
High Performance Computing
- History and Internals of a 

Typical Computer 

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1



Overview
• How does a single-core computer work?

• What are the key subsystems that affect 

performance?

• Where are the computational bottlenecks?

• What are caches and pipelines?

• How does the computer ensure data 

integrity?



Traditional Single CPU 
Computer

• Central Processing 
Unit communicates 
to other subsystems 
via a bus

• Key subsystems 
include memory, 
network, disks and 
video

The CPU

12

Inside the Computer

card
disks video

VDU

memory
controller

bus
controller

memory USB
ports

CPU

networkDMA

13



Central Processing Unit (CPU)
• Understands two types of data: integer 

and floating point
– may understand variants such as different 

precisions
– Performs basic arithmetic operations and 

comparisons (can also be used for 
branches)

• Only understands machine code
– each family of processors has completely 

different variant of machine code. 



Typical RISC CPU

The Heart of the Computer

The CPU, which for the moment we assume has a single core, is the brains of the computer. Everything else is
subordinate to this source of intellect.

A typical modern CPU understands two main classes of data: integer and floating point. Within those classes it
may understand some additional subclasses, such as different precisions.

It can perform basic arithmetic operations and comparisons, governed by a sequence of instructions, or program.

It can also perform comparisons, the result of which can change the execution path through the program.

Its sole language is machine code, and each family of processors speaks a completely different variant of machine
code.

14

+, −
shift
logical

+, −
shift
logical

store

load/

store

load/

F
l
o
a
t
i
n
g
 
P
o
i
n
t

R
e
g
i
s
t
e
r
s

I
n
t
e
g
e
r
 
R
e
g
i
s
t
e
r
s

Fetch

+, −

*, /

Memory Controller

Schematic of Typical RISC CPU

Decode
and

Issue

15



Parts of a CPU
• Instruction fetcher gets next machine code instruction from

the memory controller and passes it on to the
• Instruction decoder which decodes instruction, and sends

relevant data on to the
• Functional units which are dedicated to performing single 

operation (e.g. +,* etc) which use the
• Registers to store the input and output of the functional units 

(typically 32 floating point registers, and 32 integer registers)
– Floating point and integer operations often handled in

separate parts of CPU. In some older CPUs (e.g. Intel
80286 etc) there was no hardware support for FP – had a
separate "numeric co-processor" (80287) instead!

• NB Memory (except cache – see later) is not part of the CPU
and is used to store both program and data.



CPU Clock
• The clock is often (wrongly) used as a measure of 

the speed of a computer
– Different CPU families do different amounts of work per 

clock cycle so cannot use this with different CPU designs
• The clock is simply an external signal (square 

pulses) used to synchronise parts of the system
• Bus is used to move data between subsystems –

characterised by width (number of bits in parallel) as 
well as speed – internal usually much faster than 
external
– There are buses within the CPU, and buses between 

different components on the motherboard (e.g. PCI etc), 
and external buses to peripherals (e.g. USB, SCSI, etc)



CPU Pipelines
• To execute a single machine code instruction 

requires several events in sequence
e.g.

• There is a pipeline of operations that have to be 
performed sequentially
– Pipeline has 5-25 stages depending on CPU design
– So if each pipeline stage takes a single clock-cycle to 

complete then the above instruction would take 5 
cycles to complete

– But if we have multiple pipelines, then one part of the 
CPU can be fetching whilst another part is decoding, 
etc so can overlap independent operations (as long as 
no branching)

fetch decode dispatch wait retrieve
time



RISC or CISC?
• Can also overlap arithmetic operations if no data 

dependency in arguments
• Can also have multiple instruction decoders –

a.k.a. superscalar CPUs
– Enables instruction-level parallelism using spare 

functional units but decoding can be complicated unless 
all instructions same length (e.g. 4 words)

– And scheduling overlapping operations is complex if 
different instructions vary wildly in execution time

• Is it better to have a small number of simple 
instructions, or a large set of complex ones? 

• Early CPUs were CISC, modern ones are "RISC" 
but instruction sets have crept up in size and so 
distinction now less clear!



