CPU 

%peak of any of the HPCx flagship codes (lots of BLAS)



Density Functional Theory
• An exact theory for finding the ground state 

charge density, r(r), of any system of atoms
– Has one basic approximation to make it tractable – the 

exchange-correlation functional
– Kohn-Sham equations for r(r) need to be solved “self-

consistently” as Hamiltonian itself depends upon r(r)
– Scheme is made computationally tractable by 

expanding r(r) in terms of “single-electron 
wavefunctions” y(r) 

– The y(r) are then expanded in terms of coefficients and 
a known set of basis functions

– Hence Schrödinger equation as a matrix equation!
– Hence “diagonalising the Hamiltonian” etc.



Periodic systems - Bloch’s Theorem
• Recall that Bloch’s theorem lets us write:

• Where                              is periodic and        
is an arbitrary phase factor. We express           
as a Fourier series:

• Where         are complex Fourier coefficients.
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What does CASTEP do?

CASTEP solves the Kohn-Sham equations for electrons in a
periodic array of nuclei:

Ĥ[⇢] b = Eb b

where particle b has the bth solution (“band”), and

Ĥ[⇢] = � ~2

2m
r2 + V̂HXC [⇢] + V̂ext .

The wavefunction

• The complex coefficients         are what 
CASTEP computes by solving

• Storing these coefficients needs a lot of the 
computer’s memory (RAM).

• G: a reciprocal lattice vector (“G-vector”)
• b: a band index
• k: a Brillouin zone sampling point (“k-point”)



Where does CASTEP spend its time?
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Solving the Kohn-Sham equations



CASTEP bottlenecks

• Applying H
– Kinetic energy applied in reciprocal-space
– Local potential applied in real-space
– need to (fast) Fourier transform between 

the two spaces. 
– Orthogonalising wavefunctions

– Need to ensure trial bands are orthogonal
– Compute the band-overlap matrix, and transform 

to create an orthonormal set.



Parallelising DFT (I)
Three possible strategies:
1. Distribute real- and reciprocal-space vectors

• Distributed data => good for memory
• Good scaling as number of real- and reciprocal-

space vectors increases with increasing 
problem size

• Operations with G-vectors in reciprocal-space 
are independent of operations on r(r) in real-
space

• Requires 3D parallel FFT to transform 
• Hence complex comms strategy

ρ G( )↔ ρ r( )



Parallelising DFT (II)
2. Distribute k-points

• Most operations at different points in the Brillouin zone 
are independent of other k-points

• Distributed data => good for memory but limited scaling 
as number of k-points reduces with increasing problem 
size

3. Distribute bands 
• In a non-spin-polarised system, each yj(r) represents a 

different band
• Number of bands will scale with system size but 

memory limited as each node has to store entire r(r) -
unless combine with g-vector parallelism

• CASTEP can use all 3 in any combination as 
appropriate 

– hence can scale to 1000s of CPUs on large machines



CASTEP Data Distribution (I)
• Reciprocal space data represented on grid 

– Grid size given by smallest G (=2p/|a| etc)
– Largest G given by Ecut
– Different k have independent G grids

• “g-vector group”
– CASTEP-speak for those processors over which the  

data (for a given k-point) are distributed.
– Multiple g-vector groups are possible if the calculation 

is parallelised over k-points. 
– Each g-vector group has the same number of nodes 

and has a “master node” to handle inter-group 
comms

– Each g-vector group is a separate MPI communicator



CASTEP Data Distribution (II)
• “k-point group”

– CASTEP-speak for those processors over which 
the data is k-distributed.

– The same real and reciprocal space data will be 
stored on each node in the group but will 
correspond to a different k-point.

– Multiple k-point groups are possible if the 
calculation is parallelised over g-vectors. 

– Each k-point group has a “master node” to 
handle inter-group comms

– Each k-point group is a separate MPI 
communicator

• “Root node”
– CASTEP-speak for the primary I/O node. There 

is only one root node and it handles all comms to 
k-point masters and g-vector masters.



CASTEP Data Distribution (III)

Diagram shows 4    
g-vector groups in 
a 16-node 
calculation.

The root node is a  
master node in 
both g-vector 
group1 and k-point 
group1.



CASTEP Design (I)
• Code a total rewrite of an earlier (serial) F77 code 

– necessitated by inability to further develop and/or 
maintain code.

• Lot of effort went into code design before coding 
began 
– Wrote a specification (over 400 pages long) detailing 

functionality and requirements of each module, and all 
public data-types and subprogram interfaces

– Modular F90 with strict hierarchy (now over 650,000 
lines long) developed at 6 different academic sites in UK 
– hence use of mercurial and need for strict design rules

– Each module “owned” by a single academic – can 
choose own internal algorithms and responsible for all 
coding, testing and debugging for that module.



CASTEP Design (II)
• OOP-like within modern Fortran restrictions

– Utility modules define low-level operations and 
things which may be machine specific, e.g. io
module for handling all file I/O, or FFT module 
which may use different vendor-specific libraries.

– Fundamental modules define basic types and 
operations, e.g. wave module defines a wvfn type 
and all the operations that can be performed upon 
that type, e.g. wvfn_add, wvfn_rotate, etc

– Functional modules put the physics into action by 
using the lower level modules/types, e.g. 
Hartree uses density to calculate the electron-
electron interaction energy/force, etc.



CASTEP – Serial or Parallel?
• So how can CASTEP be serial and parallel?

– Not two separate source trees – avoid a nightmare!
– Rather, one source tree and two versions of the comms

module – comms.mpi.F90 and comms.serial.F90 –
selected at compile time so have serial or parallel binary

– Hence comms module provides “wrappers” to most 
useful MPI routines, etc. So can substitute serial versions 
or any other parallel library as long as provide same 
interface to rest of the code. Localises any required 
changes!

– Hence rest of code does not do any communications 
directly, only by calling to comms routines. 

– And now has some OpenMP in certain modules to 
reduce memory usage per node and comms bottlenecks



Putting it all together (1500 atom 
DNA with b,G and threads)
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