
High Performance Computing
- Example Applications

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview

• Parallel Molecular Dynamics

• Parallel Quantum Mechanics

Length+and+)me+scales+

Diffusion

10-9 s

10-15 s

Bond motion
10-14 s

Intermolecular
motion

10-8 s

Molecular
alignment

Polymers

>>10-7 s

Electronic
transition

Castep+Workshop:+Delhi+January+2011+

Length and Time scales

MD Basics

• Integrate the Newtonian equations of motion for
atomic positions and momentum to generate a
trajectory in phase space
– Different regimes correspond to different models for

calculating the forces on the atoms
– Often it is this force calculation that is the most time

consuming part of the calculation
• Hence need to minimise the number of force

calculations and/or make them as fast as
possible – need ~106 MD steps for a reasonable
calculation!

Speeding up Serial MD (I)
• Pair-wise forces:

– N(N-1)/2 calculations so scaling ~O(N2)
– But if interaction is short-range then can exploit

spatial locality to make this ~O(N) using Verlet
neighbour-list and/or cell-list schemes:

Speeding up Serial MD (II)

• Long range interactions (e.g. Coulomb)
and periodic boundary conditions look bad
– suggests that particle will interact with all

particles in cell AND all image cells to infinity!
– Solution is to use Ewald technique to produce

finite sum ~O(N3/2)
– more advanced techniques (e.g. Smoothed

Particle-Mesh Ewald) make this scale as
~O(NlogN) or even better but approximate the
exact answer …

Parallel MD

• Cloning
• Master-Slave
• Replicated Data
• Systolic
• Domain Decomposition

Cloning MD
Good way of
generating
ensemble averages

Run lots of different
independent
simulations.

Each processor
must be capable of
running entire
simulation so limits
size of problem that
can be tackled.

Master-Slave MD

Parallelise the bottleneck -
the force calculation

Can be useful with complex
force models, e.g. fully QM,
especially if distribute data
so can tackle larger
problems. As used in
CASTEP!

May require complex pattern
of communications to get
good load balancing and
global synchronisation to
integrate equations of
motion.

Replicated Data MD
Developed from
cloning: each processor
has complete set of
data but only operates
on subset.

E.g. in a pair-potential
calculation, calculates
N2/n forces and then
communicates to n-1
others. Then global
sync as integrate
motion.

Limited problem size
and poor comms
strategy.

Systolic MD (I)
•Uses a (virtual) ring topology and “pulses” data like heart.
Initially each processor has 2 packets of data:

•1st pulse: each processor calculates forces within its packets
(intra-group), and between the two packets (inter-group).
Then every processor (except one) then passes one set of
data to its left neighbour and receives in its place the
corresponding packet from its right neighbour. It also sends its
other packet to its right neighbour and receives one from its
left neighbour, as shown:

Systolic MD (II)
•Subsequent pulses: Above process repeats until every
processor has received in turn a copy of every packet.

•At the end of this sequence, each processor has
calculated the full set of forces and can therefore integrate
the equations of motion. A single time step therefore
consists of 2n – 1 systolic pulses, after which all the
packets are back where they started.

•Good scaling and load balancing but complex to code.

Domain Decomposition MD
• Based upon cell-list approach:

• Physical system is divided into a number of contiguous
domains, which are then mapped onto processors.

• Each domain must be sufficiently large that the pair forces
can be calculated independently for each domain hence
need size of system >> interaction range

• Use cell-list techniques to map the interactions between
domains and processors. Equations of motion for each
domain can then be integrated independently. Any particles
leaving a domain are mapped onto the appropriate domain
and processor at the end of the step.

• Good load balancing and simple comms but non-
ideal scaling and difficult to apply to complex
interactions.

Massively Parallel MD
• Domain decomposition

– DL_POLY3 used domain decomposition with replicated
data which limited scaling and had I/O bottleneck.

– DL_POLY4 uses MPI-2 (includes parallel I/O) and fully
distributed data so now scales much better[1] …

– Largest(?) MD calculation (using LAMMPS) has 19
billion atoms[2] and also uses this technique.

1. M. F. Guest, A. M. Elena and A. B. G. Chalk “DL_POLY - A performance overview
analysing, understanding and exploiting available HPC technology”, Mol. Sim. 47,
194-227 (2021)

2. K. Kadau, T.C. Germann and P.S. Lomdahl, “Large-scale MD simulation of 19
billion particles”, Int. J. Mod. Phys. C 15, 193-201 (2004)

Parallel Quantum Mechanics
• Many different levels of approximation

– “ab initio” means “from the beginning”, i.e. calculation
using QM without any empirical input, only atomic number
of atoms and approximate arrangement

• Density Functional Theory is a very popular ab initio
scheme – allows efficient first principles calculations
of systems containing 100s of atoms on PC or
1000s on parallel computer

• CASTEP is a DFT code developed within UK and
one of the flagship codes on successive UK
supercomputers
– Designed to be parallel from the beginning
– And also run on serial machines – had best single CPU

%peak of any of the HPCx flagship codes (lots of BLAS)

Density Functional Theory
• An exact theory for finding the ground state

charge density, r(r), of any system of atoms
– Has one basic approximation to make it tractable – the

exchange-correlation functional
– Kohn-Sham equations for r(r) need to be solved “self-

consistently” as Hamiltonian itself depends upon r(r)
– Scheme is made computationally tractable by

expanding r(r) in terms of “single-electron
wavefunctions” y(r)

– The y(r) are then expanded in terms of coefficients and
a known set of basis functions

– Hence Schrödinger equation as a matrix equation!
– Hence “diagonalising the Hamiltonian” etc.