Overlapping Arithmetic
• Can also have pipelines within each functional unit
• Consider floating-point addition in base10:

– 1.23*105+4.0*104 : first we need to adjust exponents to 
be equal (12.3*104+4.0*104), then add the mantissas 
(12.3+4.0=16.3), then adjust if necessary the exponents 
(1.63*105)

– i.e. several distinct operations!
• So FP-add takes at least 3 clock cycles but with 3 

stage pipeline these distinct operations can be 
overlapped, so FP-add can have a latency of 3 
clock cycles but a repeat rate of 1 clock cycle.

equal exponents add mantissas adjust exponent

time
equal exponents add mantissas adjust exponent



Compiler Actions
• The compiler for a given high-level language 

needs to understand the underlying hardware 
(e.g. number and depth of pipelines) to get 
optimal performance

E.g.         looks like min. 3 cycles per term but a 
smart compiler would change

into     

So no data dependency 
and hence can issue 1 add/cycle!

å
=

n

i
ia

1

do i=1,n
sum=sum+a(i)

end do

do i=1,n,3
s1=s1+a(i)
s2=s2+a(i+1)
s3=s3+a(i+2)

end do



Branching and Speculation
• So to get the best efficiency you need to keep 

the pipelines as full as possible and hence 
minimize the impact of latency

• So what if there is a branch in the code?
– Processor cannot load the instructions following the 

branch instruction and hence the pipeline will stall. 
• Speculation can improve this

– If the CPU can predict the result of a conditional 
branch before the calculation is made, then it can 
pre-load the instructions following the branch whilst 
waiting for the branch itself to be evaluated!

– If branch is then correctly predicted there will be no 
loss of efficiency. Otherwise the speculative results 
have to be discarded and pipeline is emptied



Out-of-Order Execution

• A further optimisation that can be 
achieved by more sophisticated CPU 
hardware is out-of-order execution
– e.g. if an instruction is waiting for an earlier 

calculation to be completed due to a data 
dependency, then a later instruction with 
no dependencies can be scheduled in its 
place!



Threading
• A generic concept that can be implemented by O/S 

(multi-tasking) or within the CPU
– CPU version has advantage of much faster process-

switching time
• Called "Hyper-Threading" by Intel in 2002 with 2 

threads/processor, but first realised by Tera (now 
Cray) in 1991 in its MTA with 128 threads/proc!
– Each CPU thread has its own bank of registers but 

shares access to functional units and caches
– Thread can execute whilst other is stalled, etc.
– Extra logic in CPU gives ~10% increase in size but 

performance advantage can be considerable (~25%)
– Each CPU appears to O/S as multiple (virtual) 

processors and can run totally distinct processes
– Increased power dissipation and problems with caches



Multi-Core
• Logical next step to multi-threaded CPU
• Double up everything, not just the registers

– Advantage is increased computational power without the 
need for higher clock frequencies which are becoming 
increasingly complex (feature size) and hot! 

• IBM Power4 the first in 2001
– Intel and AMD did first dual-cores in 2005
– Then quad-core in 2006, hex-core in 2010, AMD octo-core 

in 2011, Intel in 2014, etc.
• Can also be combined with threading for even more 

virtual processors!
– AMD EPYC3 (Milan) in March 2021 is 64-core with 

hyperthreading so 128 threads per CPU - $5k+ each …



Memory
• Memory is a key component of computer
• Often a computational bottleneck!

– The problem is that as CPUs have got faster, memory 
has failed to keep up

– From 1984 to 2004 CPU clock speed went from 4 MHz 
to 4 GHz* but memory to only 400 MHz

– NB capacity has grown dramatically – from 64 kB to       
512 GB DDR5 memory modules! And now 3600 MHz.

– Such details might not be relevant 
to an MS Word user but are key to 
HPC performance!

