
High Performance Computing -
Introduction to

GPU Programming

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview
l What are GPUs?

l GPU Architecture

l Memory

l Programming in CUDA

l The Future

What is a GPU?
• A GPU is a massive vector processor

• Hundreds of processing units
• Large memory bandwidth
• Processing units can “collaborate”

• Some problems can be solved more efficiently
on vector processors (remember Crays).

• GPUs have some big advantages.
• Cheap and very fast for vector problems
• Computation is asynchronous with the CPU
• Hardware “tricks” such as texture filtering (zero

overhead!)
• Other accelerators (e.g. Xeon Phi) available

When is GPU Programming useful?
l “The GPU devotes more transistors to data
processing” (nVidia C Programming Guide)

l Good at doing lots of numeric calculations
simultaneously.
- This is actually required for the GPU to be efficient
- There must be many more numeric operations than

memory operations to break even.
l Useful as a co-processor.

- Can offload GPU efficient calculations while the CPU
continues with the rest.

l Brute forcing!
- Sometimes a brute force method is more efficient with

many processors than an elegant solution on just one

Floating Point Standard
l nVidia architectures 2.x onwards (i.e. 2010
Fermi onwards) are IEEE 754 compliant.

l Old nVidia architectures were mostly compliant.
Generally exceptions were handled in a
noncompliant way. Also some mathematics e.g.
FMAD, division and sqrt were not standard.

l Standard compliant intrinsic functions are
available but at a large computational penalty
(software implemented).

nVidia Architectures
l V1 = Tesla (2008) – introduced CUDA with
performance of 0.5 GFLOP/watt,

l V2 = Fermi (2010) – 64-bit floating, 2 GFLOP/W
l V3 = Kepler (2012) - dynamic parallelism
l V5 = Maxwell (2014) – faster Kepler – 3.8 TFLOP

DP, 24 GB GDRAM, 2 GPU, 500 GB/s, 300 W
l V6 = Pascal (2016) – unified memory, stacked
DRAM, direct interconnect between GPU & RAM

l V7 = Volta (2018) – tensor cores with half-
precision math for machine learning …

l More recent: Turing (2020), Ampere (2021), Ada
Lovelace (announced 2022) – faster Volta

GPU Architecture
l Lots of arithmetic units

sharing small caches.

l Execution blocks are
scheduled across
processing cores.

l Large memory bandwidth
but slow memory access.

l Fermi onwards have full
cache hierarchy.

Threads
l Each thread runs one

instance of a kernel.
l Threads are organised into

blocks (which can be up to
3D), blocks are scheduled
on and off the processors.

l Execution of a block on the
processors is called a warp.

l Grids (which can be 2D)
contain many blocks which
are executed on the device.

Memory Model
l Texture

l Write via CPU
l Allows hardware interpolation
l 2D Locality of arrays

l Constant
l Write via CPU
l Small, used for random access inst’ns

l Global
l Write via CPU and GPU

l Shared
l Local to Block
l Low latency
l Fastest comms between threads

l Local
l Per thread only memory

l Registers
l Thread only,
l Fastest memory available
l Limited space

Memory Scope
l Registers are local to

thread and has thread
lifetime.

l Shared memory shared
between threads in a
block and has block
lifetime

l Global memory is
accessible everywhere
and is persistent.

Tensor Cores
l One of the key operations when training a neural network

or doing ML is matrix-matrix multiplication (DGEMM)
l Each tensor core has a 4x4x4 matrix processing array
l Can do 64 mixed-precision OPs/clock with half-precision

inputs and either HP or SP output

Programming Technologies (I)
l CUDA (Compute Unified Device Architecture)

l Nvidia's proprietary platform.
l Offers both API (extensions to C/C++) and driver level

programming.
l Proprietary PGI Fortran compiler allows Fortran

development – both directive and kernel modes.

l OpenCL (Open Computing Language)
l Evolution of OpenGL to become a general solution for

heterogenous computing (e.g. GPUs and CPUs).
l Implemented on a driver level – e.g. built into MacOS
l Specification is manufacturer (and device)

independent – write once, run anywhere.