Periodic systems - Bloch’s Theorem
• Recall that Bloch’s theorem lets us write:

• Where is periodic and
is an arbitrary phase factor. We express
as a Fourier series:

• Where are complex Fourier coefficients.

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

What does CASTEP do?

CASTEP solves the Kohn-Sham equations for electrons in a
periodic array of nuclei:

Ĥ[⇢] b = Eb b

where particle b has the bth solution (“band”), and

Ĥ[⇢] = � ~2

2m
r2 + V̂HXC [⇢] + V̂ext .

The wavefunction

• The complex coefficients are what
CASTEP computes by solving

• Storing these coefficients needs a lot of the
computer’s memory (RAM).

• G: a reciprocal lattice vector (“G-vector”)
• b: a band index
• k: a Brillouin zone sampling point (“k-point”)

Where does CASTEP spend its time?
CASTEP in

Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

Solving the Kohn-Sham equations

CASTEP bottlenecks

• Applying H
– Kinetic energy applied in reciprocal-space
– Local potential applied in real-space
– need to (fast) Fourier transform between

the two spaces.
– Orthogonalising wavefunctions

– Need to ensure trial bands are orthogonal
– Compute the band-overlap matrix, and transform

to create an orthonormal set.

Parallelising DFT (I)
Three possible strategies:
1. Distribute real- and reciprocal-space vectors

• Distributed data => good for memory
• Good scaling as number of real- and reciprocal-

space vectors increases with increasing
problem size

• Operations with G-vectors in reciprocal-space
are independent of operations on r(r) in real-
space

• Requires 3D parallel FFT to transform
• Hence complex comms strategy

ρ G()↔ ρ r()

Parallelising DFT (II)
2. Distribute k-points

• Most operations at different points in the Brillouin zone
are independent of other k-points

• Distributed data => good for memory but limited scaling
as number of k-points reduces with increasing problem
size

3. Distribute bands
• In a non-spin-polarised system, each yj(r) represents a

different band
• Number of bands will scale with system size but

memory limited as each node has to store entire r(r) -
unless combine with g-vector parallelism

• CASTEP can use all 3 in any combination as
appropriate

– hence can scale to 1000s of CPUs on large machines

CASTEP Data Distribution (I)
• Reciprocal space data represented on grid

– Grid size given by smallest G (=2p/|a| etc)
– Largest G given by Ecut
– Different k have independent G grids

• “g-vector group”
– CASTEP-speak for those processors over which the

data (for a given k-point) are distributed.
– Multiple g-vector groups are possible if the calculation

is parallelised over k-points.
– Each g-vector group has the same number of nodes

and has a “master node” to handle inter-group
comms

– Each g-vector group is a separate MPI communicator

CASTEP Data Distribution (II)
• “k-point group”

– CASTEP-speak for those processors over which
the data is k-distributed.

– The same real and reciprocal space data will be
stored on each node in the group but will
correspond to a different k-point.

– Multiple k-point groups are possible if the
calculation is parallelised over g-vectors.

– Each k-point group has a “master node” to
handle inter-group comms

– Each k-point group is a separate MPI
communicator

• “Root node”
– CASTEP-speak for the primary I/O node. There

is only one root node and it handles all comms to
k-point masters and g-vector masters.

CASTEP Data Distribution (III)

Diagram shows 4
g-vector groups in
a 16-node
calculation.

The root node is a
master node in
both g-vector
group1 and k-point
group1.

CASTEP Design (I)
• Code a total rewrite of an earlier (serial) F77 code

– necessitated by inability to further develop and/or
maintain code.

• Lot of effort went into code design before coding
began
– Wrote a specification (over 400 pages long) detailing

functionality and requirements of each module, and all
public data-types and subprogram interfaces

– Modular F90 with strict hierarchy (now over 650,000
lines long) developed at 6 different academic sites in UK
– hence use of mercurial and need for strict design rules

– Each module “owned” by a single academic – can
choose own internal algorithms and responsible for all
coding, testing and debugging for that module.

CASTEP Design (II)
• OOP-like within modern Fortran restrictions

– Utility modules define low-level operations and
things which may be machine specific, e.g. io
module for handling all file I/O, or FFT module
which may use different vendor-specific libraries.

– Fundamental modules define basic types and
operations, e.g. wave module defines a wvfn type
and all the operations that can be performed upon
that type, e.g. wvfn_add, wvfn_rotate, etc

– Functional modules put the physics into action by
using the lower level modules/types, e.g.
Hartree uses density to calculate the electron-
electron interaction energy/force, etc.

CASTEP – Serial or Parallel?
• So how can CASTEP be serial and parallel?

– Not two separate source trees – avoid a nightmare!
– Rather, one source tree and two versions of the comms

module – comms.mpi.F90 and comms.serial.F90 –
selected at compile time so have serial or parallel binary

– Hence comms module provides “wrappers” to most
useful MPI routines, etc. So can substitute serial versions
or any other parallel library as long as provide same
interface to rest of the code. Localises any required
changes!

– Hence rest of code does not do any communications
directly, only by calling to comms routines.

– And now has some OpenMP in certain modules to
reduce memory usage per node and comms bottlenecks

Putting it all together (1500 atom
DNA with b,G and threads)

Further Reading
• “Molecular dynamics studies of liquids using a Beowulf

computer”
M.I.J. Probert, Contemporary Physics 44 435-450 (2003)

• “First-principles simulation: ideas, illustrations and the
CASTEP code”

M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J.
Hasnip, S.J. Clark and M.C. Payne,

Journal of Physics: Condensed-Matter 14 2717-2744 (2002)

• “First-principles methods using CASTEP”
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M.I. J.

Probert, K. Refson, M. C. Payne,
Zeitschrift für Kristallographie 220(5-6) 567-570 (2005)