* In Nov 2004 Intel changed its approach to faster 
PCs and shelved its plans for a 4 GHz Pentium 4 
CPU - switched instead to multi-core approach. AMD 
then followed suit. No normal 4+ GHz chips …



The Memory Problem
• A typical CPU runs at 2.0 GHz. With multiple pipes, it 

might perform a double precision (8 byte) add and a 
multiply each clock-cycle => 4 data items in, 2 out
– Memory controller needs a latency of 0.5/6 = 0.083 ns to 

deliver this (say 0.5 ns if latencies can be overlapped) and a 
bandwidth of 6 items x8 bytes x2 GHz = 96 GB/s

– DDR2-1066 DDRAM has a 266 MHz clock with 64 bits 
output on leading & trailing edge with clock doubling (hence 
1066 million transfers/second) with latency ~ 4 ns and peak 
bandwidth of 8.5 GB/s

– DDR3 released in 2007 with 2* bandwidth but worse latency! 
DDR4 in 2014, DDR5 in 2020 – max 51.2 GB/s …

– Practical figures worse due to controller chip latencies –
hence AMD "HyperTransport" integrates controller + CPU

– Serious mismatch between memory and CPU 



Improving the Memory Bus
• Wider buses 

– 1st PCs has 16-bit memory buses, 386 & 486 
had 32-bit, early Pentium had 64-bit

– Now modern PC has 128-bit if “dual channel”
– Alpha, Sun, SGI workstations up to 256-bit
– But wide buses need many tracks on 

motherboard and lots of pins on CPU –
cannot keep scaling this indefinitely

• Intel LGA-1200 socket has 1200 contacts!
• And it does not address the latency 

problem …



Solving the Memory Bottleneck
• Use caches to form a memory hierarchy

– Use a small amount of fast & expensive memory to 
store data which is frequently accessed

– Uses a different, much more expensive hardware 
technology – SRAM requires 6 transistors/bit c.f. 
DRAM requires only 1

– Cache hit rate is the number of memory accesses 
supplied by cache / total number of memory accesses 
requested – want it to be near 100% ideally

– Requires very fast (and simple) control logic in cache 
controller so as not to slow things down

– Many different policies, e.g. direct-mapped cache, set-
associative cache – see wikipedia article for details



Memory Hierarchy
• Primary cache (L1)

– Small (16 kB to 128 kB) on CPU, fast as possible
– Takes 1-3 clock cycles to serve a memory request

• Secondary cache (L2)
– Larger (256 kB to 8 MB), separate chip on motherboard 

or more recently integrated into CPU package
– May be shared between cores
– Takes 5-25 clock cycles to serve a memory request

• Sometimes
– L3 cache – 2MB-64 MB shared between cores

• Main Memory (1 GB+)
– Takes 30-300 clock cycles to serve a memory request

• Hard Disk (1000 GB+) – can use as extra memory 
via paging or swap files but much slower



How Reliable is your Memory?
• All forms of DRAM store data as charge in a 

capacitor
– Charge will leak with time hence DRAM needs periodic 

refreshing to maintain data
– Even so, may get occasional loss of charge due to 

ionisation or noise – modern chips even more so due to 
miniaturisation

– If a single bit is changed from a "1" to a "0" then could 
change sign or order of magnitude of a number! Or it 
might be a fraction of a percent change in magnitude 
(harder to detect in code). Or it may change a target 
address for a jump, etc. All of which is bad news!



What Can be Done?
• Parity

– Add an extra bit of memory to block of memory monitored 
which is "1" if an odd number of the checked bits are equal 
to "1" and "0" otherwise

– Hence can detect a single bit corruption but cannot do 
anything except stop!

– Typically 1 bit per byte => overhead 12.5%
• ECC (Error Correcting Code)

– Adds more protection bits – typically one for every 2n bits 
– Can detect and fix all single-bit errors, and detect all 2-bit 

errors and some 3-bit errors.
– Cost is 2+log2(n), so 5 bits for 1-byte but 10 bits for 32 bytes 

(256 bits => overhead ~ 4%)
– Essential as memory gets bigger and feature size shrinks!
– See Google report on memory errors and real rates ...



