THE UNIVERSITYW

High Performance Computing -
Introduction to
GPU Programming

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview
« What are GPUSs?

« GPU Architecture
« Memory

« Programming in CUDA

o I he Future

What is a GPU?

A GPU is a massive vector processor
* Hundreds of processing units
« Large memory bandwidth
* Processing units can “collaborate”

Some problems can be solved more efficiently
on vector processors (remember Crays).

GPUs have some big advantages.
« Cheap and very fast for vector problems
« Computation is asynchronous with the CPU
« Hardware “tricks” such as texture filtering (zero
overhead!)

Other accelerators (e.g. Xeon Phi) available

When is GPU Programming useful?

. “The GPU devotes more transistors to data
processing” (nVidia C Programming Guide)

« Good at doing lots of numeric calculations
simultaneously.
- This is actually required for the GPU to be efficient

- There must be many more numeric operations than
memory operations to break even.
« Useful as a co-processor.
- Can offload GPU efficient calculations while the CPU
continues with the rest.
« Brute forcing!

- Sometimes a brute force method is more efficient with
many processors than an elegant solution on just one

Floating Point Standard

 NVidia architectures 2.x onwards (i.e. 2010
Fermi onwards) are IEEE 754 compliant.

. Old nVidia architectures were mostly compliant.
Generally exceptions were handled in a
noncompliant way. Also some mathematics e.qg.
FMAD, division and sqgrt were not standard.

« Standard compliant intrinsic functions are
available but at a large computational penalty
(software implemented).

nVidia Architectures

« V1 = Tesla (2008) — introduced CUDA with
performance of 0.5 GFLOP/watt,

« V2 = Fermi (2010) — 64-bit floating, 2 GFLOP/W

« V3 = Kepler (2012) - dynamic parallelism

« V5 = Maxwell (2014) — faster Kepler — 3.8 TFLOP
DP, 24 GB GDRAM, 2 GPU, 500 GB/s, 300 W

« V6 = Pascal (2016) — unified memory, stacked
DRAM, direct interconnect between GPU & RAM

« V7 = Volta (2018) — tensor cores with half-
precision math for machine learning ...

« More recent: Turing (2020), Ampere (2021), Ada

Lovelace (announced 2022) — faster Volta

GPU Architecture

 Lots of arithmetic units
sharing small caches.

« Execution blocks are
scheduled across
processing cores.

« Large memory bandwidth
but slow memory access.

« Fermi onwards have full
cache hierarchy.

Control ALU ALU

ALU ALU

CPU

GPU

Multithreaded CUDA Program

2 Cores

Corel

|

=

'GPU with 4 Cores

(Coreo Core1 Corez Gore3
Bodd Blocks Blocks Block?

Threads

« Each thread runs one
instance of a kernel.

. Threads are organised into
blocks (which can be up to

3D), blocks are scheduled
on and off the processors.

« Execution of a block on the
processors is called a warp.

« Grids (which can be 2D)
contain many blocks which
are executed on the device.

Block (0,0) Block(1,0) Block(2 0)

Block (0, 1) Block (1, 1) “woc;: (2, 1)
b

Block (1, 1)

Memory Model

o lexture GPU Grid
« Write via CPU
« Allows hardware interpolation Block (0, 0) Block (1, 0)
« 2D Locality of arrays

« Constant

o Write via CPU

« Small, used for random access inst'ns ! !
. Global

« Write via CPU and GPU Thread (0, 0) Thread (1,0) Thread (0,0) Thread (1, 0)

. Shared

« Local to Block
« Low latency
« Fastest comms between threads

. Local cPU
« Perthread only memory

« Registers

« Thread only,
. Fastest memory available
« Limited space

Memory Scope

. Registers are local to j > memory
thread and has thread
lifetime. %ggg% : I
. Shared memory shared
between threads in a Block (0,0) | Block (1,0) | Block (2, 0)
block and has block
Iifetime Block (0,1) Block(1,1) Block(2, 1)
. Global memory is es wmas T
accessible everywhere
and is persistent. sy | e
Block (0, 2) Block (1, 2)

i 1

Tensor Cores

« One of the key operations when training a neural network
or doing ML is matrix-matrix multiplication (DGEMM)

« Each tensor core has a 4x4x4 matrix processing array

« Can do 64 mixed-precision OPs/clock with half-precision
inputs and either HP or SP output

D =

FP16 or FP32

FP16 or FP32

Programming Technologies (l)

« CUDA (Compute Unified Device Architecture)
 Nvidia's proprietary platform.
 Offers both API (extensions to C/C++) and driver level
programming.
« Proprietary PGl Fortran compiler allows Fortran
development — both directive and kernel modes.

« OpenCL (Open Computing Language)
« Evolution of OpenGL to become a general solution for
heterogenous computing (e.g. GPUs and CPUs).
. Implemented on a driver level — e.g. built into MacOS
« Specification is manufacturer (and device)
iIndependent — write once, run anywhere.

Programming Technologies (ll)
« OpenACC

« Open standard version of the directives approach of PGl

« Spec v2.0 July 2013 has better support for control of
data movement, calling external functions, and separate
compilation for host & device so can build libraries

. Led by nVidia with Cray and PGl, has support for
Fortran, C/C++

« Now in gcc and gfortran (since v6.1)

« OpenMP v4.0

« Pushed by Intel to support Xeon Phi etc

« Subset of OpenACC functionality at present

« In gcc/gfortran since v4.9.1

« Supposed to include all of OpenACC in future but
difficulties with Intel vs nVidia ...

CUDA Programme Structure

. Serial (host) code

. Kernel (device) code
- Grid
 Blocks
- Threads

« Must remember to

allocate data on both
host and device

» Kernel executes
asynchronously

CPU GPU
Serial
Code
Grid 1
Kernel Block Block Block
T = 0o (1,0 (20
l Block” Block : Block
Serial 04 11 |} 1)
Code ; L
l /" Grid2
Kernel
2 l'-;'_—’ 'I'
K | l
Block (1, 1)

Starting CUDA

« Headers must be included. In this introduction only
the API will be demonstrated.

use cudafor

#include <cuda.h>;
#include <cuda runtime.h>;

o C/C++ files with CUDA kernels must have the
extension .cu
. Fortran CUDA files must have the extension .CUF

« See references at end for more complete
examples ...

Device Kernels

« A Kernel is a global subroutine (static function) which
runs on the device. One instance of the kernel will be
executed by every thread which is invoked.

attributes (global) subroutine my kernel(a, b, c)

static _ global
void my kernel(float * a, float * b, float * c);

« Kernels can only address device memory spaces.

« Executing kernels behaviour differs by using the
thread index which uniquely identifies the thread.

tx = threadidx%x + (blockidx%x * blockdim%x)

int tx threadIdx.x + (blockIdx.x * blockDim.x);

Host Code

« Device memory must be allocated in advance by host:

real ,device,allocatable :: Adev(:)

allocate (Adev(M,N) ,stat=istat)

static device double * devPtr = NULL;

cudaMalloc ((void**) &devPtr, N*sizeof (double)) ;

« Data must be copied (over the bus) to the device and if
necessary copied back to the host later. This is very
slow! (Host memory can be allocated in non-paged
(pinned) memory to avoid one copy operation).

Adev = A ! Host to device

cudaMemcpy (devPtr, hostPtr, N*sizeof (double),
cudaMemcpyHostToDevice) ;

Kernel Execution

call my kernel<<<grid,block>>>(argl,arg2,...)

my kernel<<<grid,block>>>(argl,arg2...);

. grid — specifies the dimensions of the grid (i.e.
the number of blocks launched will be the product
of the dimensions).

« block — specifies the dimensions of each block
(i.e. the number of threads per block is the

product of the dimensions).
« dim3 — derived type which has three members.

type (dim3) :: grid
integer :: x=5,y=5,z=1
grid = (x,y,2z)

int x=5,y=5,2z=1;
dim3 grid(x,y,z) ;

Kernel Compilation and Run

« CUDA kernels must be compiled with a
CUDA compiler (pgfortran or nvcc).

« At runtime the kernel will be copied to the
device on first execution — note that for
accurate profiling, a kernel should be
executed at least once before timing.

« OpenCL kernels are usually compiled at
runtime. This allows the kernel to be
optimised for the running context but has a
larger initial overhead.

Advanced Features

« Streaming — Data can be moved across the
system bus while computation is happening. This
Is good for large data structures which don't fit in
device memory.

 Texture/Surface memory — Memory can be
accessed via non-integer or surface coordinate!
Linear interpolation can also be performed.

« Fast intrinsic functions — Some special functions
exist which allow certain operations to be
performed very quickly although are not IEEE
compliant. For example rsgrt — reciprocal square
root. These can be useful for areas of the code
where precision is less important.

(free) CUDA Libraries

« V6 (2014+) Drop-in replacement for BLAS etc with auto
offload from CPU to GPU so free speed-up!

« CUBLAS - BLAS library

- Includes all S,D,C,Z level 1-3 BLAS routines
« CUFFT — FFT library

- 1D, 2D, 3D complex and real

- Stream enabled for parallel data movement &
computation

« CUSPARSE — Sparse matrix library
- BLAS style routines between sparse & dense matrices

« CURAND — Random number library
« Now also XT versions for multi-GPU support (non-free)

CUBLAS Fortran Interfacing

o Interfacing the CUBLAS library (written in C) with the
cudafortran from PGI requires an interface to be
written using the C-interoperability part of F2003, e.q.

Module cublas
Interface cuda gemm

Subroutine cuda sgemm(cta, ctb, m, n, k alpha, A, &
& 1lda, B, 1ldb,Beta, c¢, 1ldc)

bind (C,name='cublasSgemm’)

use iso _c binding

character?l,c_char),value :: m,n, k,1lda,ldb, 1ldc
real (c float) ,value :: alpha,beta
real(c:float),device,dimension(lda,*) :: A
real (c float) ,device,dimension(ldb,*) :: B
real(c:float),device,dimension(ldc,*) C

End subroutine cuda_ sgemm

End interface cuda gemm
End module cublas

Fortran Example

subroutine mmul(A, B, C)
use cudafor

real, dimension(:,:) :: A, B, C

integer :: N, M, L

real, device, allocatable, dimension(:,:) :: Adev,Bdev,Cdev
type (dim3) :: dimGrid, dimBlock

N = size(A,1l) ; M = size(A,2) ; L = size(B,2)
allocate(Adev(N,M), Bdev(M,L), Cdev(N,L))
Adev = A(1:N,1:M) ; Bdev = B(1:M,1:L)

dimGrid = dim3(N/16, L/16, 1)

dimBlock = dim3(16, 16, 1)

call mmul kernel<<<dimGrid,dimBlock>>>(Adev,Bdev,Cdev,N,M,L)

C(1l:N,1:M) = Cdev
deallocate(Adev, Bdev, Cdev)
end subroutine

Fortran Kernel

attributes (global) subroutine MMUL KERNEL(A,B,C,N,M,L)

real ,device :: A(N,M),B(M,L) ,C(N,L)
integer,value :: N,M,L

integer :: i,]j,kb,k,tx,ty
real,shared :: Ab(16,16), Bb(16,16)
real :: Cij

tx = threadidx%x ; ty = threadidx3y

i = (blockidx%x-1) * 16 + tx ; j = (blockidx3%y-1) * 16 + ty

cij = 0.0

do kb = 1, M, 16 ! Fetch one element each into Ab and Bb NB 16x16 = 256

! threads in this thread-block are fetching separate elements of Ab and Bb
Ab(tx,ty) = A(i,kb+ty-1)
Bb(tx,ty) = B(kb+tx-1,j) ! wWait until all elements of Ab and Bb are filled
call syncthreads ()
do k =1, 16

Cij = Cij + Ab(tx,k) * Bb(k,ty)

enddo ! wait until all threads in the thread-block finish with this Ab and Bb
call syncthreads()

enddo

c(i,j) = Cij

end subroutine

OpenMP for GPUs

Spec v4.5 finalized in Nov 2015 (C/C++/Fortran)
Extensions to SIMD and TASK

Array reduction (Fortran only) now allowed

Extended TARGET attributes for better
accelerator performance

Lots of new stuff for DEVICE ...

Available in GNU v6.1 and Intel v18.0

OpenMP V5.0 (needed for multi-GPU) started in
v9 and still not complete ...

OpenMP v4.5

* On CPU: #pragma omp parallel for

« On GPU: #pragma omp target teams
distribute parallel for

» IBM XL compiler with nVidia offloading (Dec '16):

LULESH benchmark 79x

Test S
est Specs from OpenMP.org

2 Powerd sockets @ 4GHz (8 cores,
with 8 threads each) with 1 NVIDIA

Pascal P100 GPU. 58x
53x

Compiler Options: -03 -ghot

-gsm p=omp -qoffload*

= \A H
Where applicable 35y 37x

8x 9x 8x 10x 8x

Problem Size. ——— —— E—
45x45x45 50x50x50 70x70x70 90x90x90 110x110x110

OpenMP CPU (16 threads) OpenMP GPU

OpenACC (I)

Open standard for accelerator programming
— Led by nVidia in response to CUDA vs OpenMP
— Competing standards but (slowly) converging ...

— Specify a loop or region of code to offload to
accelerator and compiler does the rest!

— “guidance” not explicit actions as with OpenMP
V1.0 (2011) — parallel, kernels, loop, data

V2.0 (2013) — added support for offloading
subroutines and atomic constructs

V2.6 (2017) — added sync, async and serial
— Available in gcc/gfortran v10.0 onwards

OpenACC (II)

« Compiler can auto-generate kernels for a
section of code (e.g. multiple loops and/or
Fortran array operations)

— Maximum flexibility but hard to get best speed
— Auto-detect dependencies:

!Sacc kernels
fortran loop(s) to be executed on device
1Sacc end kernels

#pragma acc kernels

{

c loop(s) to be executed on device

}

OpenACC (IlI)

* Or user can assert a single loop is dependency-
free and hence safe to be parallelized:

!Sacc parallel loop

for i=1,N Isingle fortran loop
INB no matching end-parallel

#pragma acc parallel loop
for (i=0;i<N;i++)
{

//single c loop to be executed on device

}
// NB no block braces

* NB data may be copied back from host between
successive parallel sections but stays on host
for duration of a kernels section

Further Reading

CUDA Developer ZONE
https://developer.nvidia.com/cuda-education-training

OpenCL Standard:
http://www.khronos.org/opencl

OpenACC standard:
http://www.openacc.org

OpenMP v5.0
http://www.openmp.org/wp-content/uploads/OpenMP-
API-Specification-5.0.pdf