Programming Technologies (II)
l OpenACC

l Open standard version of the directives approach of PGI
l Spec v2.0 July 2013 has better support for control of

data movement, calling external functions, and separate
compilation for host & device so can build libraries

l Led by nVidia with Cray and PGI, has support for
Fortran, C/C++

l Now in gcc and gfortran (since v6.1)
l OpenMP v4.0

l Pushed by Intel to support Xeon Phi etc
l Subset of OpenACC functionality at present
l In gcc/gfortran since v4.9.1
l Supposed to include all of OpenACC in future but

difficulties with Intel vs nVidia …

CUDA Programme Structure
l Serial (host) code

l Kernel (device) code
- Grid

l Blocks
- Threads

l Must remember to
allocate data on both
host and device

l Kernel executes
asynchronously

Starting CUDA
l Headers must be included. In this introduction only

the API will be demonstrated.

l C/C++ files with CUDA kernels must have the
extension .cu

l Fortran CUDA files must have the extension .CUF

l See references at end for more complete
examples ...

use cudafor

#include <cuda.h>;
#include <cuda_runtime.h>;

Device Kernels
l A Kernel is a global subroutine (static function) which

runs on the device. One instance of the kernel will be
executed by every thread which is invoked.

l Kernels can only address device memory spaces.

l Executing kernels behaviour differs by using the
thread index which uniquely identifies the thread.

attributes(global) subroutine my_kernel(a, b, c)

static __global__
void my_kernel(float * a, float * b, float * c);

tx = threadidx%x + (blockidx%x * blockdim%x)

int tx = threadIdx.x + (blockIdx.x * blockDim.x);

Host Code
l Device memory must be allocated in advance by host:

l Data must be copied (over the bus) to the device and if
necessary copied back to the host later. This is very
slow! (Host memory can be allocated in non-paged
(pinned) memory to avoid one copy operation).

real,device,allocatable :: Adev(:)
...
allocate(Adev(M,N),stat=istat)

static __device__ double * devPtr = NULL;
...
cudaMalloc((void**)&devPtr, N*sizeof(double));

Adev = A ! Host to device

cudaMemcpy(devPtr, hostPtr, N*sizeof(double),
cudaMemcpyHostToDevice);

Kernel Execution
call my_kernel<<<grid,block>>>(arg1,arg2,...)

my_kernel<<<grid,block>>>(arg1,arg2...);

l grid – specifies the dimensions of the grid (i.e.
the number of blocks launched will be the product
of the dimensions).

l block – specifies the dimensions of each block
(i.e. the number of threads per block is the
product of the dimensions).

l dim3 – derived type which has three members.
type(dim3) :: grid
integer :: x=5,y=5,z=1
grid = (x,y,z)

int x=5,y=5,z=1;
dim3 grid(x,y,z);

Kernel Compilation and Run
l CUDA kernels must be compiled with a
CUDA compiler (pgfortran or nvcc).

l At runtime the kernel will be copied to the
device on first execution – note that for
accurate profiling, a kernel should be
executed at least once before timing.

l OpenCL kernels are usually compiled at
runtime. This allows the kernel to be
optimised for the running context but has a
larger initial overhead.

Advanced Features
l Streaming – Data can be moved across the

system bus while computation is happening. This
is good for large data structures which don't fit in
device memory.

l Texture/Surface memory – Memory can be
accessed via non-integer or surface coordinate!
Linear interpolation can also be performed.

l Fast intrinsic functions – Some special functions
exist which allow certain operations to be
performed very quickly although are not IEEE
compliant. For example rsqrt – reciprocal square
root. These can be useful for areas of the code
where precision is less important.

(free) CUDA Libraries
l V6 (2014+) Drop-in replacement for BLAS etc with auto

offload from CPU to GPU so free speed-up!
l CUBLAS – BLAS library

- Includes all S,D,C,Z level 1-3 BLAS routines
l CUFFT – FFT library

- 1D, 2D, 3D complex and real
- Stream enabled for parallel data movement &

computation
l CUSPARSE – Sparse matrix library

- BLAS style routines between sparse & dense matrices
l CURAND – Random number library
l Now also XT versions for multi-GPU support (non-free)

CUBLAS Fortran Interfacing
l Interfacing the CUBLAS library (written in C) with the

cudafortran from PGI requires an interface to be
written using the C-interoperability part of F2003, e.g.

Module cublas
Interface cuda_gemm

Subroutine cuda_sgemm(cta, ctb, m, n, k alpha, A, &
& lda, B, ldb,Beta, c, ldc)
bind(C,name='cublasSgemm’)
use iso_c_binding
character(1,c_char),value :: m,n,k,lda,ldb,ldc
real(c_float),value :: alpha,beta
real(c_float),device,dimension(lda,*) :: A
real(c_float),device,dimension(ldb,*) :: B
real(c_float),device,dimension(ldc,*) :: C
End subroutine cuda_sgemm

End interface cuda_gemm
End module cublas

Fortran Example
subroutine mmul(A, B, C)
use cudafor
real, dimension(:,:) :: A, B, C
integer :: N, M, L
real, device, allocatable, dimension(:,:) :: Adev,Bdev,Cdev
type(dim3) :: dimGrid, dimBlock

N = size(A,1) ; M = size(A,2) ; L = size(B,2)
allocate(Adev(N,M), Bdev(M,L), Cdev(N,L))
Adev = A(1:N,1:M) ; Bdev = B(1:M,1:L)
dimGrid = dim3(N/16, L/16, 1)
dimBlock = dim3(16, 16, 1)

call mmul_kernel<<<dimGrid,dimBlock>>>(Adev,Bdev,Cdev,N,M,L)

C(1:N,1:M) = Cdev
deallocate(Adev, Bdev, Cdev)
end subroutine

Fortran Kernel
attributes(global) subroutine MMUL_KERNEL(A,B,C,N,M,L)
real,device :: A(N,M),B(M,L),C(N,L)
integer,value :: N,M,L
integer :: i,j,kb,k,tx,ty
real,shared :: Ab(16,16), Bb(16,16)
real :: Cij

tx = threadidx%x ; ty = threadidx%y
i = (blockidx%x-1) * 16 + tx ; j = (blockidx%y-1) * 16 + ty
Cij = 0.0
do kb = 1, M, 16 ! Fetch one element each into Ab and Bb NB 16x16 = 256
! threads in this thread-block are fetching separate elements of Ab and Bb

Ab(tx,ty) = A(i,kb+ty-1)
Bb(tx,ty) = B(kb+tx-1,j) ! Wait until all elements of Ab and Bb are filled
call syncthreads()
do k = 1, 16

Cij = Cij + Ab(tx,k) * Bb(k,ty)
enddo ! Wait until all threads in the thread-block finish with this Ab and Bb
call syncthreads()

enddo
C(i,j) = Cij
end subroutine

OpenMP for GPUs
• Spec v4.5 finalized in Nov 2015 (C/C++/Fortran)
• Extensions to SIMD and TASK
• Array reduction (Fortran only) now allowed
• Extended TARGET attributes for better

accelerator performance
• Lots of new stuff for DEVICE …

• Available in GNU v6.1 and Intel v18.0
• OpenMP V5.0 (needed for multi-GPU) started in

v9 and still not complete ...

OpenMP v4.5
• On CPU: #pragma omp parallel for
• On GPU: #pragma omp target teams
distribute parallel for

• IBM XL compiler with nVidia offloading (Dec ’16):

LULESH benchmark
from OpenMP.org

OpenACC (I)
• Open standard for accelerator programming

– Led by nVidia in response to CUDA vs OpenMP
– Competing standards but (slowly) converging …
– Specify a loop or region of code to offload to

accelerator and compiler does the rest!
– “guidance” not explicit actions as with OpenMP

• V1.0 (2011) – parallel, kernels, loop, data
• V2.0 (2013) – added support for offloading

subroutines and atomic constructs
• V2.6 (2017) – added sync, async and serial

– Available in gcc/gfortran v10.0 onwards

OpenACC (II)
• Compiler can auto-generate kernels for a

section of code (e.g. multiple loops and/or
Fortran array operations)
– Maximum flexibility but hard to get best speed
– Auto-detect dependencies:

!$acc kernels
fortran loop(s) to be executed on device

!$acc end kernels

#pragma acc kernels
{

c loop(s) to be executed on device
}

OpenACC (III)
• Or user can assert a single loop is dependency-

free and hence safe to be parallelized:

• NB data may be copied back from host between
successive parallel sections but stays on host
for duration of a kernels section

!$acc parallel loop
for i=1,N !single fortran loop
!NB no matching end-parallel

#pragma acc parallel loop
for (i=0;i<N;i++)
{

//single c loop to be executed on device
}
// NB no block braces

Further Reading
CUDA Developer ZONE

https://developer.nvidia.com/cuda-education-training

OpenCL Standard:
http://www.khronos.org/opencl

OpenACC standard:
http://www.openacc.org

OpenMP v5.0
http://www.openmp.org/wp-content/uploads/OpenMP-
API-Specification-5.0.pdf