Hard Disks / Solid State Drive
• Choice of just two internal interfaces these days

– PCIe – Peripheral Component Interface Express – released in 2003 
– serial, general purpose, 1 bit per lane, can have 1-32 bonded 
lanes, one device per end-point but can have switch to make 
multiple endpoints

– SATA – serial, released in 2000, regularly updated (latest 2020). 
Only 1 device per channel. Also supports external devices too with 
eSATA since 2004.

– Both come in different variants. PCIe generally faster.
• Also USB and FireWire for external devices

– USB 3.0 spec finalised in Nov 2008 – first commercial external 
disks released in end-Sept 2009 . USB 4.0 spec in 2019 based on 
Thunderbolt 3. 

– Latest innovation is Thunderbolt (joint Intel + Apple)
– MacBook Pro (Feb 2011) – designed to extend internal PCI 

Express bus to outside for video – but can also be used for disk
– V2 released in 2013, V3 in 2015 – faster, bigger bandwidth, etc

• May find SCSI on old / high-end servers – serial & obsolete



Hard Disk Internals
• Single disk actually contains many 

platters, each with two magnetic 
surfaces (GMR is latest 
technology)

• Disk spins up to 15,000 RPM
• Extreme tolerances 

– head hovers 50 nm above surface 
(like flying a 747 airliner less than 0.2 
cm above ground)

• Extreme materials engineering
– Exponential growth in bit density –

doubling every year at the moment
– Work of Prof O’Grady etc

Best head seek time ~ 4 ms

Rotational latency ~ 2 ms

Bandwidth ~ 1000 MB/s

c.f. DRAM with 10 ns latency 
and 6 GB/s bandwidth

Hence need caching to 
keep up with memory



Solid State Drive
• Either NAND based (keeps data when 

switched off) or RAM (faster but volatile)
• Host interface can be SCSI, SATA, USB, etc.
• Advantages

– no spin-up delay, low latency (less than 0.1 ms), 
high bandwidth (600 MB/s)

• Disadvantages
– high cost (2x HD but coming down), smaller max 

capacity, higher risk of catastrophic failure, limited 
lifetime of each cell – need automatic "wear 
levelling"



Video
• Final subsystem of consequence is video
• Traditionally unimportant for HPC, except for 

scientific visualisation, but GPU is useful
– Recent developments in GPU relieve CPU of much load 

– in some modern PCs the GPU has more transistors 
than the CPU! nVIDIA pioneered with CUDA …

• OpenGL is an open library for 3D graphics.
– Pioneered by SGI with hardware support in its graphic 

workstations but early PC versions did it all in software 
and so were very slow. 

– Modern "3D-accelerators" do it in hardware and so fast. 
– Very useful for portable code! Adopted by Windows, 

Mac and UNIX, with many different language bindings.



Historical View (I)
• To understand current hardware, we need some 

knowledge of how current hardware evolved!
• Modern computing has its origins in the 1940s with 

early mainframes using valves as switches and 
ferrite cores for memory. The ideas developed 
have outlived the original hardware. 

• By 1970, the concepts of disk drives, floating point, 
memory paging, parity protection, multitasking, 
caches, pipelining and out-of-order execution have 
all appeared in commercial systems, and high-
level languages and wide-area-networking had 
been developed.  



Historical View (II)
• In the 1970s the new ideas were vector computers, 

error-correcting memory and RISC. Unix, C and 
TeX were created, and Fortran was standardized.

• In the 1980s the first massively-parallel computers 
appeared, and the Internet is created.

• In the early 1990s the first multi-threaded CPUs 
were invented, MPI and OpenMP were 
standardized, and the WWW was created.

• Since then there has been little that is radically 
new – it has just been refinement of old ideas!



Further Reading
• “Computer Architecture – A Quantitative 

Approach (6th edition)”, John L Hennessy 
and David A Patterson, (2017).

• https://en.wikipedia.org/wiki/Cache_placement_policies
for cache policies etc

• Intel http://www.intel.com
• IBM http://www.ibm.com
• Seagate http://www.seagate.com
• Google memory study:

http://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf


